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ABSTRACT 

Background: Primary Ciliary Dyskinesia (PCD) is a rare disorder causing chronic oto-sino-

pulmonary disease, generally diagnosed through evaluation of respiratory cilia ultrastructure 

and/or genetic testing. Nasal nitric oxide (nNO) measurement is a PCD screening test, as PCD 

patients have low nNO levels, but its value as a diagnostic test remains unknown.   

Objective: Perform a systematic review assessing the utility of nNO measurement (index test) as 

a diagnostic tool compared to the reference standard of electron microscopy (EM) evaluation of 

ciliary defects and/or detection of biallelic mutations in PCD genes. 

Data sources: Ten databases from inception through July 29, 2016 

Data extraction: Study inclusion was limited to publications with rigorous nNO index testing, 

reference standard diagnostic testing with EM and/or genetics, and calculable diagnostic 

accuracy information for cooperative patients (generally >5 years old), highly suspected of PCD.  

Synthesis: Meta-analysis provided a summary estimate for sensitivity and specificity and a 

hierarchical summary receiver operator curve. The QUADAS-2 tool assessed study quality and 

GRADE assessed diagnostic test accuracy of studies to evaluate the certainty of evidence. In 

twelve study populations (1,344 patients: 514 PCD, 830 non-PCD), using a reference standard of 

EM alone or EM and/or genetic testing, summary sensitivity was 97.6% (92.7-99.2), and 

specificity was 96.0% (87.9-98.7), with a positive likelihood ratio of 24.3 (7.6-76.9), a negative 

likelihood ratio of 0.03 (0.01-0.08) and a diagnostic odds ratio of 956.8 (141.2-6481.5) for nNO 

measurements. Excluding studies using EM alone as the reference standard, the seven studies 

using an extended reference standard of EM and/or genetic testing show a summary sensitivity of 

nNO measurements as 96.3% (88.7-98.9), and specificity as 96.4% (85.1-99.2), with a positive 
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likelihood ratio of 26.5 (5.9-119.1), a negative likelihood ratio of 0.04 (0.01-0.12), and a 

diagnostic odds ratio of 699.3 (67.4-7256.0). Certainty of the evidence was graded as moderate. 

Conclusions: Nasal nitric oxide is a sensitive and specific test for PCD in cooperative patients 

(generally >5 years old) with high clinical suspicion for this disease. With a moderate level of 

evidence, this meta-analysis confirms that nNO testing using velum closure maneuvers has 

similar diagnostic accuracy to EM and/or genetic testing for PCD, when cystic fibrosis is ruled 

out. Thus, low nNO values, accompanied by an appropriate clinical phenotype, could be used as 

a diagnostic PCD test, though EM and/or genetics will continue to provide confirmatory 

information. 

Funding: The American Thoracic Society for creation of clinical practice guidelines on 

diagnostic testing for PCD. 

  



5 
 

 

INTRODUCTION 

Primary Ciliary Dyskinesia (PCD) is a rare autosomal recessive disease resulting in 

impaired mucociliary clearance and chronic oto-sino-pulmonary infections.  Nasal nitric oxide 

(nNO) levels are low in PCD, and since nNO results are immediately available, these 

measurements are often used as a screening tool for PCD, before proceeding to ciliary electron 

microscopy (EM), high speed videomicroscopy analysis (HSVA), or genetic analysis for 

confirmatory diagnostic testing.   These latter tests are expensive ($550-$2,200 USD), can take 

months to complete, and sometimes yield non-diagnostic results. Inexperience in obtaining 

biopsy samples can lead to insufficient cilia for EM analysis, and inexperience in interpretation 

can lead to false positive or false negative EM results.  Diagnostic HSVA testing can also be 

challenging, as there is no standardization of ciliary waveform analysis, multiple biopsies at 

separate visits or re-differentiation of ciliated cells in culture are required to insure permanence 

of diagnostic ciliary waveform abnormalities (i.e. not arising from secondary insults such as viral 

infection)(1), and interpretation of HSVA samples from healthy controls shows poor inter-

observer agreement(2). Finally, genetic testing currently can only detect biallelic mutations in 

about two-thirds of patients with PCD(3).   

Previous publications have examined the diagnostic testing accuracy of nNO in PCD, yet 

many incorporated methodological flaws in study design, which could affect diagnostic 

accuracy. These errors include using HSVA as a screening test for study entry (excluding all 

subjects with normal videomicroscopy from further PCD testing), incorporating nNO 

measurement into both index (the new test being evaluated) and reference (the chosen gold 

standard) standard testing(4, 5), or using imperfect reference standard testing, by enrolling some 
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subjects diagnosed with PCD through HSVA analysis alone, and not presenting data on 

permanence of ciliary waveform abnormalities on repeat HSVA testing or after cellular 

regrowth(6).  Two previous meta-analyses examined the diagnostic testing accuracy of nNO in 

PCD, yet these analyses included studies with methodological flaws(7, 8). These methodological 

errors include: 1) not providing detailed information on tests used to diagnose patients with 

PCD(9-11),  2) inclusion of non-standard EM diagnoses in the reference standard (isolated inner 

dynein arm (IDA) defects without microtubule disorganization (MTD), and without repeat 

verification of isolated IDA defects on 2 separate biopsies)(12, 13),  3) inclusion of cystic 

fibrosis (CF) patients as disease controls, in whom nNO levels commonly fall below PCD cut-off 

values, impacting diagnostic accuracy(14-17), and 4) using non-standard technology or 

techniques for nNO measurement(6, 10, 16). Additionally, these meta-analyses did not routinely 

incorporate genetic results into their reference standard, even though commercial genetic testing 

is now a front-line clinical test for PCD. 

