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Abstract: Moderate deviation principles for empirical measure processes associated with
weakly interacting Markov processes are established. Two families of models are considered:
the first corresponds to a system of interacting diffusions whereas the second describes a
collection of pure jump Markov processes with a countable state space. For both cases the
moderate deviation principle is formulated in terms of a large deviation principle (LDP),
with an appropriate speed function, for suitably centered and normalized empirical measure
processes. For the first family of models the LDP is established in the path space of an
appropriate Schwartz distribution space whereas for the second family the LDP is proved in
the space of l2 (the Hilbert space of square summable sequences)-valued paths. Proofs rely
on certain variational representations for exponential functionals of Brownian motions and
Poisson random measures.

AMS 2000 subject classifications: 60F10, 60K35, 60J75, 60J60.

Keywords: moderate deviations, large deviations, Laplace principle, variational represen-
tations, weakly interacting jump-diffusions, nonlinear Markov processes, mean field asymp-
totics, Schwartz distributions, Poisson random measures.

1. Introduction

For m ∈ N, consider a collection of stochastic processes {Xm
i }mi=1, representing trajectories of

m interacting particles, given as the solution of stochastic differential equations (SDE) driven
by mutually independent Poisson random measures (PRM) or Brownian motions (BM). The
interaction between particles occurs through the coefficients of the SDE in that these coefficients
depend, in addition to the particle’s current state, on the empirical distribution of all particles
in the collection. The form of the interaction is such that the stochastic processes (Xm

1 , . . . ,X
m
m )

are exchangeable if the initial distribution of the m particles is exchangeable. Such stochastic
systems, commonly referred to as weakly interacting Markov processes, date back to the classical
works of Boltzmann, Vlasov, McKean and others (see [37, 26] and references therein). Although
originally motivated by problems in statistical physics, over the past few decades, such models
have arisen in many different application areas, including communication networks, mathematical
finance, chemical and biological systems, and social sciences. For an extensive list of references to
such applications see [8, 13].

There have been many works that study law of large numbers (LLN) results, propagation of
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chaos (POC) property, and central limit theorems (CLT) for such models. These include McK-
ean [30, 31], Braun and Hepp [5], Dawson [16], Tanaka [38], Oelschaläger [34], Sznitman [36, 37],
Graham and Méléard [22], Shiga and Tanaka [35], Méléard [32]. Many variations of such systems
have also been studied. For example, in [27, 28, 12, 13] limit theorems of the above form are
established for a setting where there is a common noise process that influences the dynamics of
each particle. LLN and POC in a setting with K-different subpopulations where particle evolution
within each subpopulation is exchangeable, has been studied in [1] and a corresponding CLT has
been established in [13]. Other works that have studied mean field results for such heterogeneous
populations include [15, 14].

Large deviation principles (LDP) for weakly interacting particle systems have also been well
studied in many works. A classical reference is [17] which considers a collection of diffusing particles
with non-degenerate diffusion coefficients that interact through the drift terms. Proofs are based
on discretization arguments together with careful exponential probability estimates. Alternative
methods using weak convergence and certain variational representation formulas have recently
been introduced in [7]. Large deviations for pure jump finite state weakly interacting particle
systems have been studied in [29, 2, 20].

In the current work, our focus is on the study of deviations from the law of large numbers
limit for such weakly interacting systems that are of smaller order than those captured by a
large deviation principle. Results that give asymptotics of such lower order deviations are usually
referred to as moderate deviation principles (MDP). The object of interest in this work is the
empirical measure process µm(t)

.
= 1

m

∑m
i=1 δXm

i (t). Denoting the state space of particles by S,
µm(t) is a random measure, with values in P(S) (the space of probability measures on S equipped
with the weak convergence topology). In order to motivate the problem of interest, we consider
as an illustration the setting where the particle distributions are i.i.d. Let {Yi}i∈N be an i.i.d.
sequence of Rd-valued random variables with distribution µ. Sanov’s theorem that gives an LDP
for Lm

.
= 1

m

∑m
i=1 δYi formally says that for any measurable set U in P(Rd),

P(Lm ∈ U) ≈ exp{−m inf
ν∈U

I(ν)},

where for ν ∈ P(Rd), I(ν) = R(ν‖µ) .=
∫

Rd
dν
dµ

(

log dν
dµ

)

dµ is the relative entropy (R(ν‖µ) is taken
to be ∞ if ν is not absolutely continuous with respect to µ). Now let {a(m)}m∈N be a positive
sequence such that as m→ ∞,

a(m) → 0 and a(m)
√
m→ ∞ (1.1)

(e.g. a(m) = m−θ for some θ ∈ (0, 1/2)). A moderate deviation principle for {Lm}, associated with
deviations of order 1

a(m)
√
m
, gives a result of the following form (see e.g. [3]): for any measurable

set U in P0(R
d) (the space of signed measures on R

d such that ν(Rd) = 0),

P(a(m)
√
m(Lm − µ) ∈ U) ≈ exp

{

− 1

a2(m)
inf
ν∈U

I0(ν)

}

,

where for each ν ∈ P0(R
d), I0(ν)

.
= 1

2

∫

Rd

(

dν
dµ

)2
dµ (once again we take I0(ν)

.
= ∞ if ν is not

absolutely continuous with respect to µ). Note that CLT and LDP provide asymptotics for the
probabilities on the left side when a(m) = m−θ with θ = 0 and 1

2 respectively, whereas an MDP
studies an asymptotic regime where θ ∈ (0, 12) (an MDP also treats more general scale functions
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a(m)). There is an extensive literature on moderate deviation results in mathematical statistics,
including results for i.i.d. sequences and arrays, empirical processes in general topological spaces,
weakly dependent sequences, and occupation measures of Markov chains together with general
additive functionals of Markov chains (see [9] for many such references). MDP for small noise
finite and infinite dimensional SDE with jumps have been studied in [9]. References to other
MDP results for SDE in the context of stochastic averaging and multi-scale systems can be found
in [9]. For weakly interacting particle systems in discrete time, MDP based on semigroup analysis
and projective large deviation methods have been established in [18].

In the current work we will study moderate deviation principles for continuous time weakly
interacting Markov processes. The models we consider will allow for both Brownian and Poisson
type noises in the dynamics. Our approach is based on certain variational representations for
exponential functionals of such noise processes developed in [4, 6, 10, 11]. In order to keep the
presentation simple we consider two types of models: one that corresponds to pure jump interacting
Markov processes and the other that considers interacting Markov processes with continuous
sample paths and Brownian noise. Although not treated here, one can use similar techniques to
develop moderate deviation results for settings that have both Brownian and Poisson type noises.

For the diffusion model considered here, we allow for state dependence in both drift and diffusion
coefficients and the interaction through the empirical measure appears in both coefficients as well.
Coefficients are assumed to be bounded with suitable smoothness properties but non-degeneracy
of the diffusion term is not required. This is in contrast to the classical results on large deviation
principles for such systems (e.g. [17]) which only allow interaction in the drift and require the
diffusion coefficient to be uniformly non-degenerate. In order to highlight the main ideas we restrict
attention to a one dimensional setting, i.e. the case where the state space of the particles is R.
The general multidimensional case can be treated in a similar manner. Specifically, we consider
a collection of one dimensional weakly interacting diffusions {Xm

i }mi=1 given by the system of
equations:

Xm
i (t) = x0 +

∫ t

0
σ(Xm

i (s), µm(s)) dWi(s) +

∫ t

0
b(Xm

i (s), µm(s)) ds, i = 1, . . . ,m, (1.2)

where {Wi} is a sequence of i.i.d. one-dimensional standard {Ft}-Brownian motions given on
some filtered probability space (Ω,F ,P, {Ft}) and µm(t)

.
= 1

m

∑m
i=1 δXm

i (t). Here for θ ∈ P(R),

σ(x, θ)
.
=
∫

R
α(x, y) θ(dy) and b(x, θ)

.
=
∫

R
β(x, y) θ(dy), where α and β are bounded and Lipschitz.

Law of large numbers, large deviation principle and central limit results for µm have been well
studied (see for example [37, 17, 23, 32] and references therein). A brief summary of these results
is as follows. As m → ∞, µm converges in C([0, T ] : P(R)) (the space of P(R)-valued continuous
functions, equipped with the usual uniform topology and any metric on P(R) metrizing the weak
topology and making it a Polish space), in probability, to µ where µ(t) is the common probability
distribution of the i.i.d. collection {X̄i(t)} governed by the equation

X̄i(t) = x0 +

∫ t

0
σ(X̄i(s), µ(s)) dWi(s) +

∫ t

0
b(X̄i(s), µ(s)) ds, i ∈ N. (1.3)

Existence and uniqueness of solutions to (1.2) and (1.3) are classical (see e.g. [37]). The paper [17]
establishes an LDP for µm in C([0, T ] :P(R)) with a suitable rate function under the condition
that σ(u, θ) ≡ σ(u) and σ is uniformly non-degenerate. Some of these conditions on the coefficients
can be relaxed (see e.g. [7]). A central limit theorem studying the asymptotics of the fluctuation
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process of signed measures Sm(t)
.
=

√
m(µm(t)− µ(t)) has been established in [23, 32]. As is well

understood (cf. [23]), Sm is very irregular as a signed measure-valued process as m becomes large
and one cannot expect the limit in general to be a measure-valued process. A common approach
is to regard Sm(t, ·) as an element of a suitable distribution space. For example, it is shown in [23]
that, under conditions, Sm converges in distribution as a sequence of C([0, T ] : S ′)-valued random
variables, where S ′ is the dual of the Schwartz space S, namely the space of rapidly decaying
infinitely smooth functions on R. This space is equipped with the usual topology given in terms of
a countable collection of Hilbertian seminorms {‖·‖n}n∈Z with associated Hilbert spaces {Sn}n∈Z.
We refer the reader to Section 2 for some basic background on the Schwartz space, but for now it
suffices to note the following properties of the collection of Hilbert spaces {Sn}n∈Z: Sw ⊂ Sv for
w ≥ v, S−n is the dual of Sn, S ′ =

⋃

n∈Z Sn and S =
⋂

n∈Z Sn. The paper [23] shows that (see
Theorem 1 therein), under suitable conditions, for some v ∈ N, Sm converges in C([0, T ] : S−v),
in distribution, as m→ ∞, to S given as the solution of

S(t) = Z(t) +

∫ t

0
L∗(s)S(s) ds. (1.4)

Here Z is an S−(v+2)-valued Gaussian process with an explicit covariance operator (see (4.2)
in [23]) and L∗(s) is the adjoint of the operator L(s) defined as (see also (1.4) in [23])

(L(s)φ)(x)
.
= φ′(x)b(x, µ(s)) +

1

2
φ′′(x)σ2(x, µ(s))

+

∫

R

φ′(y)β(y, x)µs(dy) +
∫

R

φ′′(y)σ(y, µ(s))α(y, x)µs(dy), φ ∈ S.
(1.5)

Under suitable smoothness conditions on the coefficients, L(s) can be regarded as a bounded
linear operator from Sv+2 to Sv and thus L∗(s) is a bounded linear operator from S−v to S−(v+2).
The equation (1.4) is interpreted as follows: For all φ ∈ S,

〈S(t), φ〉 = 〈Z(t), φ〉 +
∫ t

0
〈S(s), L(s)φ〉 ds.

We remark that [23] actually considers a modified version of the Schwartz distribution space which
allows one to use unbounded test functions as well, however their results hold for the classical
Schwartz space as presented above. Results of [23, 32] study deviations of µm from µ that are
of order 1√

m
. In this work we will be concerned with deviations of µm from µ that are of higher

order than 1√
m

(but of lower order than 1
m). Let {a(m)}m∈N be as in (1.1) and

Y m(t)
.
= a(m)Sm(t) = a(m)

√
m(µm(t)− µ(t)). (1.6)

We will show in Theorem 2.1 that under Conditions 2.1 and 2.3, Y m satisfies a large deviation
principle with speed a2(m) (see Section 1.1 for a precise definition) in C([0, T ] : S−ρ) with a
suitable value of ρ > v. Roughly speaking, this result says that for any Borel set U in C([0, T ] : S−ρ)
one has

P(Y m ∈ U) ≈ exp

{

− 1

a2(m)
inf
η∈U

I(η)

}

,

where I is the associated rate function that will be introduced in (2.10). Since it provides asymp-
totics for probabilities of deviations of µm from µ that are of order 1

a(m)
√
m
, this LDP for Y m can

be viewed as a moderate deviation principle for the empirical measure process µm.
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The proof relies on certain variational formulas for exponential functionals of Brownian motions
of the form first obtained in [4]. For our purpose it will be convenient to use the somewhat more
general form allowing for an arbitrary filtration, given in [10]. Using the Laplace formulation of
the LDP (see Chapter 1 of [19]) these variational formulas reduce the proof of the upper bound
in the LDP to proving tightness and characterization of limit points of certain centered and nor-
malized controlled versions of the original weakly interacting particle system. These centered and
normalized controlled empirical measure processes are regarded as random variables with values
in a suitable Schwartz distribution path space, and the main work is in obtaining appropriate es-
timates for tightness in this path space. For the proof of the lower bound we construct a sequence
of asymptotically near optimal controlled weakly interacting diffusions in which the controls are
determined by the i.i.d. sequence of nonlinear Markov processes {X̄i} in (1.3). By asymptotic near
optimality we mean that for each ε > 0, controls can be chosen such that the costs associated
with the controlled processes (given through the variational representation) are asymptotically at
most ε greater than the Laplace upper bound.