 The American Thoracic Society has supported creation of clinical diagnostic guidelines 

for PCD. As part of these guidelines, a robust systematic review and meta-analysis was 

performed, examining the diagnostic testing accuracy of nNO measurement for PCD, and results 

are presented here. This review uses strict inclusion and exclusion criteria to define acceptable 

index and reference standard testing for PCD.  The objective of this analysis is to assess if nNO 

measurement can be used as a diagnostic test for PCD (as opposed to only a screening test), in 

cooperative patients (generally >5 years old), who have a high probability of having this disease 

based on a highly suggestive clinical phenotype(18), and in whom cystic fibrosis has been ruled 

out. Specifically, the usefulness of this tool is evaluated as a replacement for the diagnostic 
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reference standards of classic EM ultrastructural ciliary defect and/or biallelic causative 

mutations in PCD genes.  

 

METHODS 

Data sources and searches 

For the literature search, the consulted databases were: Africa-Wide Information (Ebsco), 

AMED (Ovid), BIOSIS (Ovid), Cochrane (Wiley), Embase (Ovid), Global Health (Ovid), 

MEDLINE (Ovid), PubMed (NLM), Scopus (Elsevier), and Web of Science (Thomson Reuters). 

We manually searched all references from included articles to identify other potential literature 

of interest. The search was performed from all database inceptions until July 29, 2016 

(Supplemental material, Appendix 1). 

 

Study selection 

Eligible studies: 

Selected studies evaluate the accuracy of nNO testing (index test) in cooperative patients 

(generally >5 years old), who were deemed at high probability for having PCD based on a 

compatible clinical phenotype, compared to the reference standards of classic EM ultrastructural 

ciliary defect (outer dynein arm defect, outer plus inner dynein arm defect, inner dynein arm 

defect with microtubule disorganization, radial spoke or central apparatus defect) and/or biallelic 

mutations in known PCD genes.  Articles were not excluded on the basis of language or date of 

publication. 

Exclusion criteria: 
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Articles were excluded if any of the following were present: 1) <10 PCD patients in the 

recruited population, 2) the index test was inadequate - nNO measurement used electrochemical 

technology (NIOX Mino), only used non-velum closure techniques (tidal breathing), and/or used 

nasal sampling flow rates outside of the American Thoracic Society/European Respiratory 

Society recommended range(19), 3) the reference standard relied only on a single HSVA for 

PCD confirmation (without a second positive PCD diagnostic test or without HSVA after 

cellular regrowth in culture) or ≥30% of subjects had non-standard EM defects (unrepeated, 

isolated IDA defects without MTD)(20), 4) diagnostic testing accuracy was either not provided, 

not accurate, or not calculable, and 5) index testing was incorporated in the reference standard.  

Selection process: 

After duplicate article exclusion, two independent reviewers (A.S., D.P.) screened titles 

and abstracts to exclude non-pertinent publications. Full texts of eligible articles were assessed 

for final eligibility by a team of three independent reviewers (M.J., M.R., O.Y.). Final selection 

was based on full text assessment with complementary information provided by authors, when 

needed. Three months were allowed for authors to answer email queries, after which, articles 

lacking crucial information were excluded. If the article was included, but was found to contain 

missing information, a worst-case scenario was assumed (e.g., for unconfirmed, isolated IDA 

defects, patients were assumed as not having PCD). Disagreements were resolved by discussion 

(A.S., V.L.). 

 

Data abstraction 

Two reviewers extracted data independently (A.S. & M.J., M.R. or O.Y.) and assessed 

data quality (A.S and V.L.). Disagreements were resolved through discussion with a third 
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reviewer (M.J.).  Nasal NO values by exhalation against resistance (ER) and breath hold (BH) 

techniques were both collected; breath hold values were accepted if ER data were unavailable. If 

nNO measurement techniques were unclear, authors were contacted for clarification on 

techniques used and the number of subjects who performed ER or BH maneuvers.  All nNO 

measurements are presented in nanoliters/minute (nL/min). Quality assessment data was 

collected, including blinding to reference or index tests, pre-specification of the PCD diagnostic 

nNO cut-off value, and index test results as compared to the reference standard (true positive 

(TP), false positive (FP), true negative (TN), false negative (FN), and inconclusive result).  

 

Quality assessment 

The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used 

to evaluate the internal and external validity of each study(21). Risk of bias and applicability 

were assessed in four domains (patient selection, index test, reference standard, and flow/timing). 

Each item was graded as low, high, or unclear risk. The Grading of Recommendations 

Assessment, Development, and Evaluation (GRADE) system for Diagnostic Test Accuracy(22-

24) analyzed the certainty of evidence for each test result and for overall accuracy. Certainty of 

evidence considered the study design, risk of bias, precision, consistency, and directness. 

 

Data synthesis and analysis 

A bivariate model calculated summary estimates for sensitivity and specificity using a 

generalised linear mixed model approach. Summary likelihood ratios and diagnostic odd ratios 

were reported. A good discrimination was defined as a positive likelihood ratio >5.0 and 
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negative likelihood ratio <0.2(25). A hierarchical summary receiver operator curve was 

constructed describing the relationship between a continuous cut-off and accuracy. Analyses 

were performed using STATA (version IC 14, StataCorp, College Station, Texas, US) with the 

commands “metandi” and “metandiplot”(26).  Different sources of heterogeneity, other than 

variation in thresholds between studies, were explored. A sensitivity analysis was performed to 

estimate the accuracy of nNO testing after excluding studies relying on EM alone as reference 

standard. Other sources of heterogeneity were explored using subgroup analyses. Analyses were 

performed in Review Manager 5.3 (Cochrane collaboration). Heterogeneity was assessed by 

visual inspection of the summary receiver operator curve. 

 

General methodology 

This manuscript follows the PRISMA-P reporting guidelines for systematic review and 

meta-analyses (Supplemental material, Appendix 2)(27) and Cochrane Handbook for diagnostic 

testing accuracy reviews (28). 

 

RESULTS 

Study selection 

In total, 10,787 records were identified through a generalized search of all publications 

related to PCD, for use in comprehensive guidelines on PCD diagnosis. Results were not initially 

limited to articles investigating nNO testing.  After removing duplicates, 6,204 records were 

screened by title and abstract, and 6,127 records not addressing nNO testing were excluded. 
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Seventy-six full-text articles were assessed for eligibility, from which 65 were excluded (Figure 

1). Twelve study populations from 11 articles were included in the quantitative synthesis.(14-17, 

29-35)  

 

Study characteristics 

All twelve included studies were published between 2003 and 2015, from the following 

countries: Italy (3), United States (3), France (2), United Kingdom (2), Belgium (1) and Canada 

(1). Sample sizes ranged from 28 to 373 patients (8-149 PCD patients, 15-153 non-PCD 

patients). Four studies were cohort designs (prospective investigation of consecutive 

symptomatic referrals for PCD) while eight studies were case-control designs (retrospective 

comparison of previously diagnosed PCD populations against healthy and/or disease controls). 

 

Population characteristics (Table 1) 

A total of 1,721 patients were included in these twelve studies. In two studies, 42 patients 

were excluded for technical difficulties (problems with the NO analyzer, nasal obstruction, high 

ambient NO, or incomplete data)(29, 33). We excluded 191 CF patients(14-17, 30, 34) to better 

reflect real practice, where CF should be ruled out before nNO testing for PCD and 88 

uncooperative children who could not perform nNO with velum closure techniques(32, 33). We 

further excluded 56 patients who had inconclusive reference standard results(29). In total, 1,344 

patients were analysed (514 PCD patients, 830 non-PCD patients). Half of the studies included 

mainly a pediatric population (under 18-25 years old)(14, 15, 29, 32, 33, 35) while half included 

patients of all ages(16, 17, 30, 31, 34). Prevalence of PCD patients in cohort studies ranged from 
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28% to 57% of patients included in the quantitative analysis(17, 29, 31, 33). Nine studies 

provided information on symptoms leading to clinical suspicion of PCD, which generally 

included at least one of the following: chronic rhino-sinusitis, chronic otitis media, chronic 

bronchitis, bronchiectasis, neonatal respiratory distress, and/or organ laterality defects (mainly 

situs inversus totalis).  Six studies ruled out cystic fibrosis and five studies ruled out 

immunodeficiency prior to PCD testing. 

 

Index test characteristics (Table 2) 

Several different brands of chemiluminescence nitric oxide analyzers were used across 

the studies (NIOX Flex, Endono 8000, EcoPhysics CLD88, Sievers 280i, EVA4000, LR2000). 

Sampling flow rates ranged from 0.25 to 0.5 L/min, but only one study included regular 

verification (via standard operating procedures) of sampling flow rates with direct measurement 

using a Gilmont flowmeter(17). Most studies performed device calibration per device 

manufacturer recommendations. Six studies reported nNO measurement via ER and five studies 

used BH maneuvers (technique not fully reported in one study). Diagnostic nNO cut-off values 

ranged from 16.8 to 100 nL/min, with a median cut-off at 76.9 nL/min.  

 

Reference standards characteristics and strategies (Table 2) 

Electronic microscopy (EM): 

All studies included ciliary EM as the sole or main reference standard. The majority 

followed standard EM methodology(36). Most isolated IDA defects were either confirmed upon 
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repeat EM study, associated with MTD on post-hoc EM review, or confirmed post-hoc by 

disease-causing mutations in CCDC39 or CCDC40 genes. Nevertheless, Wodehouse and al. 

reported twelve patients (28.6%) as having isolated IDA defects without further specification by 

the authors, which increased the level of bias for this included publication(34). One basal body 

anomaly reported as PCD was excluded from analysis(35). 

Genetic testing: 

Three studies reported genetic testing as part of the original reference standard (usually as 

a complementary tool when EM was non-diagnostic rather than a systematic test used on all 

patients)(17, 29). After contacting authors, we found five additional cohorts(14-16, 30, 33) in 

whom genetic testing was performed post hoc in individuals with EM defects (n=24) or non-

diagnostic EM studies (n=32). Two cohorts tested only a single PCD gene (DNAH11), one 

cohort tested two genes, one cohort tested at least six genes, and one cohort tested 12-32 PCD 

genes (Table 2). In the meta-analysis, patients with biallelic mutations in a PCD-causing gene, 

whether identified prospectively or post hoc, were categorized as having PCD.  

 

Quality assessment (Figure 2) 

Patient selection (risk of bias and applicability):  

Four studies were cohort type(17, 29, 31, 33), while eight were case-control type studies. 

Among the case-control studies, five used disease controls(14-17, 34), while three used healthy 

controls(17, 30, 32, 35). The populations examined in cohort studies were selected populations 

considered at high risk for PCD (excluding CF patients) in whom PCD testing was being 

pursued.  
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Index test (risk of bias and applicability): 

In seven of twelve studies, the nNO cut-off was not pre-specified. Blinding of the index 

test was often not reported, but since nNO is an objective measurement, this was judged as 

having low impact on the risk of bias.  In most studies, patients were tested when free of acute 

respiratory tract infection for >2 weeks and not around nasal instrumentation. Only nNO results 

from cooperative children, who could perform velum closure maneuvers (via breath hold or 

exhalation against resistance techniques), were evaluated.  

Reference standard (risk of bias and applicability):  

The majority of studies reported that reference standards were blinded to the nNO 

measurements. There was no major concern regarding the technical aspects of the reference 

standard testing except in one cohort study, in which 39.4% patients (56 out of 142) were left 

undiagnosed due to inconclusive reference standard results (29). The remaining 86 patients with 

conclusive reference standard testing were included in our meta-analysis.  