The second family of models considered in this work corresponds to weakly interacting Markov
processes with a countable state space. Consider for m ∈ N, a pure jump Markov process
{(Xm

1 (t), . . . ,Xm
m (t)), t ∈ [0, T ]} taking values in N

m with Xm
i (0) = xmi . The evolution of the

process is described through the jump intensities that are given as follows:
Given (Xm

1 (t−), . . . ,Xm
m (t−)) = (x1, . . . , xm) ∈ N

m, for i ∈ {1, . . . ,m} and y ∈ N, y 6= xi,

(x1, . . . , xi−1, xi, xi+1, . . . , xm) 7→ (x1, . . . , xi−1, y, xi+1, . . . , xm) (1.7)

at rate Γxi,y(µ
m(t−)), where µm(t−) = 1

m

∑m
i=1 δxi =

1
m

∑m
i=1 δXm

i (t−) ∈ P(N). All other forms of
jump have rate 0. Here Γ(q)

.
= (Γij(q))

∞
i,j=1 is a rate matrix for each q ∈ P(N), namely Γij(q) ≥ 0

for i 6= j and Γii(q) = −∑∞
j 6=i Γij(q) > −∞. We identify P(N) with the simplex

Ŝ .
=







q = (q1, q2, . . . ) ∈ l2

∣

∣

∣

∣

∞
∑

j=1

qj = 1, qj ≥ 0 ∀j ∈ N







in l2 (the Hilbert space of square-summable sequences, equipped with the usual inner product).
With suitable assumptions on the intensity function Γ and the initial configuration of the particles,
it can be proved (see Theorem 3.1) that for each T > 0, µm converges to p in D([0, T ] : l2) (the
space of l2-valued functions that are right continuous with left limits, equipped with the usual
Skorokhod topology) for a continuous function p characterized as the unique solution of an l2-
valued ODE (see (3.8)). We are interested in the asymptotics of the centered and scaled quantity
Zm

.
= a(m)

√
m(µm − p) regarded as a random variable with values in D([0, T ] : l2), where a(m)

is as defined in (1.1). In Theorem 3.2 we will establish a moderate deviation principle for µm

which is formulated in terms of an LDP for Zm that formally says that for any Borel set U in
D([0, T ] : l2)

P(Zm ∈ U) ≈ exp

{

− 1

a2(m)
inf
η∈U

Ī(η)

}

,

where Ī is the associated rate function introduced in (3.10). We also give an alternative expres-
sion for the rate function in (3.12) which is somewhat easier to interpret in terms of the model
parameters.

Our proof of the MDP in this pure jump setting once more relies on certain variational rep-
resentations. This time the variational representations are for exponential functionals of Poisson
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random measures that have been studied in [11]. It is easy to see that one can describe the
evolution of the particle system using Poisson random measures on a suitable point space. In
particular, for the construction we use here it suffices to consider a PRM on YT

.
= [0, T ] × R

3
+.

One can represent the associated empirical measure process {µm(t), t ∈ [0, T ]} as a solution of an
SDE where the driving noise is described in terms of this PRM. Moderate deviation principles
for SDE in finite and infinite dimensions, driven by a small Poisson noise, have recently been
studied in [9]. The SDE for the empirical measure {µm(t), t ∈ [0, T ]} is indeed a small Poisson
noise equation in the Hilbert space l2, however, the coefficients in the equation fail to satisfy the
sort of Lipschitz conditions that were crucial in the analysis of [9], in fact the coefficients even
fail to be continuous (see discussion below (3.4)). Thus we need new estimates to overcome this
lack of regularity in the coefficients, and this is one of the challenges in the proof (see remarks
above Lemma 5.1 and above Lemma 5.9 and also the proof of Proposition 5.11 which is based
on Lemmas 5.7-5.10). The paper [9] provided a general sufficient condition for MDP to hold for
small noise stochastic dynamical systems. The proof of Theorem 3.2 proceeds by verifying that
this sufficient condition holds for the SDE governing the evolution of {µm(t), t ∈ [0, T ]}. Verifica-
tion of this condition requires establishing weak convergence of certain controlled processes, and
establishing these convergence properties is the main content of the proof of Theorem 3.2 which
is given in Section 5.

The paper is organized as follows. In Section 2 we begin by describing our model of weakly
interacting diffusions. Centered and normalized empirical measures are regarded as elements of
a suitable distribution space. We introduce this space and note some of its basic properties.
We then introduce the two main conditions (Conditions 2.1 and 2.3) for the MDP which is
given in Theorem 2.1. Proof of this theorem is provided in Section 4. In Section 3 we give a
precise formulation of the weakly interacting pure jump Markov process studied in this work. In
Section 3.1 we give a convenient representation for the associated empirical measure process in
terms of a Poisson random measure on a suitable point space. This section also presents some basic
well-posedness results and a law of large numbers result under a natural condition (Condition 3.1).
The MDP for the empirical measure process in this setting is given in Section 3.2. The main result
is Theorem 3.2 which establishes an MDP for µm under Condition 3.2. Theorem 3.3 gives an
alternative expression for the rate function. Proofs of Theorems 3.2 and 3.3 are given in Section 5.
Finally an Appendix collects some auxiliary results.

1.1. Some notations and definitions

The following notation will be used. For a Polish space S, denote the corresponding Borel σ-
field by B(S), and let P(S) be the space of probability measures on S, equipped with the topology
of weak convergence. A convenient metric for this topology is the bounded-Lipschitz metric dBL
defined as

dBL(ν1, ν2)
.
= sup

‖f‖BL≤1
|〈ν1 − ν2, f〉|, ν1, ν2 ∈ P(S),

where 〈µ, f〉 .=
∫

f dµ for a signed measure µ on S and µ-integrable function f : S → R, and ‖·‖BL
is the bounded Lipschitz norm, i.e. for a real bounded Lipschitz function f on S,

‖f‖BL .
= max{‖f‖∞, ‖f‖L}, ‖f‖∞ .

= sup
x∈S

|f(x)|, ‖f‖L .
= sup

x 6=y

|f(x)− f(y)|
d(x, y)

,
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where d is the metric on S. Denote by Mb(S) and Cb(S) the space of real bounded B(S)/B(R)-
measurable functions and real bounded and continuous functions, respectively. For Banach spaces
B1 and B2, L(B1, B2) will denote the space of bounded linear operators from B1 to B2. For a
measure ν on S and a Hilbert space H, let L2(S, ν,H) denote the space of measurable functions f
from S to H such that

∫

S
‖f(x)‖2H ν(dx) <∞, where ‖ · ‖H is the norm on H. When H = R and

S is clear from the context we write L2(ν). Let C
k
b (R

d) be the space of functions on R
d, which

have continuous and bounded partial derivatives up to the k-th order.

Fix T < ∞. All stochastic processes will be considered over the time horizon [0, T ]. We will
use the notations {Xt} and {X(t)} interchangeably for stochastic processes. For a Polish space
S, denote by C([0, T ] : S) and D([0, T ] : S) the space of continuous functions and right continuous
functions with left limits from [0, T ] to S, endowed with the uniform and Skorokhod topology,
respectively. When S is a normed space with norm ‖ · ‖, for a map f : [0, T ] → S, let ‖f‖∗,t .

=
sup0≤s≤t ‖f(s)‖, t ∈ [0, T ]. We say a collection {Xm} of S-valued random variables is tight if
the distributions of Xm are tight in P(S). We use the symbol “⇒” to denote convergence in
distribution.

We will usually denote by κ, κ1, κ2, . . . , the constants that appear in various estimates within
a proof. The value of these constants may change from one proof to another. We use N0 to denote
the set of non-negative integers.

A function I : S → [0,∞] is called a rate function on S if for each M < ∞, the level set
{x ∈ S : I(x) ≤ M} is a compact subset of S. Given a collection {α(m)}m∈N of positive reals, a
collection {Xm} of S-valued random variables is said to satisfy the Laplace principle upper bound
(respectively, lower bound) on S with speed α(m) and rate function I if for all h ∈ Cb(S)

lim sup
m→∞

α(m) log E
{

exp
[

− 1

α(m)
h(Xm)

]}

≤ − inf
x∈S

{h(x) + I(x)},

and, respectively,

lim inf
m→∞

α(m) log E
{

exp
[

− 1

α(m)
h(Xm)

]}

≥ − inf
x∈S

{h(x) + I(x)}.

The Laplace principle is said to hold for {Xm} with speed α(m) and rate function I if both the
Laplace upper and lower bounds hold. It is well known that the family {Xm} satisfies the Laplace
principle upper (respectively lower) bound with a rate function I on S if and only if {Xm} satisfies
the large deviation upper (respectively lower) bound for all closed sets (respectively open sets)
with the rate function I. In particular, the Laplace principle holds with rate function I iff the
large deviation principle holds with the same rate function. For proofs of these statements we
refer to Section 1.2 of [19].

2. The diffusion case

In this section we consider the collection of weakly interacting diffusions {Xm
i }mi=1 described

by (1.2). We are interested in the asymptotic behavior of Y m defined by (1.6). As noted in
the introduction, we will regard Y m as a stochastic process with values in a suitable space of
distributions. The natural space to consider is the standard Schwartz distribution space that is
described as follows.
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Let S denote the space of functions φ : R → R such that φ is infinitely differentiable and
|x|m|φ(k)(x)| → 0 as |x| → ∞ for every m,k ∈ N0, where φ

(k) denotes the k-th derivative of φ.
On S, define a sequence of inner product 〈·, ·〉n and seminorms ‖ · ‖n, n ∈ N0, as

〈φ,ψ〉n .
=
∑

0≤k≤n

∫

R

(1 + x2)2nφ(k)(x)ψ(k)(x) dx, ‖φ‖2n
.
= 〈φ, φ〉n, φ, ψ ∈ S. (2.1)

This sequence of seminorms introduces a nuclear Fréchet topology on S (see Gel’fand and Vilenkin
[21]). Let Sn be the completion of S with respect to ‖ · ‖n. Let S ′ and S ′

n be the dual space of S
and Sn, respectively. Then S ′ =

⋃

n∈N0
S ′
n. Denote by ‖ · ‖−n the dual norm on S−n

.
= S ′

n, with
corresponding inner product 〈·, ·〉−n. The collection {Sn}n∈Z defines a sequence of nested Hilbert
spaces with Sw ⊂ Sv if w ≥ v. The main result of this section shows that for a suitable ρ ∈ N,
{Y m} satisfies an LDP in C([0, T ] : S−ρ) with speed a2(m) as introduced in (1.1), namely, for all
F ∈ Cb(C([0, T ] : S−ρ))

lim
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

= inf
ζ∈C([0,T ]:S−ρ)

{I(ζ) + F (ζ)} (2.2)

for a suitable rate function I. The form of the rate function will be identified in (2.10).

We make the following assumption on the coefficients α and β.

Condition 2.1. α, β ∈ C
2
b(R

2).

It is easy to show that under Condition 2.1 there is a unique pathwise solution to (1.2). In fact
under this condition one also has unique solvability of certain controlled analogues of (1.2) that
will be used in our proofs. We now introduce these controlled processes.

Let for each m ∈ N, {umi ; i = 1, . . . ,m} be a collection of real-valued {Ft}-progressively mea-
surable processes such that

E

m
∑

i=1

∫ T

0
|umi (s)|2 ds <∞.

We will refer to {umi } as control processes. Define for t ∈ [0, T ],

µ̃m(t)
.
=

1

m

m
∑

i=1

δX̃m
i (t), (2.3)

where

X̃m
i (t) = x0 +

∫ t

0
σ(X̃m

i (s), µ̃m(s)) dWi(s) +

∫ t

0
b(X̃m

i (s), µ̃m(s)) ds

+

∫ t

0
σ(X̃m

i (s), µ̃m(s))umi (s) ds, i = 1, . . . ,m.

(2.4)

It is easy to check that under Condition 2.1 there is a unique pathwise solution to the system of
equations in (2.4). Define for t ∈ [0, T ],

Ỹ m(t)
.
= a(m)

√
m(µ̃m(t)− µ(t)). (2.5)
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In Section 4 (see Theorem 4.7), we will show that under Condition 2.1, for every control sequence
{umi ; i = 1, . . . ,m}m∈N such that

sup
m∈N

a2(m)E
m
∑

i=1

∫ T

0
|umi (s)|2 ds <∞,

{Ỹ m}m∈N is tight in C([0, T ] : S−v) for some v > 4. Specifically, one can take any v > 4 for which
there is an r ∈ N, 4 < r < v, such that

∑∞
j=1 ‖φvj‖2r < ∞ and

∑∞
j=1 ‖φrj‖24 < ∞, where for n ∈ Z,

{φnj } is a complete orthonormal system of Sn (see proof of Theorem 4.7, above (4.18)). We remark
that the convergence of the above two series is equivalent to the property that the embedding
maps S−4 → S−r and S−r → S−v are Hilbert-Schmidt. Let w

.
= v + 2.

It will be convenient to introduce another system of seminorms | · |n on S as

|φ|n .
=
∑

0≤k≤n
sup
x

|φ(k)(x)|.

It is easy to check that, for each n ∈ N0, there is a γ0(n) ∈ (0,∞) such that

|φ|n ≤ γ0(n)‖φ‖n+1. (2.6)

We make the following additional assumption on the coefficients α and β.

Condition 2.2. α, β are w-times continuously differentiable and,

(a) supy |α(·, y)|w <∞ and supy |β(·, y)|w <∞.

(b) supx ‖α(x, ·)‖w <∞ and supx ‖β(x, ·)‖w <∞.

Remark 2.1. Conditions 2.1 and 2.2 are satisfied for w-times continuously differentiable functions
α and β if the functions along with their derivatives decay rapidly at ∞.

We can now state our main MDP result of this section. We begin by introducing the associated
rate function.

Let MT (R
d × [0, T ]) be the space of all measures ν on (Rd × [0, T ],B(Rd × [0, T ])) such that

ν(Rd × [0, t]) = t for all t ∈ [0, T ], equipped with the usual weak convergence topology. With
µs ≡ µ(s) as in (1.3), define ν̄ ∈ MT (R× [0, T ]) as

ν̄(A× [0, t])
.
=

∫ t

0
µs(A) ds, A ∈ B(R), t ∈ [0, T ]. (2.7)

For a measure θ ∈ MT (R
d × [0, T ]), denote by θ(i) [resp. θ(i,j)] the i-th [resp. (i, j)-th joint]

marginal. Let

P∞
.
=

{

ν ∈ MT (R
2 × [0, T ])

∣

∣

∣

∣

ν(2,3) = ν̄,

∫

R2×[0,T ]
y2 ν(dy dx ds) <∞

}

. (2.8)

The space P∞ will be used to formulate the rate function and will play a key role in our weak
convergence analysis. Roughly speaking, for a ν ∈ P∞, the first marginal ν(1) corresponds to the
“control variable”, ν(2) to the “state variable” and ν(3) to the “time variable” (see (2.9)).