Flow and timing (risk of bias):  

Differential verification (EM or genetic testing was only performed in PCD patients and 

not in controls) and absence of simultaneous testing (index and reference tests were performed 

sequentially instead of simultaneously) were frequent, especially in case-control studies. Both of 

these factors may artificially increase sensitivity and specificity. 

 

Data synthesis 
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When pooling the results of twelve studies, the bivariate analysis (average sensitivity and 

specificity for all thresholds) showed a summary sensitivity of 97.6% (92.7-99.2) and specificity 

of 96.0% (87.9-98.7) as well a positive likelihood ratio of 24.3 (7.6-76.9), a negative likelihood 

ratio of 0.03 (0.01-0.08), and a diagnostic odds ratio of 956.8 (141.2-6481.5) for nNO 

measurements. For this analysis, isolated IDA defects were reclassified as non-PCD when 

feasible.  Assuming a pre-test probability of 35%(17, 18, 29, 31, 33), corresponding positive and 

negative predictive values were 92.9% (80.5-97.6) and 98.7% (95.7-99.6), respectively 

(Supplemental material, Appendix 3).  A forest plot presenting studies in ascending order of 

thresholds is presented in Figure 3. Summary hierarchical receiver operator curve illustrating 

how sensitivity and specificity trade-off with each other as thresholds vary is presented in Figure 

4. 

 

Heterogeneity 

Subgroup analysis 

Sources of heterogeneity were explored using subgroup analyses. Studies presenting a lower risk 

of bias in different domains (such as using cohort-type design, disease controls over healthy 

controls, and pre-specified nNO cut-off values) showed slightly lower diagnostic test accuracy. 

Interestingly, studies that systematically excluded CF prior to PCD testing (15, 17, 30, 31, 33) 

showed a slightly higher diagnostic accuracy than studies that did not exclude CF (14, 29, 31, 32, 

34, 35) (sensitivity of 97.7% vs 95.1%, and specificity of 98.5% vs 91.4%, respectively). 

Sensitivity analysis :  
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The most relevant source of heterogeneity was the strategy used for the reference standard of 

PCD disease (EM alone vs extended reference standard combining EM and/or genetic testing). 

Thus, we performed a sensitivity analysis including only the seven studies with the extended 

reference standard of EM defects and/or genetic diagnoses(14-17, 29, 30, 33), which included 

1,086patients (430 PCD patients, 656 non-PCD patients). Globally, these seven studies were at 

lower risk of bias than the whole group (Figure 5), with proportionally more cohort-type studies, 

less using asymptomatic patients as their control group, and more studies pre-specifying their 

nNO cut-off.  Pooled analysis showed a summary sensitivity of 96.3% (88.7-98.9) and 

specificity of 96.4% (85.1-99.2) as well as a positive likelihood ratio of 26.5 (5.9-119.1), a 

negative likelihood ratio of 0.04 (0.01-0.12), and a diagnostic odds ratio of 699.3 (67.4-7255.9) 

when comparing nNO to the extended reference standard of EM defects and/or biallelic genetic 

mutations (Figure 6). Per GRADE methodology, the overall certainty of evidence was 

moderate, when evaluating studies comparing nNO to an extended reference standard of EM 

and/or genetics (see Table 3).  
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DISCUSSION 

In this meta-analysis, the diagnostic testing accuracy of nNO is excellent when compared 

against EM, and only slightly lower in comparison to the extended reference standard of EM 

and/or genetic testing. Both EM and genetic analysis are imperfect reference standard PCD tests, 

with currently estimated sensitivities at 0.70 (3, 37), and each of these detecting PCD cases that 

can be missed by the other test. Additionally, these reference standard tests can frequently 

provide non-diagnostic results, with up to 40% of clinical biopsies showing inadequate cilia for 

EM analysis(38) and up to 43% of genetic testing detecting monoallelic mutations or variants of 

unknown significance(39). Conversely, nNO measurement is a highly feasible test in cooperative 

patients (generally >5 years old), with successful measurements accomplished in >90% of 

patients in this meta-analysis. Although nNO testing has been largely considered as a PCD 

screening test, this analysis shows that nNO has a similar diagnostic potential to the accepted 

confirmatory PCD tests of EM and genetic analysis.  Thus, in populations with an appropriate 

clinical phenotype for PCD, where CF is ruled out, nNO measurement is a comparable PCD 

diagnostic test, with the added benefits of being highly feasible, painless, non-invasive, rapid, 

and relatively inexpensive ($25-85 USD) for patients.  However, there are limitations to nNO 

testing for PCD, including high purchase cost of chemiluminescence machines, training of 

device operators, lack of clinical approval for nNO devices in the United States, and the inability 

to rigorously test uncooperative children (generally <5 years old). 

Disease prevalence influences post-test probability, and this analysis assumes a PCD 

disease prevalence of 35%, as demonstrated when PCD is strongly suspected due to the presence 

of a highly suggestive clinical phenotype(18). This robust phenotype of 1) unexplained neonatal 

respiratory distress at term birth, 2) year-round wet cough starting before six months of age, 3) 
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year-round nasal congestion starting before six months of age, and 4) organ laterality defects, is 

highly predictive of PCD. While some of the studies included in this meta-analysis did not use 

these specific symptoms to select candidates for PCD diagnostic testing, most studies included 

variations of these clinical criteria. Thus, in a pre-selected population expressing these PCD–

specific symptoms, nNO measurement is a highly accurate diagnostic test and can replace EM or 

genetic testing.  If the prevalence is lower due to less stringent phenotype screening, the positive 

predictive value will be lower. For example, if the prevalence of PCD is 10% in a less-selected 

group, the positive predictive value of nNO testing for PCD is considerably lower at 73%.  At 

this lower PCD prevalence, approximately one quarter of patients with a positive nNO test will 

not have PCD upon confirmatory testing. Therefore, it is critical that careful selection of patients 

for diagnostic evaluation by nNO testing be accomplished. Otherwise, in less enriched groups, 

nNO will be more useful as a triage test prior to PCD diagnostic testing, as opposed to a 

replacement diagnostic test. Clinicians must consider this point, and appropriately screen patients 

for PCD-specific clinical criteria before embarking on PCD diagnostic investigations, including 

nNO testing.          

Two past meta-analyses have shown similar findings to this analysis, but neither 

publication used an extended reference standard incorporating genetic testing(7, 8). Rather, 

included studies used varying combinations of different reference standards, including clinical 

phenotype, HSVA, EM, and rarely genetics. Our analysis used rigorous criteria to define 

reference standard testing. By contacting authors, we eliminated studies with ≥30% isolated IDA 

defects and assigned greater bias to studies with 20-30% isolated IDA defects, as 25% of isolated 

IDA defects resolve on repeat EM testing(20).  Through author communication, we also 

significantly increased reference standard data on genetic testing, which improves 
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generalizability of this analysis to current clinical practices in North America, where genetic 

testing is increasingly used in PCD diagnosis. Lastly, we discovered that some studies only 

performed EM testing if HSVA was first abnormal, and often did not repeat HSVA studies on 

separate occasions or after cell culture. Altogether, our rigorous definition of reference standard 

testing greatly increases the strength of this meta-analysis. 

This analysis also used meticulous criteria to define the index test of nNO measurement. 

We restricted analysis to studies using chemiluminescence technology, as only this technology is 

recommended for nNO measurement in PCD(40). Next, we limited our data to nNO testing only 

through velum closure techniques. While tidal breathing nNO measurements are of clinical value 

in young children, PCD diagnostic cut-off values have not been defined for these techniques. 

Lastly, we excluded all CF patients, who can have nNO levels below PCD cut-off values, which 

could affect diagnostic accuracy. 

Even with our robust inclusion and exclusion criteria, this analysis has some limitations. 

First, despite its increasing clinical recognition, PCD is still a relatively rare disease, and our 

patient numbers are limited. Second, the heterogeneity of PCD reference standards poses 

difficulties for study generalizability. Ciliary EM alone identifies more classic cases of PCD, 

while missing variant forms(41). The expense of genetic testing also creates differential 

verification, where reference genetic testing is mainly performed in suspected PCD patients and 

not in healthy controls, which affects diagnostic testing accuracy.  Non-simultaneous PCD 

diagnostic testing (using nNO as an initial screening test, followed by EM and/or genetic testing) 

may also have affected diagnostic accuracy in the selected studies, although blinding of 

researchers should have minimized these effects. Due to the rapid discovery of novel PCD-

causing gene mutations, most genetic panels are incomplete by the time of study publication, 
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which further decreases the diagnostic accuracy of PCD genetic testing. However, with future 

discovery of novel PCD genes that result in normal ultrastructure with low nNO levels, the false-

positive rate of nNO testing may decrease and diagnostic accuracy may actually improve.  

Lastly, studies in this analysis using EM alone as the reference standard were more often 

designed as case-control-type studies, did not pre-specify diagnostic nNO cut-off values, or were 

not blinded to nNO results during reference standard testing.  Each of these factors is associated 

with an overestimation of diagnostic testing accuracy. Thus, while it is possible that nNO testing 

is actually less accurate when using an extended reference standard of EM and/or genetics, it 

seems more likely that studies using EM alone as the reference standard are at higher risk of bias, 

resulting in falsely increased diagnostic testing accuracy. 

 

CONCLUSION 

Nasal nitric oxide is a sensitive and specific test for diagnosing PCD in cooperative 

patients (generally >5 years old), in whom cystic fibrosis has been ruled out, and who have a 

robust clinical phenotype for PCD. The gold standard tests of EM and/or genetic analysis are 

imperfect tests, as both lack sensitivity for PCD diagnosis.  Although nNO was previously 

considered a PCD screening test, with a moderate level of evidence, this meta-analysis confirms 

that nNO testing has at least equivalent and likely better diagnostic testing accuracy than EM 

and/or genetic testing for PCD. Thus, we propose that nNO be considered a diagnostic test rather 

than a screening test in this population. Physicians must realize that normal nNO levels do not 

rule out PCD, and patients with highly compatible PCD clinical phenotypes but normal nNO 

levels should progress to further testing. In addition, even in individuals with a compatible 

clinical phenotype and low nasal NO, confirmatory testing with EM or genetics will yield 
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additional diagnostic information. As more genetic causes of PCD are discovered, repeat meta-

analysis will be required to evaluate the diagnostic testing accuracy of nNO measurement, and 

the upcoming ATS sponsored clinical practice guidelines on PCD diagnosis will further 

investigate the accuracy of other PCD diagnostic tests. Future study of tidal breathing nNO 

measurement is needed to evaluate the usefulness of this non-invasive, rapid, and inexpensive 

test for successful PCD diagnosis in uncooperative children <5 years old. 
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Table 1: Study and patient characteristics 

Study, year 
(reference) 

Location Study 
design 

Patients, 
total n* 

Patient 
description 

PCD patients, 
n (prevalence) 

Age Gender,     
n male (%) 

Beydon, 2015 
(29) 

France Cohort -86 patients 
suspected of 
having PCD  

Patients included 
children with chronic 
rhino-sinusitis, serous 
otitis media, 
bronchiectasis, 
chronic bronchitis, or 
situs inversus 

49 PCD total;  
Only 44 PCD 
performed nNO 
test correctly 
 
49/86 (57.0%) 

PCD median = 
11.4 yo (range 
7-13.9) 
Non-PCD 
median = 7.9 
yo (range 4.9-
11.6) 

81/142 
(57.0%) 

Boon, 2014 
(14) 

Belgium Case-
control 

191 patients:  
-38 PCD  
-153 non-PCD 
(51 HC, 48 
asthma, 54 
humoral 
immunodeficien
cy) 