/MDP for Weakly Interacting Particle Systems 10

Given η ∈ C([0, T ] : S−v), let T (η) be the collection of all ν ∈ P∞ such that, for all φ ∈ S and
t ∈ [0, T ]

〈η(t), φ〉 =
∫ t

0
〈η(s), L(s)φ〉 ds +

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν(dy dx ds). (2.9)

Note that since L(s) maps Sw to Sv (see Lemma 4.8) and S ⊂ Sn for all n ∈ N, 〈η(s), L(s)φ〉 is well
defined for all s ∈ [0, T ]. In Section 4.4 (see Lemma 4.10), we will show that under Conditions 2.1
and 2.2, for every ν ∈ P∞, there exists a unique η ∈ C([0, T ] : S−v) that solves (2.9). Define
I : C([0, T ] : S−v) → [0,∞] as

I(η)
.
= inf

ν∈T (η)

{

1

2

∫

R2×[0,T ]
y2 ν(dy dx ds)

}

, (2.10)

where the infimum over an empty set is taken to be ∞. In Sections 4.3 and 4.4 we will see that
under Conditions 2.1 and 2.2 for every τ ≥ v Laplace upper and lower bounds (see (2.11) and
(2.12)) hold for every F ∈ Cb(C([0, T ] : S−τ )) with I defined as above. Although the Laplace
upper and lower bound hold in particular with τ = v, the function I need not have relatively
compact level sets in C([0, T ] : S−v) (see comments in Section 4.5 below (4.34)) and one needs
to strengthen Condition 2.2 and enlarge the space in order to obtain the compactness property
of I. Specifically, we take ρ > w such that

∑∞
j=1 ‖φ

ρ
j‖2w < ∞ and we strengthen Condition 2.2 as

follows.

Condition 2.3. α, β are (ρ+ 2)-times continuously differentiable and,

(a) supy |α(·, y)|ρ+2 <∞ and supy |β(·, y)|ρ+2 <∞.

(b) supx ‖α(x, ·)‖ρ+2 <∞ and supx ‖β(x, ·)‖ρ+2 <∞.

Under Conditions 2.1 and 2.3 we will establish an LDP for Y m in C([0, T ] : S−ρ) with rate
function I. We thus regard I as a function from C([0, T ] : S−ρ) to [0,∞], with the convention that
I(η)

.
= ∞ for all η ∈ C([0, T ] : S−ρ) \ C([0, T ] : S−v).

The following is the main result of this section. The proof will be given in Section 4.

Theorem 2.1. Under Conditions 2.1 and 2.3, {Y m} satisfies an LDP in C([0, T ] : S−ρ) with
speed a2(m) and rate function I, where ρ ∈ N is as introduced above.

Outline of the proof: The proof of Theorem 2.1 will be completed in three steps.

• Laplace principle upper bound: In Section 4.3 we show that under Conditions 2.1 and 2.2,
for all τ ≥ v and F ∈ Cb(C([0, T ] : S−τ )),

lim inf
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≥ inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)}. (2.11)

• Laplace principle lower bound: In Section 4.4 we show that under Conditions 2.1 and 2.2,
for all τ ≥ v and F ∈ Cb(C([0, T ] : S−τ )),

lim sup
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≤ inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)}. (2.12)
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• I is a rate function on C([0, T ] : S−ρ): In Section 4.5 we show that under Conditions 2.1
and 2.3, for each K < ∞, {η ∈ C([0, T ] : S−ρ) : I(η) ≤ K} is a compact subset of
C([0, T ] : S−ρ).

Note that since I(η) = ∞ for η /∈ C([0, T ] : S−v), we can replace v by any τ ≥ v on the right sides
of (2.11) and (2.12). Theorem 2.1 follows on combining these results.

Remark 2.2. The rate function I has the following alternative representation. Given η ∈ C([0, T ] :
S−v), let T ∗(η) be the collection of g ∈ L2(ν̄) such that for all φ ∈ S and t ∈ [0, T ],

〈η(t), φ〉 =
∫ t

0
〈η(s), L(s)φ〉 ds +

∫

R2×[0,t]
φ′(x)σ(x, µ(s))g(x, s) ν(dy dx ds). (2.13)

As for (2.9), under Conditions 2.1 and 2.2, for every g ∈ L2(ν̄), there is a unique η ∈ C([0, T ] : S−v)
that solves (2.13). We take T ∗(η) to be the empty set if η ∈ C([0, T ] : S−ρ)\C([0, T ] : S−v). Define
I∗ : C([0, T ] : S−ρ) → [0,∞] as

I∗(η)
.
= inf

g∈T ∗(η)

{

1

2

∫

R×[0,T ]
g2(x, s)µs(dx) ds

}

.

It is easy to check that I∗ = I. Indeed every g ∈ T ∗(η) corresponds to a νg ∈ P∞ given
as νg(dy dx ds)

.
= δg(x,s)(dy) ν̄(dx ds) and every ν ∈ P∞ corresponds to a gν ∈ L2(ν̄) given

as gν(x, s)
.
=
∫

R
y ϑ(x, s, dy), where ϑ(x, s, dy) is obtained by disintegrating ν as ν(dy dx ds) =

ϑ(x, s, dy) ν̄(dx ds).

3. The pure jump case

In this section we study the weakly interacting pure jump Markov processes {(Xm
1 , . . . ,X

m
m )}

taking values in N
m that were introduced in Section 1. We begin in Section 3.1 with a precise

model description and a law of large numbers result. Proof of the LLN result follows from standard
arguments, however for completeness we provide a sketch in the Appendix. We then present our
main result (Theorem 3.2) on moderate deviations for the associated empirical measure processes
in Section 3.2. Proof of Theorem 3.2 is given in Section 5.

3.1. Model and law of large numbers

Recall the pure jump Markov process {(Xm
1 (t), . . . ,Xm

m (t)), t ∈ [0, T ]} governed by intensity
function Γ that was introduced in Section 1 (see above (1.7)). It will be convenient to describe
the evolution of the associated empirical measure process {µm(t)} through an SDE driven by a
Poisson random measure. We now introduce some notation that will be needed to formulate this
evolution equation.

For a locally compact Polish space S, let MFC(S) be the space of all measures ν on (S,B(S))
such that ν(K) <∞ for every compact K ⊂ S. We equip MFC(S) with the usual vague topology.
This topology can be metrized such that MFC(S) is a Polish space (see for example [11]). A
Poisson random measure (PRM) n on S with mean measure (or intensity measure) ν is aMFC(S)-
valued random variable such that for each B ∈ B(S) with ν(B) <∞, n(B) is Poisson distributed
with mean ν(B) and for disjoint B1, . . . , Bk ∈ B(S), n(B1), . . . ,n(Bk) are mutually independent
random variables (cf. [24]).
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Let l2 be the Hilbert space of square-summable sequences, equipped with the usual inner
product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. For each i ∈ N let ei be the unit vector
in l2 with 1 for the i-th coordinate and 0 otherwise.

We are interested in characterizing the limit of the empirical measure process {µm(t)} in the
space D([0, T ] : l2), and to establish a moderate deviation principle for {µm(t)}. We begin by
giving an equivalent in law representation of this empirical measure process using a PRM on a
suitable point space. We will follow the notation in [11].

Let X
.
= R

2
+, Y

.
= X× R+ = R

3
+, XT

.
= [0, T ] × X and YT

.
= [0, T ] × Y. Let λT , λX and λ∞ be

the Lebesgue measures on [0, T ], X and R+, respectively. Let N be a PRM on YT with intensity
λYT

.
= λT ⊗λX⊗λ∞, defined on some filtered probability space (Ω,F ,P, {Ft}) with a P-complete

right-continuous filtration. We assume that N([0, a] × A) is Fa-measurable and N((a, b] × A) is
independent of Fa for all 0 ≤ a < b ≤ T and A ∈ B(Y). Given m ≥ 1, let Nm be a counting
process on XT defined as

Nm([0, t] ×A)
.
=

∫

[0,t]×A
1[0,m](r)N(ds dy dr), t ∈ [0, T ], A ∈ B(X).

We will make the following assumption on Γ (this assumption will be restated in Condition 3.1)

‖Γ‖∞ .
= sup

q∈Ŝ
sup
i∈N

|Γii(q)| <∞. (3.1)

Given i, j ∈ N with i 6= j and q ∈ Ŝ, let

Aij(q)
.
= {y ∈ X : i− 1 < y1 ≤ i, (j − 1)‖Γ‖∞ < y2 ≤ (j − 1)‖Γ‖∞ + qiΓij(q)}.

Note that for every q ∈ Ŝ,

Aij(q) ∩Ai′j′(q) = ∅, if (i, j) 6= (i′, j′). (3.2)

For q ∈ Ŝ and y ∈ X, let

G(q, y)
.
=

∞
∑

i=1

∞
∑

j=1,j 6=i
(ej − ei)1Aij(q)(y) =

∞
∑

i=1

Gi(q, y)ei, (3.3)

where

Gi(q, y)
.
=

∞
∑

j=1,j 6=i

(

1Aji(q)(y)− 1Aij(q)(y)
)

, i ∈ N. (3.4)

Note that ‖G(q, y)‖ ≤
√
2 for all q ∈ Ŝ and y ∈ X, in particular G is a well defined map from

l2 × X to l2. Define the stochastic process {µm(t), t ∈ [0, T ]} as

µm(t) = µm(0) +
1

m

∫

Xt

G(µm(s−), y)Nm(ds dy), (3.5)

where µm(0)
.
= 1

m

∑m
i=1 δxmi and Xt

.
= [0, t] × X for each t ∈ [0, T ]. This describes a pure jump

Markov process for which jump at time instant t is 1
m (ej − ei) at rate mλX(Aij(q)) = mqiΓij(q)

with q = µm(t−) for i, j ∈ N with i 6= j. Thus {µm(t)} defined by (3.5) has the same law as the
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empirical process { 1
m

∑m
i=1 δXm

i (t)} introduced in Section 1 with jump intensities (1.7). Throughout
this work we will use the representation for {µm(t)} given by (3.5). With this representation
{µm(t)} can be viewed as an Hilbert space (l2)-valued small noise stochastic dynamical system
driven by a PRM. Moderate deviation principles for such small noise processes have been studied
in [9]. However one key difference between the models in [9] from that considered here is that
unlike in [9] the map x 7→ G(x, y) is not Lipschitz (in fact not even continuous). This lack of
regularity is one of the challenges in the large deviation analysis.

Let Ñm(ds dy)
.
= Nm(ds dy)−mλ(ds dy), where λ

.
= λT ⊗ λX is the Lebesgue measure on XT .

Then (3.5) can be written as:

µm(t) = µm(0) +

∫ t

0
b(µm(s)) ds +

1

m

∫

Xt

G(µm(s−), y) Ñm(ds dy), (3.6)

where b : Ŝ → l2 is defined as

b(q)
.
=

∞
∑

i=1

(

∞
∑

j=1

qjΓji(q)
)

ei, q = (q1, q2, . . . ) ∈ Ŝ. (3.7)

To see that b(q) defined by (3.7) is in l2, note that for q = (q1, q2, . . . ) ∈ Ŝ,
∣

∣

∣

∞
∑

j=1

qjΓji(q)
∣

∣

∣
≤ ‖Γ‖∞ <∞,

‖b(q)‖2 =

∞
∑

i=1

∣

∣

∣

∞
∑

j=1

qjΓji(q)
∣

∣

∣

2
≤

∞
∑

i=1

∞
∑

j=1

qjΓ
2
ji(q) ≤ 2‖Γ‖2∞.

Note also that b(q) =
∫

X
G(q, y)λX(dy).

We now introduce an assumption under which a law of large numbers result holds. Note that
part (a) was previously stated in (3.1).

Condition 3.1. (a) ‖Γ‖∞ <∞.

(b) The map b : Ŝ → l2 defined in (3.7) is Lipschitz, namely there exists Lb ∈ (0,∞) such that
for all q, q̃ ∈ Ŝ,

‖b(q)− b(q̃)‖ ≤ Lb‖q − q̃‖.

(c) ‖µm(0)− p(0)‖ → 0 as m→ ∞ for some probability measure p(0) ∈ P(N).

Remark 3.1. Condition 3.1(c) is trivially satisfied if p(0) = δx and xmi = x for all m, i ∈ N, for
some x ∈ N. An elementary application of Scheffé’s lemma and the strong law of large numbers
shows that it is also satisfied for a.e. ω if xmi = ξi(ω) where ξi are i.i.d. with common distribution
p(0).

Let M
.
= MFC(XT ), namely the space of all measures ν on (XT ,B(XT )) such that ν(K) < ∞

for every compact K ⊂ XT . The proof of the following result giving unique solvability and law of
large numbers is standard. We provide a sketch in Appendix A for completeness.
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Theorem 3.1. Under Condition 3.1, the following conclusions hold.

(a) For each m ∈ N there is a measurable map Ḡm : M → D([0, T ] : l2) such that for any
probability space (Ω̃, F̃ , P̃) on which is given a Poisson random measure nm on XT with intensity
measure mλ, µ̃m

.
= Ḡm

(

1
mnm

)

is an F̃t .
= σ{nm([0, s] × A), s ≤ t, A ∈ B(X)}-adapted RCLL

process that is the unique adapted solution of the stochastic integral equation

µ̃m(t) = µ̃m(0) +
1

m

∫

Xt

G(µ̃m(s−), y)nm(ds dy), t ∈ [0, T ].