PCD patients included 
children and adults 
with recurrent upper 
or lower respiratory 
tract infections +/- 
organ situs anomalies 

38 (NA) Range = 5 to 
25 yo  
PCD = 14.3 yo 
(range 8.8-
18.1) 
Non-PCD = HC 
14.9 yo (range 
10.8-20.4), 
asthma 12.1 yo 
(range 9.8-
16.5), humoral 
immunodeficie
ncy = 10.7 yo 
(range 8.2-
15.6)    

85/191 
(44.5%) 

Harris, 2014 
(16) 

United 
Kingdom 

Case-
control 

44 patients: 
-13 PCD  
-31 non-PCD (16 
with symptoms, 
15 HC) 

Unclear 13 (NA) Range = 6 to 
79 yo 

Not given 

Leigh (leading 
site), 2013 
(17)  

United 
States 

Case-
control 

296 patients : 
-149 PCD  
-147 non-PCD 
(37 asthma, 32 
COPD and 78 
HC) 

PCD patients included 
children and adults 
with respiratory 
features suggestive of 
PCD (unexplained 
neonatal respiratory 
distress, year-round 
nasal congestion, 
year-round wet cough, 
>5 episodes of otitis 
media by 2 yo, or situs 
anomalies, usually 
after cystic fibrosis & 
immunodeficiency 
excluded 

149 (NA) PCD mean= 
19.1 ± 14.8 yo 
Non-PCD mean 
= HC 20.9 ± 
15.7 yo, 
asthma 14.8 ± 
11.5 yo, COPD 
61.1 ± 8.9 yo 

139/296 
(47.0%) 

Leigh (other 
sites), 2013 
(17) 

United 
States 

Cohort 155 patients 
suspected of 
having PCD 

Patients included 
children and adults 
with respiratory 
features suggestive of 
PCD (unexplained 
neonatal respiratory 
distress, year-round 
nasal congestion, 
year-round wet cough, 
>5 episodes of otitis 
media by 2 yo, or situs 
anomalies, usually 

71/155 (45.8%)  PCD mean = 
23.3 ± 18 yo 
Non-PCD mean 
= 31.8 ±22.3 yo 

64/155 
(41.3%) 
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after cystic fibrosis & 
immunodeficiencies 
excluded 

Mateos Coral, 
2011 (15) 

Canada Case-
control 

53 patients: 
-20 PCD 
-33 non-PCD (14 
with 
bronchiectasis, 
19 HC) 

PCD patients included 
children with 
sinopulmonary 
symptoms typical of 
PCD, with CF and 
immunodeficiency 
ruled out 

20 (NA) PCD mean = 
11.4 ± 3.5 yo 
Bronchiectasis 
mean = 10.9 
±3.3 yo, HC 
mean = 11.0 ± 
3.7 yo  

26/53 
(49.1%) 

Noone, 2014 
(30) 

United 
States 

Case-
control 

140 patients: 
-69 PCD 
-71 non-PCD (27 
HC, 44 healthy 
heterozygotes) 

PCD patients included 
children and adults 
with lower airway 
disease with 
productive cough, 
wheeze, or shortness 
of breath and chronic 
upper airway 
symptoms of 
rhinitis/sinusitis +/- 
situs inversus totalis.  

69 (NA) PCD children 
median =  8 yo 
(range 1-17) 
PCD adults 
median = 36 yo 
(range 19-73)  
Non-PCD 
means = HC 37 
± 2 yo, and 
healthy 
heterozygotes 
= 44 ± 2 yo 

PCD: 36/78 
(46.2%)   

Papon, 2012 
(31) 

France Cohort 34 patients 
suspected of 
having PCD 

Patients included 
children and adults 
with chronic upper 
and/or lower 
respiratory tract 
infections, bronchitis, 
bronchiectasis, and 
sinusitis. 

13/34 (38.2%) Mean = 32.5 yo 
(range 10-72) 

16/34 
(47.1%) 

Piacentini, 
2008 (32) 

Italy Case-
control 

-35 patients:  
-8 PCD 
-27 non-PCD 
(HC) 

PCD patients included 
children with situs 
inversus and/or 
bronchiectasis and/or 
sinusitis 

10 PCD total;  
Only 8 performed 
nNO test 
correctly (NA) 

PCD mean = 17 
yo; 
Non-PCD = 27 
school aged 
with mean of 7 
yo 

53/87 
(60.9%) 

Pifferi, 2011 
(33) 

Italy Cohort -173 patients 
suspected of 
having PCD  

Patients included 
children with clinical 
history and symptoms 
of PCD, without cystic 
fibrosis, aspiration, 
gastro-esophageal 
reflux, or 
immunodeficiency. 

48 PCD total; 
Only 40 PCD 
performed nNO 
test correctly 
 
48/173 (27.7%) 

Median = 6.2 
yo (range 1 mo 
to 17.5) 

105/209 
(50.2%) 

Santamaria, 
2008 (35) 

Italy Case-
control 

28 patients 
-14 PCD  
-14 non-PCD (14 
HC) 

Unclear 14 (NA) PCD mean = 15 
yo (range = 7-
27) 
HC mean = 16 
yo (range = 7-
27)  

18/28 
(64.3%) 

Wodehouse, 
2003 (34) 

United 
Kingdom 

Case-
control 

108 patients: 
-42 PCD  
-66 non-PCD (20 
with 
bronchiectasis, 
12 Young’s 
syndrome, 18 
sinusitis, 16 HC) 

Unclear 42 (NA) PCD mean = 
34.2 ± 10.9 yo 
Non-PCD range 
of means = 
36.2 to 53.2 yo 