In particular µm
.
= Ḡm( 1

mN
m) is the unique {Ft}-adapted solution of (3.5).

(b) The process µm converges in probability to p in D([0, T ] : l2), where p is given as the unique
solution of the following integral equation in l2:

p(t) = p(0) +

∫ t

0
b(p(s)) ds, t ∈ [0, T ]. (3.8)

3.2. Moderate deviation principle

Let a(m) be as in (1.1). We are interested in the asymptotics of the probabilities of deviations
of µm from p that are of order 1

a(m)
√
m
. For this we will establish a large deviation principle for

Zm
.
= a(m)

√
m(µm − p). (3.9)

We make the following stronger assumption in place of Condition 3.1.

Condition 3.2. (a) ‖Γ‖∞ <∞.

(b) There exist cΓ, LΓ ∈ (0,∞) such that

sup
q∈Ŝ

sup
j∈N

∞
∑

i=1

|Γij(q)| ≤ cΓ

and for all q̃, q ∈ Ŝ,

sup
i∈N

∞
∑

j=1,j 6=i
|Γij(q̃)− Γij(q)| ≤ LΓ‖q̃ − q‖.

(c) For the map b : Ŝ → l2 defined in (3.7), there exist cb ∈ (0,∞); a map Db : Ŝ → L(l2, l2);
and θb : Ŝ × Ŝ → l2 such that for all q, q̃ ∈ Ŝ,

b(q̃)− b(q) = Db(q)[q̃ − q] + θb(q, q̃)

and
‖θb(q, q̃)‖ ≤ cb‖q̃ − q‖2, ‖Db(q)‖L(l2,l2) ≤ cb.

(d) a(m)
√
m‖µm(0)− p(0)‖ → 0 as m→ ∞ for some probability measure p(0) ∈ P(N).
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Remark 3.2. (i) Condition 3.1(b) is implied by Conditions 3.2(c) while Condition 3.1(c) is
implied by Conditions 3.2(d).

(ii) Condition 3.2(b) is satisfied in particular for finite range jump models of the following form:
There exists some K ∈ (0,∞) such that for all q ∈ Ŝ, Γij(q) = 0 for |i − j| > K and q 7→ Γij(q)
is Lipschitz continuous with ‖Γij‖L ≤ K for |i− j| ≤ K.

(iii) Condition 3.2(c) is an assumption on smoothness of b which says that b is differentiable
and the derivative is bounded.

(iv) Condition 3.2(d) is trivially satisfied if p(0) = δx and xmi = x for all m, i ∈ N, for some
x ∈ N. It is also satisfied for a.e. ω if xmi = ξi(ω) where ξi are i.i.d. with common distribution
p(0) and

∑∞
m=1[a(m)]2n < ∞ for some n ∈ N (for a proof see Appendix B). This summability

property is satisfied quite generally, e.g. when a(m) = O(m−θ) for some θ ∈ (0, 1/2) or a(m) =
O((logm)km−θ) for some θ ∈ (0, 1/2] and k > 0.

The following theorem is the main result of this section. The proof will be given in Section 5.1.

Theorem 3.2. Under Condition 3.2, {Zm} satisfies a large deviation principle in D([0, T ] : l2)
with speed a2(m) and the rate function given by

Ī(η)
.
= inf

ψ

{

1

2
‖ψ‖2L2(λ)

}

, η ∈ D([0, T ] : l2), (3.10)

where the infimum is taken over all ψ ∈ L2(λ) such that

η(t) =

∫ t

0
Db(p(s))[η(s)] ds +

∫

Xt

G(p(s), y)ψ(s, y)λ(ds dy), t ∈ [0, T ]. (3.11)

Along the lines of the proof of Theorem 3.1(b), it is easy to check that under Condition 3.2(c),
(3.11) has a unique solution in C([0, T ] : l2) for each ψ ∈ L2(λ). In particular, Ī(η)

.
= ∞ for all

η ∈ D([0, T ] : l2)\C([0, T ] : l2).
The rate function Ī introduced in (3.10) is somewhat indirect in that its definition involves the

extraneous function G that was introduced for the convenience of representation of µm as a small
noise stochastic dynamical system. The following result gives an alternative representation that
is more intrinsic. For η ∈ D([0, T ] : l2) let

I(η)
.
= inf

u







1

2

∫ T

0

∞
∑

i=1

∞
∑

j=1,j 6=i
u2ij(s) ds







, (3.12)

where the infimum is taken over all u
.
= {uij}∞i,j=1 with each uij ∈ L2([0, T ] : R) such that

η(t) =

∫ t

0
Db(p(s))[η(s)] ds +

∫ t

0

∞
∑

i=1

∞
∑

j=1,j 6=i
(ej − ei)

√

pi(s)Γij(p(s))uij(s) ds. (3.13)

The proof of the following result will be given in Section 5.2.

Theorem 3.3. Under the conditions of Theorem 3.2, I = Ī.
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4. Proofs for the diffusion case

The main ingredient in the proof of Theorem 2.1 is the following variational representation. Such
a representation was first obtained in [4]. For our purpose it is convenient to use the form of the
representation given in [10] that allows for an arbitrary filtration. Let (Ω̃, F̃ , P̃) be a probability
space with an increasing family of right continuous P̃-complete σ-fields {F̃t}. Let for m ∈ N,
{B(t)

.
= (B1(t), . . . , Bm(t)), 0 ≤ t ≤ T} be an m-dimensional standard {F̃t}-Brownian motions

on this probability space. Let Ã be the collection of Rm-valued {F̃t}-progressively measurable

processes {u(t) = (u1(t), . . . , um(t)), 0 ≤ t ≤ T} such that P̃

(

∫ T
0 ‖u(s)‖2 ds <∞

)

= 1. Let

f ∈ Mb(C([0, T ] : R
m)). The following representation follows from [4, 10]

− log Ẽ exp{f(B)} = inf
u∈Ã

Ẽ

(

1

2

∫ T

0
‖u(s)‖2 ds+ f

(

B +

∫ ·

0
u(s) ds

))

. (4.1)

The proof of the MDP in Theorem 2.1 will proceed by first establishing the Laplace upper bound
(4.19) and then the Laplace lower bound (4.26). The above representation will be a key ingredient
in both proofs. Rest of this section is organized as follows. We first analyze certain controlled
process in Sections 4.1 and 4.2. Proof of the Laplace upper bound is given in Section 4.3 whereas
the lower bound is established in Section 4.4. In order to argue that {Y m} satisfies an LDP it
then remains to establish that I defined in (2.10) is a rate function. This is proved in Section 4.5.

4.1. Controlled processes

Throughout this section we assume Condition 2.1. Let v,w, ρ be as introduced in Section 2.
Fix τ ≥ v and let F ∈ Cb(C([0, T ] : S−τ )). Using the variational representation in (4.1) on the
filtered probability space introduced below (1.2), we have

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

= inf
um={umi }mi=1

E

{

1

2
a2(m)

m
∑

i=1

∫ T

0
|umi (s)|2 ds + F (Ỹ m)

}

,

where the infimum is taken over all {Ft}-progressively measurable um such that

E

m
∑

i=1

∫ T

0
|umi (s)|2 ds <∞,

and Ỹ m is as in (2.5) with X̃m given by (2.4). We will view {umi }mi=1 as a sequence of controls
and {X̃m

i }mi=1 as the controlled analogue of the original interacting particle system (1.2). Letting
ũmi

.
= a(m)

√
mumi , one can write

− a2(m) log E exp

{

− 1

a2(m)
F (Y m)

}

= inf
ũm={ũmi }mi=1

E

{

1

2

1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2ds+ F (Ỹ m)

}

(4.2)

and

X̃m
i (t) = x0 +

∫ t

0
σ(X̃m

i (s), µ̃m(s)) dWi(s) +

∫ t

0
b(X̃m

i (s), µ̃m(s)) ds

+
1

a(m)
√
m

∫ t

0
σ(X̃m

i (s), µ̃m(s))ũmi (s) ds, i = 1, . . . ,m.

(4.3)
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The following lemma gives an important moment bound that will be used to argue tightness
and convergence of controlled processes. Recall that the processes {Xm

i }, {X̃m
i } and {X̄i} are

defined on the same probability space with the same sequence of Brownian motions {Wi}. We let
for m ∈ N, µ̄mt

.
= 1

m

∑m
i=1 δX̄i(t)

.

Lemma 4.1. Suppose the control sequence {ũmi }mi=1 satisfies

sup
m∈N

E
1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds <∞. (4.4)

Then there exists γ1 ∈ (0,∞) such that for all m ∈ N,

E
1

m

m
∑

i=1

|X̃m
i − X̄i|2∗,T ≤ γ1

a2(m)m
. (4.5)

In particular,

sup
m∈N

E
1

m

m
∑

i=1

|X̃m
i |2∗,T <∞. (4.6)

Proof. Using the bounded Lipschitz property of the coefficients α and β,

E|X̃m
i − X̄i|2∗,t

≤ κ1

∫ t

0
E

(

|σ(X̃m
i (s), µ̃m(s))− σ(X̄i(s), µ̄

m(s))|2 + |σ(X̄i(s), µ̄
m(s))− σ(X̄i(s), µ(s))|2

+ |b(X̃m
i (s), µ̃m(s))− b(X̄i(s), µ̄

m(s))|2 + |b(X̄i(s), µ̄
m(s))− b(X̄i(s), µ(s))|2

+
1

a2(m)m
|σ(X̃m

i (s), µ̃m(s))ũmi (s)|2
)

ds

≤ κ2

∫ t

0
E



|X̃m
i (s)− X̄i(s)|2 +

1

m

m
∑

j=1

|X̃m
j (s)− X̄j(s)|2 +

1

a2(m)m
|ũmi (s)|2 +

1

m



 ds,

where the contribution of 1
m is obtained from the second and the fourth terms on the right side

upon using the independence of X̄i and X̄j for i 6= j. Taking the average over i = 1, . . . ,m on
both sides of above inequality and using (4.4)

E
1

m

m
∑

i=1

|X̃m
i − X̄i|2∗,t ≤ κ3

∫ t

0
E
1

m

m
∑

j=1

|X̃m
i − X̄i|2∗,s ds+

κ3
a2(m)m

+
κ3
m
.

The estimate in (4.5) is now immediate by Gronwall’s lemma. The estimate in (4.6) is a conse-
quence of (4.5) and the fact that

sup
m∈N

E
1

m

m
∑

i=1

|X̄i|2∗,T = E|X̄1|2∗,T <∞. (4.7)

Our main result of this section is the following representation for the controlled processes Ỹ m.
Recall the operator L(s) defined in (1.5).
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Proposition 4.2. Suppose that the control sequence {ũmi }mi=1 satisfies (4.4). Then, for every
t ∈ [0, T ] and φ ∈ S,

〈Ỹ m(t), φ〉 =
∫ t

0
〈Ỹ m(s), L(s)φ〉 ds +

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃m(dy dx ds) +Rm(t), (4.8)

where
E|Rm|∗,T ≤ γ(m)‖φ‖4 (4.9)

and γ(m) → 0 as m→ ∞.

Rest of this section is devoted to the proof of Proposition 4.2 and so we will assume throughout
the remaining section that (4.4) holds. Note that by an application of Ito’s formula, for φ ∈ S,

φ(X̃m
i (t)) = φ(x0) +

∫ t

0
φ′(X̃m

i (s))σ(X̃m
i (s), µ̃m(s)) dWi(s)

+

∫ t

0
φ′(X̃m

i (s))b(X̃m
i (s), µ̃m(s)) ds

+
1

a(m)
√
m

∫ t

0
φ′(X̃m

i (s))σ(X̃m
i (s), µ̃m(s))ũmi (s) ds

+
1

2

∫ t

0
φ′′(X̃m

i (s))σ2(X̃m
i (s), µ̃m(s)) ds.

Similarly

φ(X̄i(t)) = φ(x0) +

∫ t

0
φ′(X̄i(s))σ(X̄i(s), µ(s)) dWi(s)

+

∫ t

0
φ′(X̄i(s))b(X̄i(s), µ(s)) ds +

1

2

∫ t

0
φ′′(X̄i(s))σ

2(X̄i(s), µ(s)) ds,

and so taking expectations

〈µ(t), φ〉 = φ(x0) +

∫ t

0
〈µ(s), φ′(·)b(·, µ(s))〉 ds + 1

2

∫ t

0
〈µ(s), φ′′(·)σ2(·, µ(s))〉 ds.

Combining the above observations

〈Ỹ m(t), φ〉 = a(m)
√
m (〈µ̃m(t), φ〉 − 〈µ(t), φ〉)

=
a(m)√
m

m
∑

i=1

∫ t

0
φ′(X̃m

i (s))σ(X̃m
i (s), µ̃m(s)) dWi(s)

+
a(m)√
m

m
∑

i=1

∫ t

0

(

φ′(X̃m
i (s))b(X̃m

i (s), µ̃m(s))− 〈µ(s), φ′(·)b(·, µ(s))〉
)

ds

+
1

m

m
∑

i=1

∫ t

0
φ′(X̃m

i (s))σ(X̃m
i (s), µ̃m(s))ũmi (s) ds

+
1

2

a(m)√
m

m
∑

i=1

∫ t

0

(

φ′′(X̃m
i (s))σ2(X̃m

i (s), µ̃m(s))− 〈µ(s), φ′′(·)σ2(·, µ(s))〉
)

ds

≡
4
∑

k=1

T m
k (t). (4.10)
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We will now separately estimate each T m
k , k = 1, 2, 3, 4. We begin with T m

1 .

Lemma 4.3. There exists γ2 ∈ (0,∞) such that

E|T m
1 |∗,T ≤ γ2a(m)‖φ‖2.

Proof. Using Doob’s maximal inequality, the boundedness of α and (2.6),

E|T m
1 |2∗,T ≤ 4a2(m)

m

m
∑

i=1

E

∫ T

0
[φ′(X̃m

i (s))σ(X̃m
i (s), µ̃m(s))]2 ds

≤ κ1a
2(m)|φ|21 ≤ κ2a

2(m)‖φ‖22.

The result follows.

Next we estimate the term T m
2 . Note that for t ∈ [0, T ]

T m
2 (t) =

a(m)√
m

m
∑

i=1

∫ t

0

(

φ′(X̃m
i (s))b(X̃m

i (s), µ̃m(s))− 〈µ(s), φ′(·)b(·, µ(s))〉
)

ds

=

∫ t

0
〈Ỹ m(s), φ′(·)b(·, µ(s))〉 ds

+
a(m)√
m

m
∑

i=1

∫ t

0

(

φ′(X̃m
i (s))b(X̃m

i (s), µ̃m(s))− φ′(X̃m
i (s))b(X̃m

i (s), µ(s))
)

ds

=

∫ t

0
〈Ỹ m(s), φ′(·)b(·, µ(s))〉 ds +

∫ t

0
〈Ỹ m(s),

∫

R

φ′(x)β(x, ·)µs(dx)〉 ds +Rm
2 (t), (4.11)

where Rm
2 (t)

.
=
∫ t
0 R̃m

21(s) ds and

R̃m
21(s)

.
=
a(m)√
m

m
∑

i=1

φ′(X̃m
i (s))[b(X̃m

i (s), µ̃m(s))− b(X̃m
i (s), µ(s))]

− a(m)
√
m

∫

R

φ′(x)[b(x, µ̃m(s))− b(x, µ(s))]µs(dx).

In the following lemma we estimate the remainder term Rm
2 .

Lemma 4.4. There exists γ3 ∈ (0,∞) such that

E|Rm
2 |∗,T ≤ γ3‖φ‖3

a(m)
√
m
.

Proof. Define R̃m
22(s) by replacing in the definition of R̃m

21(s) the term µ̃m(s) with µ̄m(s), namely

R̃m
22(s)

.
=
a(m)√
m

m
∑

i=1

φ′(X̃m
i (s))[b(X̃m

i (s), µ̄m(s))− b(X̃m
i (s), µ(s))]

− a(m)
√
m

∫

R

φ′(x)[b(x, µ̄m(s))− b(x, µ(s))]µs(dx).

(4.12)
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Using the representation of b in terms of β and suitably adding and subtracting terms we see that

R̃m
21(s)− R̃m

22(s)

=
a(m)

√
m

m2

m
∑

i=1

m
∑

j=1

{

[φ′(X̃m
i (s))− φ′(X̄i(s))][β(X̃

m
i (s), X̃m

j (s))− β(X̃m
i (s), X̄j(s))]

+ φ′(X̄i(s))[β(X̃
m
i (s), X̃m

j (s))− β(X̃m
i (s), X̄j(s))− (X̃m

j (s)− X̄j(s))βy(X̃
m
i (s), X̄j(s))]

+ φ′(X̄i(s))[X̃
m
j (s)− X̄j(s)][βy(X̃

m
i (s), X̄j(s))− βy(X̄i(s), X̄j(s))]

−
∫

R

φ′(x)[β(x, X̃m
j (s))− β(x, X̄j(s))− (X̃m

j (s)− X̄j(s))βy(x, X̄j(s))]µs(dx)

+ [X̃m
j (s)− X̄j(s)][φ

′(X̄i(s))βy(X̄i(s), X̄j(s))−
∫

R

φ′(x)βy(x, X̄j(s))µs(dx)]

}

. (4.13)

We will now compute square of the first absolute moments of the various terms on the right side.
Using Cauchy-Schwarz inequality and Lipschitz estimates on β and φ′, square of the first absolute
moment of the first term on the right side of (4.13) can be bounded by

κ1a
2(m)m|φ|22

(

E
1

m

m
∑

i=1

|X̃m
i (s)− X̄i(s)|2

)



E
1

m

m
∑

j=1

|X̃m
j (s)− X̄j(s)|2



 .

For the second term of the right side, one has the following upper bound on the square of the first
absolute moment

κ1a
2(m)m|φ|21



E
1

m

m
∑

j=1

|X̃m
j (s)− X̄j(s)|2





2

.

This estimate uses Taylor’s formula and the fact that β ∈ C
2
b(R

2). For the third term, we again
use Cauchy-Schwarz inequality yielding the bound

κ1a
2(m)m|φ|21

(

E
1

m

m
∑

i=1

|X̃m
i (s)− X̄i(s)|2

)



E
1

m

m
∑

j=1

|X̃m
j (s)− X̄j(s)|2



 .

The square of the first absolute moment of the fourth term can be bounded using Taylor’s formula
as for the second term by the following expression

κ1a
2(m)m|φ|21



E
1

m

m
∑

j=1

|X̃m
j (s)− X̄j(s)|2





2

.

Finally using Cauchy-Schwarz inequality and the independence of the sequence {X̄i} one can
estimate the square of the first absolute moment of the last term as

κ1a
2(m)m



E
1

m

m
∑

j=1

|X̃m
j (s)− X̄j(s)|2





|φ|21
m

.
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Combing these estimates with Lemma 4.1 we now have

(E|R̃m
21(s)− R̃m

22(s)|)2 ≤ κ2|φ|22
{

1

a2(m)m
+

1

m

}

. (4.14)

The above estimate allows approximation of R̃m
21(s) by R̃m

22(s). Next we will approximate R̃m
22(s)

by the term R̃m
23(s) that is obtained by replacing X̃m

i in (4.12) with X̄i, namely

R̃m
23(s)

.
=
a(m)√
m

m
∑

i=1

φ′(X̄i(s))[b(X̄i(s), µ̄
m(s))− b(X̄i(s), µ(s))]

− a(m)
√
m

∫

R

φ′(x)[b(x, µ̄m(s))− b(x, µ(s))]µs(dx).

By similar addition and subtraction of terms as for (4.13),

R̃m
22(s)− R̃m

23(s) =
a(m)

√
m

m2

m
∑

i=1

m
∑

j=1

(

φ′(X̃m
i (s))

{

[β(X̃m
i (s), X̄j(s))− β(X̄i(s), X̄j(s))

− (X̃m
i (s)− X̄i(s))βx(X̄i(s), X̄j(s))]

−
∫

R

[β(X̃m
i (s), y)− β(X̄i(s), y)− (X̃m

i (s)− X̄i(s))βx(X̄i(s), y)]µs(dy)

+ [X̃m
i (s)− X̄i(s)][βx(X̄i(s), X̄j(s))−

∫

R

βx(X̄i(s), y)µs(dy)]

}

+ [φ′(X̃m
i (s))− φ′(X̄i(s))][β(X̄i(s), X̄j(s))−

∫

R

β(X̄i(s), y)µs(dy)]

)

.

As for the proof of (4.14), we have, once more using Cauchy-Schwarz inequality, Taylor series
expansion, Lemma 4.1 and the independence of {X̄i},

(E|R̃m
22(s)− R̃m

23(s)|)2 ≤ κ3|φ|22
(

1

a2(m)m
+

1

m

)

.

We omit the details. Finally writing

R̃m
23(s) =

a(m)
√
m

m2

m
∑

i=1

m
∑

j=1

(

φ′(X̄i(s))[β(X̄i(s), X̄j(s))− b(X̄i(s), µ(s))]

−
∫

R

φ′(x)[β(x, X̄j(s))− b(x, µ(s))]µs(dx)
)

and using independence of {X̄i}, we have

E|R̃m
23(s)| ≤

κ4a(m)|φ|1√
m

.

Combining the above estimates and using (1.1), (2.6) gives

E|Rm
2 |∗,T ≤ E

∫ T

0
|R̃m

21(s)| ds ≤
κ5|φ|2
a(m)

√
m

≤ κ6‖φ‖3
a(m)

√
m
.

This completes the proof of the lemma.
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We will now estimate the term T m
3 . Define ν̃m ∈ MT (R

2 × [0, T ]) as

ν̃m(A×B × [0, t])
.
=

1

m

m
∑

i=1

∫ t

0
δ(ũmi (s),X̃m

i (s))(A×B) ds, A,B ∈ B(R), t ∈ [0, T ]. (4.15)

Then

T m
3 (t) =

∫

R2×[0,t]
φ′(x)σ(x, µ̃m(s))y ν̃m(dy dx ds)

=

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃m(dy dx ds) +Rm

3 (t),

(4.16)

where

Rm
3 (t)

.
=

1

m

m
∑

i=1

∫ t

0
φ′(X̃m

i (s))[σ(X̃m
i (s), µ̃m(s))− σ(X̃m

i (s), µ(s))]ũmi (s) ds.

Lemma 4.5. There exists γ4 ∈ (0,∞) such that

E|Rm
3 |∗,T ≤ γ4‖φ‖2

(

a2(m)m
) 1

4

.

Proof. Recall that we assume that (4.4) is satisfied. Using Cauchy-Schwarz inequality and bound-
edness of α, we have

E|Rm
3 |∗,T ≤

(

E
1

m

m
∑

i=1

∫ T

0

[

φ′(X̃m
i (s))

]4
ds

) 1

4
(

E
1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds

) 1

2

·
(

E
1

m

m
∑

i=1

∫ T

0

[

σ(X̃m
i (s), µ̃m(s))− σ(X̃m

i (s), µ(s))
]4
ds

)
1

4

≤ κ1|φ|1
(

E
1

m

m
∑

i=1

∫ T

0

[

σ(X̃m
i (s), µ̃m(s))− σ(X̃m

i (s), µ(s))
]2
ds

)1

4

≤ κ2‖φ‖2 (Rm
31 +Rm

32 +Rm
33)

1

4 ,

where

Rm
31

.
= E

1

m

m
∑

i=1

∫ T

0

[

σ(X̃m
i (s), µ̃m(s))− σ(X̄i(s), µ̄

m(s))
]2
ds

Rm
32

.
= E

1

m

m
∑

i=1

∫ T

0

[

σ(X̄i(s), µ̄
m(s))− σ(X̄i(s), µ(s))

]2
ds

Rm
33

.
= E

1

m

m
∑

i=1

∫ T

0

[

σ(X̄i(s), µ(s))− σ(X̃m
i (s), µ(s))

]2
ds.

Using the Lipschitz property of α and Lemma 4.1,

Rm
31 ≤ κ3E

1

m

m
∑

i=1

∫ T

0
|X̃m

i (s)− X̄i(s)|2ds ≤
κ4

a2(m)m
.



/MDP for Weakly Interacting Particle Systems 23

Similarly,

Rm
33 ≤ κ5E

1

m

m
∑

i=1

∫ T

0
|X̃m

i (s)− X̄i(s)|2 ds ≤
κ6

a2(m)m
.

Finally using independence of {X̄i}, we have Rm
32 ≤ κ7

m . Combining above estimates completes the
proof.

Finally we consider T m
4 .

T m
4 (t) =

1

2

a(m)√
m

m
∑

i=1

∫ t

0

(

φ′′(X̃m
i (s))σ2(X̃m

i (s), µ̃m(s))− 〈µ(s), φ′′(·)σ2(·, µ(s))〉
)

ds

=

∫ t

0
〈Ỹ m(s),

1

2
φ′′(·)σ2(·, µ(s))〉 ds

+
1

2

a(m)√
m

m
∑

i=1

∫ t

0
φ′′(X̃m

i (s))
[

σ2(X̃m
i (s), µ̃m(s))− σ2(X̃m

i (s), µ(s))
]

ds

=

∫ t

0

〈

Ỹ m(s),
1

2
φ′′(·)σ2(·, µ(s)) +

∫

R

φ′′(x)σ(x, µ(s))α(x, ·)µs(dx)
〉

ds +Rm
4 (t),

(4.17)

where Rm
4 (t)

.
=
∫ t
0 R̃m

41(s) ds and

R̃m
41(s)

.
=

1

2

a(m)√
m

m
∑

i=1

φ′′(X̃m
i (s))

[

σ2(X̃m
i (s), µ̃m(s))− σ2(X̃m

i (s), µ(s))
]

− a(m)
√
m

∫

R

φ′′(x)σ(x, µ(s)) [σ(x, µ̃m(s))− σ(x, µ(s))] µs(dx).

The proof of the following lemma is similar to that of Lemma 4.4, the only difference being that
one needs to estimate φ′′ rather than φ′. As a result the bound on the right side contains ‖φ‖4
instead of ‖φ‖3 as in Lemma 4.4. We omit the proof.

Lemma 4.6. There exists γ5 ∈ (0,∞) such that

E|Rm
4 |∗,T ≤ γ5‖φ‖4

a(m)
√
m
.

We can now complete the proof of Proposition 4.2.

Proof of Proposition 4.2: Using (4.10), (4.11), (4.16) and (4.17),

〈Ỹ m(t), φ〉 =
∫ t

0
〈Ỹ m(s), L(s)φ〉 ds +

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃m(dy dx ds) +Rm(t),

where for t ∈ [0, T ],
Rm(t)

.
= T m

1 (t) +Rm
2 (t) +Rm

3 (t) +Rm
4 (t).

The result now follows from Lemmas 4.3-4.6.



/MDP for Weakly Interacting Particle Systems 24

4.2. Tightness of Ỹ
m.

In this section we will argue the tightness of Ỹ m in C([0, T ] : S−v) and identify the value of v.
Note that this tightness implies tightness in C([0, T ] : S−τ ) for all τ ≥ v.

Theorem 4.7. Suppose that Condition 2.1 holds. Also suppose that the control sequence {ũmi }mi=1

satisfies (4.4). Then the sequence {(Ỹ m, ν̃m)} is tight in C([0, T ] : S−v) × MT (R
2 × [0, T ]) for

some v > 4.

Proof. We first argue the tightness of Ỹ m. For this, we will make use of Proposition 4.2. Let for
t ∈ [0, T ] and φ ∈ S,

Am(t)
.
=

∫ t

0

∣

∣

∣〈Ỹ m(s), L(s)φ〉
∣

∣

∣ ds

=

∫ t

0
a(m)

√
m |〈µ̃m(s)− µ̄m(s), L(s)φ〉 + 〈µ̄m(s)− µ(s), L(s)φ〉| ds,

Bm(t)
.
=

∫

R2×[0,t]

∣

∣φ′(x)σ(x, µ(s))y
∣

∣ ν̃m(dy dx ds)

=
1

m

m
∑

i=1

∫ t

0

∣

∣

∣φ′(X̃m
i (s))σ(X̃m

i (s), µ(s))ũmi (s)
∣

∣

∣ ds.