48/108 
(44.4%) 
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*Number of patients included in our final analysis after excluding patients experiencing technical difficulties with nNO testing 
(Beydon (n=39) and Pifferi (n=3)), CF subjects (Boon (n=50), Harris (n=6), Leigh (lead site) (n=77), Mateos Coral (n=32), Noone 
(n=11), and Wodehouse (n=15)), and patients with an inconclusive reference standard result (Beydon (n=56)).  Additionally, 
uncooperative children who could only perform tidal breathing nNO measurements were excluded from analysis (Beydon (PCD 
n=5, non-PCD n=7), Piacentini (PCD n=2, Healthy controls n=50), and Pifferi (PCD n=8, non-PCD=28)). 
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Table 2: Index test and reference standard characteristics 

Study, year 
(reference) 

Index test characteristics* Reference standard characteristics* 

Analyser Flow rate 
(L/min) Method Cut-off 

(nL/min) PCD diagnosis EM 
ultrastructure Genetic 

PCD diagnosis not 
confirmed by EM 
and/or genetics 

Beydon, 
2015** (29) 

NIOX Flex, 
Endono 

8000 
0.30 

Mainly ER, 
5 PCD via 
TB were 
excluded 

82.2 

44 of 49 PCD 
analysed: 
EM (n=44) 
and/or 
genetics 
(n=22) 

ODA (n=17)  
ODA+IDA (n=5) 
Central pair 
(n=10) 

DNAI1 (n=5) 
DNAI2 (n=1) 
RSPH1 (n=1) 
RSPH9 (n=1) 
RSPH4A (n=2) 
DYX1C1 (n=2) 
RPGR (n=1) 
-Unknown total 
number of genes 
tested 

3 IDA defects 
alone without 

confirmation by 
genetics (6.8%) 

IDA+MTD (n=9) 

CCDC39 (n=6) 
CCDC40 (n=3) 
-Unknown total 
number of genes 
tested 

IDA alone (n=3)  

Boon, 
2014** (14) 

EcoPhysics 
CLD88 0.30 ER 90 

38 PCD 
analysed: 
EM (n=23) or 
HSVA after 
ciliary culture 
regrowth 
(n=15), 
and/or post 
hoc 
confirmation 
by genetics 
(n=21)  

ODA (n=19) 
DNAH5 (n=4)  
-Only DNAH5 
tested 

2 normal EM 
without 

confirmation by 
genetics (5.1%) 

IDA+MTD (n=3) 
CCDC40 (n=3)  
-Only CCDC40 
tested 

RSP (n=1) 

RSPH4 (n=1) 
-Unknown total 
number of genes 
tested 

Normal EM 
with abnormal 
HSVA (n=15)  

DNAH11 (n=10) 
-Exome sequence 
used for 10 cases 
 
HYDIN (n=2) 
CCDC65 (n=1) 
-Unknown total 
number of genes 
tested 

Harris, 
2014** (16) NIOX Flex 0.30 BH 38 

13 PCD 
analysed: 
EM (n=11) or 
HSVA after 
ciliary culture 
regrowth in 
some cases 
with post hoc 
confirmation 
by genetics 
(n=2) 

ODA (n=5) 
ODA+IDA (n=5) 
IDA+MTD (n=1) 

 

0 
Normal EM 
with abnormal 
HSVA (n=2) 

DNAH11 (n=2) 
-Only DNAH11 
tested 

Leigh 
(leading 
site), 2013** 
(17)  

Sievers 
280i, 

EcoPhysics 
CLD88, 

NIOX Flex 

0.50, 
0.33, 
0.30 

ER 76.9 

149 PCD 
analysed: 
EM (n=143) 
or genetics 
(n=6) 

ODA (n=87) 
ODA+IDA 
(n=28) 
IDA+MTD 
(n=23) 
CA (n=5) 

 0 
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Normal EM 
(n=6) DNAH11 (n=6) 

Leigh (other 
sites), 
2013** (17) 

Sievers 
280i, 

EcoPhysics 
CLD88, 

NIOX Flex 

0.50, 
0.33, 
0.30 

ER 76.9 

71 PCD 
analysed: 
EM (n=65) or 
genetics (n=6) 

ODA (n=36) 
ODA+IDA 
(n=13) 
IDA+MTD 
(n=15) 
CA (n=1) 

 

0 

Normal EM 
(n=3) 
Inadequate EM 
(n=3) 

Confirmed but 
not disclosed  
(n=6) 
-Unknown total 
number of genes 
tested  

Mateos 
Coral, 2011 
(15) 

EcoPhysics 
CLD88 0.33 ER 58.5 

20 PCD 
analysed: 
EM (n=20) 
with post hoc 
confirmation 
by genetics 
(n=17) 

ODA+IDA 
(n=11) 
IDA+MTD (n=4) 
ODA (n=3) 
RSP (n=2)  

DNAH5 (n=6) 
DNAH11 (n=1) 
DNAI2 (n=1) 
CCDC39 (n=2) 
CCDC40 (n=1) 
DYX1C1 (n=3) 
RSHP4A (n=1) 
KTU (n=1) 
LRRC50 (n=1) 
-2 gene panel 
used in 1 case 
-12 gene panel 
used in 12 cases 
-21 gene panel 
used in 3 cases 
-32 gene panel 
used in 4 cases  

0 

Noone, 
2014**(34) 
(30) 

Sievers 
270B 0.50 BH 100 

69 PCD 
analysed: 
EM (n=60) or 
complete 
clinical 
phenotype 
with post hoc 
confirmation 
by genetics 
(n=9)  

ODA (n=31) 
ODA+IDA 
(n=16) 
IDA+MTD 
(n=13) 

Confirmed but 
not disclosed  
(n=9) 
-Only 2 genes 
tested 

0 

Papon, 2012 
(31) EVA4000 per ATS 

standards 
per ATS 

standards 100 
13 PCD 
analysed: 
EM (n=13) 