Then for t1, t2 ∈ [0, T ],

|Am(t2)−Am(t1)|2

≤ 2a2(m)m|t2 − t1|
∫ T

0

(

〈µ̃m(s)− µ̄m(s), L(s)φ〉2 + 〈µ̄m(s)− µ(s), L(s)φ〉2
)

ds.

Note that

a2(m)mE

∫ T

0

(

〈µ̃m(s)− µ̄m(s), L(s)φ〉2 + 〈µ̄m(s)− µ(s), L(s)φ〉2
)

ds

≤ κ1a
2(m)m

∫ T

0

(

|L(s)φ|21E
1

m

m
∑

i=1

|X̃m
i (s)− X̄i(s)|2 +

|L(s)φ|20
m

)

ds

≤ κ2|φ|23
(

1 + a2(m)
)

≤ κ3‖φ‖24,

where the second inequality uses Lemma 4.1 and the inequality sup0≤s≤T |L(s)φ|1 ≤ κ4|φ|3. This
proves the tightness of Am in C([0, T ] : R). Also for t1, t2 ∈ [0, T ]

|Bm(t2)−Bm(t1)|2 ≤ κ5|t2 − t1||φ|21
1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds.

Combining this with (4.4) we now have the tightness of Bm in C([0, T ] : R). Also from Proposi-
tion 4.2 we have that Rm ⇒ 0 in C([0, T ] : R). The tightness of t 7→ 〈Ỹ m(t), φ〉 in C([0, T ] : R),
for each φ ∈ S, is now immediate. From the above estimates on Am, Bm and Proposition 4.2 we
have that, for all φ ∈ S,

sup
m∈N

E sup
0≤t≤T

∣

∣

∣
〈Ỹ m(t), φ〉

∣

∣

∣
≤ κ6‖φ‖4.
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This shows that for any ε1 > 0 and ε2 > 0, there is a δ > 0 such that

P

(

sup
0≤t≤T

∣

∣

∣〈Ỹ m(t), φ〉
∣

∣

∣ > ε1

)

≤ ε2 if ‖φ‖4 ≤ δ, m ∈ N.

Thus the induced measures P ◦ (Ỹ m)−1 on C([0, T ] : S ′) are uniformly 4-continuous in the sense
of [33]; see Remark (R.1) on page 997 there. It then follows from the same remark that the
sequence {Ỹ m} is tight in C([0, T ] : S−v) for some v > 4. Specifically, one can take any v > 4 for
which there is an r ∈ N, 4 < r < v, such that

∑∞
j=1 ‖φvj‖2r <∞ and

∑∞
j=1 ‖φrj‖24 <∞.

Now we argue tightness of ν̃m. We claim that

g(ν)
.
=

∫

R2×[0,T ]
(x2 + y2) ν(dy dx ds), ν ∈ MT (R

2 × [0, T ]) (4.18)

is a tightness function on MT (R
2 × [0, T ]), namely g is bounded from below and has compact

level sets. The first property is clear. To verify the second property take c ∈ (0,∞) and let
Mc

.
= {ν ∈ MT (R

2 × [0, T ]) : g(ν) ≤ c}. By Markov’s inequality, for all M > 0,

sup
ν∈Mc

ν
({

(y, x, t) ∈ R
2 × [0, T ] : x2 + y2 > M, t ∈ [0, T ]

})

≤ c

M
.

Hence Mc is relatively compact as a subset of MT (R
2 × [0, T ]). It remains to show that Mc is

closed. Let {νm} ⊂ Mc be such that νm → ν weakly for some ν ∈ MT (R
2 × [0, T ]). Then by

Fatou’s lemma,
g(ν) ≤ lim inf

m→∞
g(νm) ≤ c,

and consequently ν ∈ Mc. This proves that Mc is compact for every c > 0 and thus it follows
that g is a tightness function on MT (R

2× [0, T ]). Next, from (4.6) and the assumption that (4.4)
holds,

sup
m

E|g(ν̃m)| = sup
m

E
1

m

m
∑

i=1

∫ T

0

(

|X̃m
i (s)|2 + |ũmi (s)|2

)

ds <∞.

Since g is a tightness function, it follows that {ν̃m} is tight.

4.3. Laplace Upper Bound.

In this section we will establish under Conditions 2.1 and 2.2 the following Laplace upper bound

lim inf
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≥ inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)}, (4.19)

where I(·) is as defined in (2.10), F ∈ Cb(C([0, T ] : S−τ )), and τ ≥ v. Fix ε ∈ (0, 1) and using
(4.2) choose for each m ∈ N a sequence ũm

.
= {ũmi }mi=1 of controls such that

− a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≥ E

{

1

2

1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds+ F (Ỹ m)

}

− ε, (4.20)
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where Ỹ m is as introduced in (2.5), with X̃m
i defined in (4.3) and above choice of ũm. Since the

left side of (4.20) is bounded between −‖F‖∞ and ‖F‖∞, we can assume ũm are such that

E
1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds ≤ 4‖F‖∞ + 2

.
= CF .

Let ν̃m be as introduced in (4.15). Then

E

∫

R2×[0,T ]
y2ν̃m(dy dx ds) = E

1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2ds ≤ CF . (4.21)

From Theorem 4.7 it follows that {(Ỹ m, ν̃m)} is tight in C([0, T ] : S−v) × MT (R
2 × [0, T ]).

The following lemma will enable us to characterize its weak limit points. Recall that we denote
w
.
= v + 2.

Lemma 4.8. Suppose Condition 2.2 holds. Then for each n = 1, 2, . . . , w, there exists cn ∈ (0,∞)
such that for all s ∈ [0, T ] and φ ∈ Sn+2, ‖L(s)φ‖n ≤ cn‖φ‖n+2. If Condition 2.3 holds then w
can be replaced by ρ+ 2.

Proof. Note that from Condition 2.2(a), for φ ∈ S,
∥

∥φ′(·)b(·, µ(s))
∥

∥

2

n
=

∑

0≤k≤n

∫

R

(1 + x2)2n
(

[

φ′(x)b(x, µ(s))
](k)
)2

dx

≤ κ1
∑

0≤k≤n

∫

R

(1 + x2)2n+2|φ(k+1)(x)|2 dx

≤ κ2‖φ‖2n+1.

Similarly,
∥

∥

∥

∥

1

2
φ′′(·)σ2(·, µ(s))

∥

∥

∥

∥

2

n

≤ κ3‖φ‖2n+2.

Also using Condition 2.2(b),

∥

∥

∥

∥

∫

R

φ′(y)β(y, ·)µs(dy)
∥

∥

∥

∥

2

n

=
∑

0≤k≤n

∫

R

(1 + x2)2n

(

[∫

R

φ′(y)β(y, x)µs(dy)

](k)
)2

dx

≤
∫

R

‖β(y, ·)‖2n|φ|21 µs(dy)

≤ κ4‖φ‖22,

and similarly
∥

∥

∥

∥

∫

R

φ′′(y)a(y, µ(s))α(y, ·)µs(dy)
∥

∥

∥

∥

2

n

≤ κ5‖φ‖23.

The result follows on combining the above estimates. Proof of the second statement in the lemma
is similar and hence omitted.

We can now establish the following characterization of the weak limit points of {(Ỹ m, ν̃m)}.
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Theorem 4.9. Suppose Condition 2.2 holds, the sequence of controls satisfies (4.4), and {(Ỹ m, ν̃m)}
converges weakly along a subsequence to (Ỹ , ν̃) in C([0, T ] : S−v)×MT (R

2× [0, T ]). Then ν̃ ∈ P∞
a.s. and Ỹ solves the following equation a.s.: For all φ ∈ S,

〈Ỹ (t), φ〉 =
∫ t

0
〈Ỹ (s), L(s)φ〉 ds +

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃(dy dx ds). (4.22)

Proof. We assume without loss of generality that (Ỹ m, ν̃m) → (Ỹ , ν̃) weakly along the full se-
quence. We first verify ν̃ ∈ P∞. Let ν̄m ∈ MT (R× [0, T ]) be defined as

ν̄m(B × [0, t])
.
=

∫ t

0

1

m

m
∑

i=1

δX̄i(s)(B) ds, B ∈ B(R), t ∈ [0, T ].

It follows from (4.5) that

Ed2BL(ν̃
m
(2,3), ν̄

m) = E sup
‖f‖BL≤1

∣

∣

∣
〈ν̃m(2,3), f〉 − 〈ν̄m, f〉

∣

∣

∣

2

= E sup
‖f‖BL≤1

∣

∣

∣

∣

∣

∫ T

0

1

m

m
∑

i=1

f(X̃m
i (s), s) ds −

∫ T

0

1

m

m
∑

i=1

f(X̄i(s), s) ds

∣

∣

∣

∣

∣

2

≤ E
T

m

m
∑

i=1

∫ T

0
|X̃m

i (s)− X̄i(s)|2 ds

≤ κ1
a2(m)m

→ 0.

Hence dBL(ν̃
m
(2,3), ν̄

m) → 0 in probability. Also for each f ∈ Cb(R × [0, T ]), we have, with ν̄ as in

(2.7),

E |〈ν̄m, f〉 − 〈ν̄, f〉|2 = E

∣

∣

∣

∣

∣

∫ T

0

1

m

m
∑

i=1

f(X̄i(s), s) ds −
∫ T

0
〈f(·, s), µ(s)〉 ds

∣

∣

∣

∣

∣

2

≤
∫ T

0
E

(

1

m

m
∑

i=1

(

f(X̄i(s), s)− 〈f(·, s), µ(s)〉
)

)2

ds→ 0.

Combining the above two convergence properties with the fact that ν̃m(2,3) → ν̃(2,3) weakly implies

that ν̃(2,3) = ν̄ a.s. Furthermore, it follows from Fatou’s lemma and (4.21) that

E

∫

R2×[0,T ]
y2 ν̃(dy dx ds) ≤ lim inf

m→∞
E

∫

R2×[0,T ]
y2 ν̃m(dy dx ds) ≤ CF .

Thus we have shown that ν̃ ∈ P∞ a.s.

Now we argue that Ỹ solves (4.22) a.s. Using Skorokhod’s representation theorem, we can
assume that (Ỹ m, ν̃m) → (Ỹ , ν̃) a.s. in C([0, T ] : S−v)×MT (R

2 × [0, T ]). Then for each φ ∈ Sv,

〈Ỹ m(t), φ〉 → 〈Ỹ (t), φ〉, ∀t ∈ [0, T ]. (4.23)
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It follows from Lemma 4.8 that for each φ ∈ Sw,

sup
m∈N

sup
s∈[0,T ]

|〈Ỹ m(s), L(s)φ〉| ≤ sup
m∈N

sup
s∈[0,T ]

‖Ỹ m(s)‖−v‖L(s)φ‖v

≤ κ2 sup
m∈N

sup
s∈[0,T ]

‖Ỹ m(s)‖−v‖φ‖w <∞,

and hence by bounded convergence theorem, for every t ∈ [0, T ],

∫ t

0
〈Ỹ m(s), L(s)φ〉 ds →

∫ t

0
〈Ỹ (s), L(s)φ〉 ds. (4.24)

In view of (4.23), (4.24) and Proposition 4.2, to finish the proof, it suffices to show for each φ ∈ S,
∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃m(dy dx ds) →

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃(dy dx ds) (4.25)

in probability. To verify above convergence, first note that by convergence of ν̃m to ν̃, for each
K ∈ (0,∞),

∫

R2×[0,t]
φ′(x)σ(x, µ(s))hK (y) ν̃m(dy dx ds) →

∫

R2×[0,t]
φ′(x)σ(x, µ(s))hK (y) ν̃(dy dx ds)

a.s., as m → ∞, where hK(y)
.
= y1{|y|≤K} +K1{y>K} −K1{y<−K}. Also it follows from (4.21)

that

sup
m

E

∣

∣

∣

∣

∣

∫

R2×[0,t]
φ′(x)σ(x, µ(s))(y − hK(y)) ν̃m(dy dx ds)

∣

∣

∣

∣

∣

≤ |φ|1‖α‖∞ sup
m

E

∫

R2×[0,T ]

y2

K
ν̃m(dy dx ds)

≤ |φ|1‖α‖∞CF
K

→ 0

as K → ∞. Similarly, using Fatou’s lemma,

E

∣

∣

∣

∣

∣

∫

R2×[0,t]
φ′(x)σ(x, µ(s))(y − hK(y)) ν̃(dy dx ds)

∣

∣

∣

∣

∣

→ 0 as K → ∞.

Combining the above convergence properties we have (4.25), which completes the proof.

We can now complete the proof of the Laplace upper bound under Conditions 2.1 and 2.2.

Proof of the Laplace upper bound: Recall that {(Ỹ m, ν̃m)} is tight. By a standard subsequen-
tial argument we can assume without loss of generality that (Ỹ m, ν̃m) converges in distribution
to a limit (Ỹ , ν̃) in C([0, T ] : S−v)×MT (R

2 × [0, T ]). It follows from Theorem 4.9 that ν̃ ∈ T (Ỹ )
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a.s. Also, from (4.20)

lim inf
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≥ lim inf
m→∞

E

[

1

2

∫

R2×[0,T ]
y2 ν̃m(dy dx ds) + F (Ỹ m)

]

− ε

≥ E

[

1

2

∫

R2×[0,T ]
y2 ν̃(dy dx ds) + F (Ỹ )

]

− ε

≥ inf
ζ∈C([0,T ]:S−v)

[

inf
ν∈T (ζ)

{

1

2

∫

R2×[0,T ]
y2 ν(dy dx ds)

}

+ F (ζ)

]

− ε

= inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)} − ε,

where the second inequality uses Fatou’s lemma and weak convergence of (Ỹ m, ν̃m) to (Ỹ , ν̃) in
C([0, T ] : S−v) × MT (R

2 × [0, T ]). Since ε > 0 is arbitrary, the desired Laplace upper bound
follows.

4.4. Laplace Lower bound.

In this section we show that under Conditions 2.1 and 2.2, for every τ ≥ v and F ∈ Cb(C([0, T ] :
S−τ )),

lim sup
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≤ inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)}. (4.26)

Fix ε ∈ (0, 1). Let ζ∗ ∈ C([0, T ] : S−v) be such that

I(ζ∗) + F (ζ∗) ≤ inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)}+ ε.

Recalling the definition of I in (2.10), choose ν∗ ∈ T (ζ∗) such that

1

2

∫

R2×[0,T ]
y2 ν∗(dy dx ds) ≤ I(ζ∗) + ε.

Recalling that ν∗(2,3) = ν̄, we can disintegrate ν∗ as

ν∗(A×B × [0, t]) =

∫

B×[0,t]
ϑ(s, x,A)µs(dx) ds, A,B ∈ B(R), t ∈ [0, T ],

for some ϑ : [0, T ]×R×B(R) → [0, 1] such that for each A ∈ B(R), ϑ(·, ·, A) is a measurable map
and for each (s, x) ∈ [0, T ] ×R, ϑ(s, x, ·) ∈ P(R). Define

u(s, x)
.
=

∫

R

y ϑ(s, x, dy), (s, x) ∈ [0, T ] × R.

Note that this is finite (µs(dx)ds-a.e.) since

∫

R×[0,T ]

(
∫

R

|y|ϑ(s, x, dy)
)2

µs(dx) ds ≤
∫

R2×[0,T ]
y2 ν∗(dy dx ds) <∞. (4.27)
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Recall the sequence {X̄i} defined through (1.3) in terms of an i.i.d. sequence of real Brownian mo-
tions {Wi} on the filtered probability space (Ω,F ,P, {Ft}). Using the same sequence of Brownian
motions, let {X̃m

i } be the solution of the system of SDE in (4.3), where

µ̃m(t)
.
=

1

m

m
∑

i=1

δX̃m
i (t), ũmi (s)

.
= u(s, X̄i(s)).

It follows from (4.27) that

E
1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds =

∫

R×[0,T ]
|u(s, x)|2 µs(dx) ds ≤

∫

R2×[0,T ]
y2 ν∗(dy dx ds) <∞. (4.28)

We note that the controls ũm are defined using the given processes {X̄i} and hence {Ft}-
progressively measurable. In particular, {ũmi }mi=1 is a controlled sequence of the form on which
infimum is taken in (4.2). Consequently,

− a2(m) log E exp

{

− 1

a2(m)
F (Y m)

}

≤ E

{

1

2

1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds+ F (Ỹ m)

}

, (4.29)

where Ỹ m is defined as in (2.5) with X̃m
i given through (4.3).

We now claim that as m→ ∞, for each φ ∈ S and t ∈ [0, T ]
∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν̃m(dy dx ds) →

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν∗(dy dx ds) (4.30)

in probability. To verify this convergence, let

Ãm(t)
.
=

1

m

m
∑

i=1

∫ t

0
φ′(X̃m

i (s))σ(X̃m
i (s), µ(s))ũmi (s) ds

B̃m(t)
.
=

1

m

m
∑

i=1

∫ t

0
φ′(X̄i(s))σ(X̄i(s), µ(s))ũ

m
i (s) ds

C̃(t)
.
=

∫

R×[0,t]
φ′(x)σ(x, µ(s))u(s, x)µs(dx) ds.

Using Cauchy-Schwarz inequality and the boundedness and Lipschiz property of φ′ and σ, we
have

E|Ãm − B̃m|2∗,T ≤ κ1

(

E
1

m

m
∑

i=1

|X̃m
i − X̄i|2∗,T

)(

E
1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds

)

≤ κ2
a2(m)m

→ 0,

where the second inequality follows from (4.28) and Lemma 4.1. Also, since {X̄i} are i.i.d.,

E|B̃m − C̃|2∗,T ≤ κ3
m

∫

R×[0,T ]
|u(s, x)|2 µs(dx) ds → 0.

Thus we have shown that Ãm(t) → C̃(t) in probability for each t ∈ [0, T ], which proves the claim
(4.30).
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Next, from Theorem 4.7 and (4.28) we have that {Ỹ m} is tight in C([0, T ] : S−v). Finally using
Proposition 4.2, the convergence in (4.30), and an analogous application of bounded convergence
theorem used below (4.23), we see that any limit point Ỹ of Ỹ m solves the equation

〈Ỹ (t), φ〉 =
∫ t

0
〈Ỹ (s), L(s)φ〉 ds +

∫

R2×[0,t]
φ′(x)σ(x, µ(s))y ν∗(dy dx ds), φ ∈ S.

In particular, since {Ỹ m} is tight the above equation admits at least one solution. The following
lemma shows that the equation admits only one solution, in particular, since ν∗ ∈ T (ζ∗), any
limit point Ỹ satisfies Ỹ = ζ∗ a.s.

Lemma 4.10. Suppose Conditions 2.1 and 2.2 hold. Then for each ν ∈ P∞, there exists a unique
solution of (2.9) in C([0, T ] : S−v). If in addition Condition 2.3 is satisfied, uniqueness holds in
C([0, T ] : S−ρ).

Proof. We only prove the first statement in the lemma; the second statement is proved in a similar
manner. Existence of solutions was argued above; we now argue uniqueness. Suppose η and η̃ are
two solutions of (2.9) in C([0, T ] : S−v). Let ξ

.
= η − η̃. Then ξ satisfies

〈ξ(t), φ〉 =
∫ t

0
〈ξ(s), L(s)φ〉 ds. (4.31)

It suffices to show ξ = 0. We adapt arguments of Kurtz and Xiong (see Lemma 4.2 and Appendix
in [28]). By an analogous argument to Lemma A.6 in [28], using Condition 2.2, we have for all
f ∈ S−v,

sup
0≤s≤T

〈f, L∗(s)f〉−w ≤ κ1‖f‖2−w , (4.32)

where L∗(s) : S−v → S−w is the adjoint of L(s) : Sw → Sv. Recall that {φwj } is an orthonormal
basis for Sw. We can choose this basis such that for each j ∈ N, φwj ∈ S. It follows from (4.31)
that

〈ξ(t), φwj 〉2 = 2

∫ t

0
〈ξ(s), φwj 〉 d〈ξ(s), φwj 〉 = 2

∫ t

0
〈ξ(s), φwj 〉〈ξ(s), L(s)φwj 〉 ds.

Therefore,

‖ξ(t)‖2−w = 2

∫ t

0
〈ξ(s), L∗(s)ξ(s)〉−w ds ≤ κ2

∫ t

0
‖ξ(s)‖2−w ds, (4.33)

where the last inequality follows from (4.32). Thus ξ(t) = 0∀ t ∈ [0, T ] and uniqueness follows.

We can now complete the proof of the Laplace lower bound.

Proof of the Laplace lower bound: The above lemma shows that Ỹ m ⇒ ζ∗ in C([0, T ] : S−v).
Combining this with (4.29) and (4.28) gives us

lim sup
m→∞

−a2(m) logE exp

{

− 1

a2(m)
F (Y m)

}

≤ lim sup
m→∞

E

{

1

2

1

m

m
∑

i=1

∫ T

0
|ũmi (s)|2 ds + F (Ỹ m)

}

≤ 1

2

∫

R2×[0,T ]
y2 ν∗(dy dx ds) + F (ζ∗)

≤ I(ζ∗) + F (ζ∗) + ε

≤ inf
ζ∈C([0,T ]:S−v)

{I(ζ) + F (ζ)}+ 2ε.
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Since ε > 0 is arbitrary, we have the desired lower bound.

4.5. I is a rate function.

In this section we prove that under Conditions 2.1 and 2.3, I defined in (2.10) regarded as
a map from C([0, T ] : S−ρ) to [0,∞] has compact level sets and is therefore a rate function on
C([0, T ] : S−ρ).

Fix K ∈ (0,∞) and let ΘK
.
= {η ∈ C([0, T ] : S−ρ) : I(η) ≤ K}. Let {ηm}m∈N ⊂ ΘK . Then for

each m ∈ N there exists νm ∈ T (ηm) such that

1

2

∫

R2×[0,T ]
y2 νm(dy dx ds) ≤ K +

1

m
. (4.34)

It follows from (2.8) and (4.7) that

sup
m∈N

∫

R2×[0,T ]
x2 νm(dy dx ds) =

∫

R×[0,T ]
x2 µs(dx) ds <∞.

So we have supm∈N |g(νm))| < ∞, where g is the tightness function on MT (R
2 × [0, T ]) defined

in (4.18). Hence {νm} is pre-compact. Let νm converge along a subsequence (labeled once more
as {m}) to ν̂. It follows from Fatou’s lemma and (4.34) that ν̂ ∈ P∞. Now let η̂ be defined as in
(2.9) with ν replaced by ν̂. Note that from Lemma 4.10 there is a unique such η̂ ∈ C([0, T ] : S−v).
We claim that ηm → η̂ in C([0, T ] : S−ρ). Once the claim is verified, it will follow from (4.34)
and Fatou’s lemma that I(η̂) ≤ K, which will prove the desired compact level set property. Note
that both ηm and η̂ are in C([0, T ] : S−v) and if one could show that ηm → η̂ in C([0, T ] : S−v),
we would have that I is a rate function on C([0, T ] : S−v). However, that convergence is not
immediately obvious.

Now we prove the above claim. Disintegrate νm as

νm(A×B × [0, t]) =

∫ t

0
νms (A×B) ds, A,B ∈ B(R), t ∈ [0, T ].

Since νm ∈ P∞, we have νms ∈ P(R2) for a.e. s ∈ [0, T ]. Define for s ∈ [0, T ], the function
Jm(s) : Sw → R as follows:

〈Jm(s), φ〉 .=
∫

R2

φ′(x)σ(x, µ(s))y νms (dy dx), φ ∈ Sw.

It is easy to see that Jm(s) ∈ S−w for a.e. s ∈ [0, T ], in fact it follows from (2.6) and (4.34) that

sup
m∈N

∫ T

0
‖Jm(s)‖2−w ds = sup

m∈N

∫ T

0
sup

‖φ‖w=1

(
∫

R2

φ′(x)σ(x, µ(s))y νms (dy dx)

)2

ds

≤ κ1 sup
m∈N

∫

R2×[0,T ]
y2 νm(dy dx ds) <∞.

(4.35)

Since νm ∈ T (ηm), it follows that

〈ηm(t), φ〉 =
∫ t

0
〈ηm(s), L(s)φ〉 ds +

∫ t

0
〈Jm(s), φ〉 ds, ∀ φ ∈ S.
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Analogous to the proof of Lemma 4.10 we have

〈ηm(t), φ〉2 = 2

∫ t

0
〈ηm(s), φ〉〈ηm(s), L(s)φ〉 ds + 2

∫ t

0
〈ηm(s), φ〉〈Jm(s), φ〉 ds.

Also note that since I(ηm) ≤ K < ∞, we must have that ηm ∈ C([0, T ] : S−v) ⊂ C([0, T ] : S−w).
Thus, as for the proof of (4.33),

‖ηm(t)‖2−w = 2

∫ t

0
〈ηm(s), L∗(s)ηm(s)〉−w ds + 2

∫ t

0
〈ηm(s), Jm(s)〉−w ds

≤ κ2

∫ t

0
‖ηm(s)‖2−w ds+ κ2

∫ t

0
‖ηm(s)‖−w‖Jm(s)‖−w ds

≤ κ3

∫ t

0
‖ηm(s)‖2−w ds+ κ3

∫ t

0
‖Jm(s)‖2−w ds.

Applying Gronwall’s lemma and using (4.35), we have

sup
m∈N

sup
t∈[0,T ]

‖ηm(t)‖2−w <∞. (4.36)

Next note that for t1, t2 ∈ [0, T ] and φ ∈ S, by Cauchy-Schwarz inequality

|〈ηm(t2), φ〉 − 〈ηm(t1), φ〉|2

≤ 2|t2 − t1|
(
∫ T

0
|〈ηm(s), L(s)φ〉|2 ds+

∫ T

0
|〈Jm(s), φ〉|2 ds

)

≤ 2|t2 − t1|
(∫ T

0
‖ηm(s)‖2−w‖L(s)φ‖2w ds+

∫ T

0
‖Jm(s)‖2−w‖φ‖2w ds

)

≤ κ4|t2 − t1|‖φ‖2w+2,

where the last inequality follows from (4.36), Lemma 4.8 and (4.35). This together with (4.36)
implies that {ηm} is pre-compact in C([0, T ] : S−ρ), where ρ is as introduced below (2.10) (see
e.g. Theorem 2.5.2 in [25]). Suppose now that ηm converges in C([0, T ] : S−ρ) along a subsequence
(labeled once more as {m}) to η̃. Under Condition 2.3, for every φ ∈ S and s ∈ [0, T ], L(s)φ ∈ Sρ.
Thus 〈ηm(s), L(s)φ〉 → 〈η̃(s), L(s)φ〉 ∀ s ∈ [0, T ]. Finally, using (4.34), (4.36), the convergence
of νm to ν̂, and an estimate analogous to the one below (4.23) (with v replaced by ρ and w by
ρ+ 2), we see that any limit point η̃ of {ηm} solves (2.9) with ν replaced by ν̂. From the second
statement in Lemma 4.10 this equation has a unique solution in C([0, T ] : S−ρ) and so we must
have that η̃ = η̂. This proves the desired compactness of ΘK .

5. Proofs for the pure jump case

In this section we will prove Theorems 3.2 and 3.3. Throughout the section we assume that
Condition 3.2 holds.