ODA (n=9) 
IDA+nexin link 
(n=2) 
ODA+IDA (n=1) 
Central pair 
(n=1) 

 0 

Piacentini, 
2008 (32) NIOX Flex 0.30 

Mainly BH, 
2 PCD via 
TB were 
excluded 

20.4 
8 of 10 PCD 
analysed: 
EM (n=10) 

ODA+IDA (n=7) 
ODA (n=1) 
IDA (n=2)  

 0 

Pifferi, 
2011** (33) 

EcoPhysics 
CLD88 0.33 

Mainly ER, 
8 PCD via 
TB were 
excluded 

96 

40 of 48 PCD 
analysed: 
EM (n=42) or 
HSVA after 
ciliary culture 
regrowth with 
post hoc 

ODA+IDA 
(n=23) 
IDA+CA+MTD 
(n=12) 
ODA (n=2) 
IDA+MTD (n=3) 
IDA (n=2) 

 0 
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confirmation 
by genetics 
(n=6) 

Normal EM 
with abnormal 
HSVA (n=6)  

DNAH11 (n=6) 
-Only DNAH11 
tested 

Santamaria, 
2008 (35) NIOX Flex 0.28 BH 16.8 

14 PCD 
analysed: 
EM (n=14) 

ODA+IDA (n=8) 
ODA (n=1) 
IDA+MTD (n=3) 
Central pair 
(n=1) 

 1 non-classic EM 
anomaly without 
confirmation by 
genetics (7.1%) Basal body 

anomaly (n=1)  

Wodehouse, 
2003 (34) LR2000 0.25 BH 50 

42 PCD 
analysed: 
EM (n=42) 

ODA (n=21)  
ODA+IDA (n=5) 
Transposition 
(n=2) 
Radial spoke 
(n=2)  

 12 IDA defects 
alone without 

confirmation by 
genetics (28.6%) 

Unspecified 
IDA (n=12)  

ER: exhalation against resistance BH: breath hold, TB: tidal breathing 
CA: Central apparatus defect; IDA+MTD: Inner dynein arm + microtubule disorganization defect; ODA: Outer dynein arm defect; 
ODA+IDA: Outer dynein arm + Inner dynein arm defect;  
*All information in italics are from personal communication with the authors 
**Studies considered as using a combination of EM and/or genetics as the reference standard 
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Table 3: Summary of findings table including the 7 studies comparing nNO to an extended reference 
standard of EM and/or genetics 

Sensitivity  0.96 (95% CI: 0.89 to 0.99) 

Specificity  0.96 (95% CI: 0.85 to 0.99) 

 

 
Prevalence  35% 

(18) 

 

 

Outcome 

№ of 
studies 
(№ of 

patients)  

Study 
design 

Factors that may decrease quality of evidence 

Effect per 
100 

patients 
tested Test 

accuracy 
QoE 

Importance 

Risk of 
bias Indirectness Inconsistency Imprecision Publication 

bias 

pre-test 
probability 

of 35%  

True 
positives  
(patients 
with PCD)  

7 
studies 

423 
patients 

cohort 
& 

case-
control 
type 

studies 

serious 
a 

not serious not serious not serious None 34 (31 to 
35) 

⨁⨁⨁◯ 
MODERATE 

CRITICAL 

False 
negatives  
(patients 
incorrectly 
classified as 
not having 
PCD)  

1 (0 to 4) CRITICAL 

True 
negatives  
(patients 
without 
PCD)  

7 
studies 

636 
patients 

cohort 
& 

case-
control 
type 

studies 

serious 
a 

not serious not serious not serious None 63 (55 to 
64) 

⨁⨁⨁◯ 
MODERATE 

CRITICAL 

False 
positives  
(patients 
incorrectly 
classified as 
having 
PCD)  

2 (1 to 10) IMPORTANT 

Inconclusive  7 
studies 

27 
patients 

-  -  -  -  -  -   -  IMPORTANT 

a. 4 studies were case-control studies from which one study included only healthy patients in the control group. 2 studies did not pre-specify the nNO cut-off 
before performing measurements while not being blinded to the reference standard.  
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FIGURES 

Figure 1: Summary of evidence search and selection 

Figure 2: Assessment of validity of individual studies with QUADAS-2 tool for the 12 included studies. 
QUADAS-2 tool is designed to assess the quality of primary diagnostic accuracy studies and consists 
of 4 key domains evaluating the methods used in regard to patient selection, index test, reference 
standard, and flow of patients through the study and timing of the index tests and reference 
standard. The results presented here show several studies with high risk of bias in regard to the 
index test domain, especially in case-control studies.  

Figure 3: Forest plot (in ascending order of nNO cut-off value in nL/min) 

Figure 4: Summary ROC for the 12 included studies 

Figure 5: Assessment of validity of individual studies with QUADAS-2 tool for the 7 included studies 
comparing nNO to an extended reference standard of EM and/or genetics. QUADAS-2 tool is designed 
to assess the quality of primary diagnostic accuracy studies and consists of 4 key domains 
evaluating the methods used in regard to patient selection, index test, reference standard, and flow 
of patients through the study and timing of the index tests and reference standard. The results 
presented here show that the 7 selected studies were at lower risk of bias and concerns regarding 
applicability as compared to the initial 12 analyzed studies presented in Figure 2.    

Figure 6: Summary ROC for the 7 studies comparing nNO to an extended reference standard of EM 
and/or genetics 
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Supplemental Material 

 

Appendix 1: Initial search strategy for PCD articles 

 

Appendix 2 : PRISMA 2009 checklist  

 

Appendix 3: Fagan normogram - Assuming a 35% pre-test probability (in blue, based upon prevalence 
data in several large PCD cohort studies (17, 18, 29, 31, 33)) and a 10% pre-test probability (in red) with 
the corresponding post-test probabilities for a pooled PLR of 24.3 and NLR of 0.03. 
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