5.1. Proof of Theorem 3.2

The basic idea is to make use of a sufficient condition for MDP presented in [9]. We begin with
some notation.
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Recall the PRM N introduced in Section 3.1. We denote by P̄ the {Ft}-predictable σ-field on
Ω × [0, T ]. Let Ā+ [resp. Ā] be the class of all (P̄ ⊗ B(X))/B([0,∞)) [resp. (P̄ ⊗ B(X))/B(R)]-
measurable maps from Ω× XT to [0,∞) [resp. R]. For ϕ ∈ Ā+, define a counting process Nϕ on
XT by

Nϕ([0, t]× U)
.
=

∫

[0,t]×U×[0,∞)
1[0,ϕ(s,y)](r)N(ds dy dr), t ∈ [0, T ], U ∈ B(X). (5.1)

We think of Nϕ as a controlled random measure, with ϕ the control process that produces a
thinning of the point process N in a random but non-anticipative manner.

Define ℓ : [0,∞) → [0,∞) by

ℓ(r)
.
= r log r − r + 1, r ∈ [0,∞).

For any ϕ ∈ Ā+ and t ∈ [0, T ] the quantity

Lt(ϕ)
.
=

∫

Xt

ℓ(ϕ(s, y))λ(ds dy)

is well defined as a [0,∞]-valued random variable. This quantity will appear as a cost term in the
representation presented below. It will be convenient to restrict to the following smaller collection
of controls. For each n ∈ N let

Āb,n
.
= {ϕ ∈ Ā+ : for all (ω, t) ∈ Ω× [0, T ],

1

n
≤ ϕ(ω, t, y) ≤ n if y ∈ [0, n]2

and ϕ(ω, t, y) = 1 if y /∈ [0, n]2}

and let Āb
.
=
⋃∞
n=1 Āb,n.

For m ∈ N and M ∈ (0,∞), consider the spaces

SM+,m
.
=

{

g : XT → R+

∣

∣

∣
LT (g) ≤

M

a2(m)m

}

, (5.2)

SMm
.
=

{

f : XT → R

∣

∣

∣
1 +

1

a(m)
√
m
f
.
= g ∈ SM+,m

}

, (5.3)

UM+,m
.
=
{

ϕ ∈ Āb | ϕ(ω, ·, ·) ∈ SM+,m,P-a.s.
}

. (5.4)

Given M ∈ (0,∞), denote by B2(M) the ball of radius M in L2(λ). A set {ψm} ⊂ Ā with the
property that supm∈N ‖ψm‖L2(λ) ≤ M a.s. for some M < ∞ will be regarded as a collection
of B2(M)-valued random variables, where B2(M) is equipped with the weak topology on the
Hilbert space L2(λ). Since B2(M) is weakly compact, such a collection of random variables is
automatically tight. Throughout this section B2(M) will be regarded as the compact metric
space obtained by equipping it with the weak topology on L2(λ).

It follows from [9] (see Lemma 5.2 below) that if g ∈ SM+,m then, with f
.
= a(m)

√
m(g − 1),

f1{|f |≤a(m)
√
m} ∈ B2(CM ), where CM

.
=
√

Mγ̃2(1) and γ̃2(1) ∈ (0,∞) is as in Lemma 5.1 below.
Let S be a Polish space. The following condition on a sequence {Gm} of measurable maps from
M to S and a measurable map G0 : L

2(λ) → S was introduced in [9] (see Condition 2.2 therein).
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Condition 5.1. (a) Given M ∈ (0,∞), suppose that gm, g ∈ B2(M) and gm → g. Then

G0(g
m) → G0(g).

(b) Given M ∈ (0,∞), let {ϕm}m∈N be such that for every m ∈ N, ϕm ∈ UM+,m and for some
β ∈ (0, 1], ψm1{|ψm|≤βa(m)

√
m} ⇒ ψ in B2(CM ) where ψm

.
= a(m)

√
m(ϕm − 1). Then

Gm
(

1

m
Nmϕm

)

⇒ G0(ψ).

Theorem 2.3 of [9] says that if a collection of Gm satisfies Condition 5.1, then {Gm( 1
mN

mϕm
)}m∈N

satisfies an LDP on S with speed a2(m) and rate function I given by

I(η) .= inf
ψ∈L2(λ):η=G0(ψ)

{

1

2
‖ψ‖2L2(λ)

}

, η ∈ S. (5.5)

We will now use this theorem to establish an MDP for µm.

From Theorem 3.1 we have that there exists a measurable map Ḡm : M → D([0, T ] : l2) such
that µm = Ḡm( 1

mN
m), and hence there is a map Gm : M → D([0, T ] : l2) such that with Zm

defined as in (3.9), Zm = Gm( 1
mN

m). Define G0 : L
2(λ) → D([0, T ] : l2) by

G0(ψ)
.
= η if for ψ ∈ L2(λ), η solves (3.11). (5.6)

Note that the map is well defined since for each ψ ∈ L2(λ) there is a unique η ∈ C([0, T ] : l2)
solving (3.11). It is easy to check that with the above choice of G0, I defined in (5.5) (with S =
D([0, T ] : l2)) is same as the function Ī introduced in (3.10). Thus in order to prove Theorem 3.2
it suffices to check that Condition 5.1 holds with S = D([0, T ] : l2) and the above choice of {Gm}
and G0. Rest of the section is devoted to the verification of this condition.

All statements except the last one in Lemma 5.1(a) below have been established in [9] (see
Lemma 3.1 therein). The last statement in Lemma 5.1(a) is crucially used in our proofs and is a
key ingredient in overcoming the lack of regularity of G (see proof of Proposition 5.11).

Lemma 5.1. (a) For each β > 0, there exist γ̃1(β), γ̃
′
1(β) ∈ (0,∞) such that

|x− 1| ≤ γ̃1(β)ℓ(x) for |x− 1| ≥ β, x ≥ 0, and x ≤ γ̃′1(β)ℓ(x) for x ≥ β > 1.

Furthermore, γ̃1 can be selected to be such that for β ∈ (0, 12 ), γ̃1(β) ≤ 4
β .

(b) For each β > 0, there exist γ̃2(β) ∈ (0,∞) such that

|x− 1|2 ≤ γ̃2(β)ℓ(x) for |x− 1| ≤ β, x ≥ 0.

Proof. We only need to prove the last statement in part (a). Note that we can set

γ̃1(β) = sup
|x−1|≥β,x≥0

|x− 1|
ℓ(x)

.

For β ∈ (0, 12), x ≥ 0 and |x − 1| ≥ β, consider function f(x)
.
= x−1

ℓ(x) . Since log(1 + u) ≤ u for
u ≥ −1, we have

f ′(x) =
log x− (x− 1)

ℓ2(x)
< 0 for x ≥ 0, |x− 1| ≥ β.
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Since f(0) = −1, limx→1− f(x) = −∞, limx→1+ f(x) = ∞ and limx→∞ f(x) = 0, we have

γ̃1(β) = sup
|x−1|≥β,x≥0

|x− 1|
ℓ(x)

= sup
|x−1|≥β,x≥0

|f(x)| = max{|f(1 + β)|, |f(1 − β)|}.

For β ∈ (0, 12), let h1(β)
.
= β|f(1 + β)| and h2(β) .= β|f(1− β)|. It suffices to show hi(β) ≤ 4 for

i = 1, 2. Since log(1 + u) ≥ u− u2

2 for u ≥ 0, we have

h1(β) =
β2

(1 + β) log(1 + β)− β
≤ β2

(1 + β)(β − β2

2 )− β
=

1
1
2 − β

2

≤ 4.

Also, since log(1 + u) ≤ u− u2

2 + u3

3 for u ≥ 0, we have

h2(β) =
β2

(1− β) log(1− β) + β
=

β2

−(1− β) log(1 + β
1−β ) + β

≤ β2

−(1− β)( β
1−β − 1

2(
β

1−β )
2 + 1

3 (
β

1−β )
3) + β

=
6(1− β)2

3− 5β
≤ 4.

Thus we have shown that hi(β) ≤ 4 for i = 1, 2, ∀β ∈ (0, 12 ). The result follows.

The following lemma is taken from [9] (see Lemma 3.2 therein).

Lemma 5.2. Suppose g ∈ SM+,m for some M ∈ (0,∞). Let f
.
= a(m)

√
m(g − 1) ∈ SMm . Then

(a)

∫

XT

|f |1{|f |≥βa(m)
√
m} dλ ≤ Mγ̃1(β)

a(m)
√
m

for β > 0

(b)

∫

XT

g1{g≥β} dλ ≤ Mγ̃′1(β)
a2(m)m

for β > 1

(c)

∫

XT

|f |21{|f |≤βa(m)
√
m} dλ ≤Mγ̃2(β) for β > 0,

where γ̃1, γ̃
′
1 and γ̃2 are as in Lemma 5.1.

We will now proceed to the verification of Condition 5.1. We begin with verifying part (a) of
the condition. The following moment bounds on G will be useful.

Lemma 5.3. For each k ∈ N, we have

sup
q∈Ŝ

∫

X

‖G(q, y)‖k λX(dy) ≤ 2k/2‖Γ‖∞.

Proof. Recalling the definition of G in (3.3), we have

∫

X

‖G(q, y)‖k λX(dy) =
∞
∑

i=1

∞
∑

j 6=i

∫

Aij(q)
‖G(q, y)‖k λX(dy) =

∞
∑

i=1

∞
∑

j 6=i
2k/2λX(Aij(q))

=

∞
∑

i=1

∞
∑

j 6=i
2k/2qiΓij(q) ≤

∞
∑

i=1

2k/2‖Γ‖∞qi = 2k/2‖Γ‖∞,

where the first two equalities use the property (3.2) of the sets {Aij(q)}. The result follows.
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The following lemma provides a key convergence property.

Lemma 5.4. Fix M ∈ (0,∞). Suppose that gm, g ∈ B2(M) and gm → g. Then

∫

[0,·]×X

gm(s, y)G(p(s), y)λ(ds dy) →
∫

[0,·]×X

g(s, y)G(p(s), y)λ(ds dy) in C([0, T ] : l2).

Proof. It follows from Lemma 5.3 that (s, y) 7→ Gi(p(s), y) is in L2(λ) for each i ∈ N. Thus, since
gm → g in B2(M), we have for every t ∈ [0, T ] and i ∈ N,

∫

Xt

gm(s, y)Gi(p(s), y)λ(ds dy) →
∫

Xt

g(s, y)Gi(p(s), y)λ(ds dy).

Note that for each i ∈ N,

∣

∣

∣

∣

∫

Xt

gm(s, y)Gi(p(s), y)λ(ds dy)

∣

∣

∣

∣

≤
(∫

Xt

|gm(s, y)|2 λ(ds dy)
)1/2(∫

Xt

G2
i (p(s), y)λ(ds dy)

)1/2

≤M

(∫

Xt

G2
i (p(s), y)λ(ds dy)

)1/2
.
= αi.

From Lemma 5.3 we see that
∑∞

i=1 α
2
i < ∞ and so by dominated convergence theorem for each

fixed t ∈ [0, T ],

∫

Xt

gm(s, y)G(p(s), y)λ(ds dy) →
∫

Xt

g(s, y)G(p(s), y)λ(ds dy). (5.7)

To argue that the convergence is in fact uniform in t, note that by Lemma 5.3 once again, for
0 ≤ s ≤ t ≤ T

∥

∥

∥

∥

∥

∫

[s,t]×X

gm(s, y)G(p(s), y)λ(ds dy)

∥

∥

∥

∥

∥

2

≤
∫

[0,T ]×X

|gm(s, y)|2 λ(ds dy)
∫

[s,t]×X

‖G(p(s), y)‖2 λ(ds dy)

≤ 2‖Γ‖∞M2|t− s|.

This implies equicontinuity, which shows that the convergence in (5.7) is in fact uniform.

Now we are able to verify part (a) of Condition 5.1.

Proposition 5.5. Fix M ∈ (0,∞). Suppose that gm, g ∈ B2(M) and gm → g. Let G0 be as
defined in (5.6). Then G0(g

m) → G0(g).

Proof. Let ηm
.
= G0(g

m) and η
.
= G0(g). Then

ηm(t)− η(t) =

∫ t

0
Db(p(s))[ηm(s)− η(s)] ds +

∫

Xt

(

gm(s, y)− g(s, y)
)

G(p(s), y)λ(ds dy).

The result now follows on applying Gronwall’s lemma together with Condition 3.2(c) and Lemma 5.4.



/MDP for Weakly Interacting Particle Systems 38

In order to verify part (b) of Condition 5.1, we first prove some estimates. Recall spaces SM+,m
and SMm introduced in (5.2) and (5.3).

Lemma 5.6. Let M ∈ (0,∞). Then there exists γ̃3 ∈ (0,∞) such that for all measurable maps
q : [0, T ] → Ŝ,

sup
m∈N

sup
g∈SM

+,m

∫

XT

‖G(q(s), y)‖2g(s, y)λ(ds dy) ≤ γ̃3.

Proof. Fix g ∈ SM+,m. Then
∫

XT

‖G(q(s), y)‖2g(s, y)λ(ds dy)

=

∫

{g≥2}
‖G(q(s), y)‖2g(s, y)λ(ds dy) +

∫

{g<2}
‖G(q(s), y)‖2g(s, y)λ(ds dy)

≤ 2

∫

{g≥2}
g(s, y)λ(ds dy) + 2

∫

XT

‖G(q(s), y)‖2 λ(ds dy)

≤ 2Mγ̃′1(2)
a2(m)m

+ 4‖Γ‖∞T,

where the last inequality follows from Lemmas 5.2(b) and 5.3. Since a2(m)m → ∞ as m → ∞,
we have the result.

The following lemma will be needed in the proof of the estimate (5.11) in Lemma 5.8 and (5.16)
in Proposition 5.11.

Lemma 5.7. Let M ∈ (0,∞). Then there exists a map γ̃4 : (0,∞) → (0,∞) such that for all
m ∈ N, β ∈ (0,∞), measurable I ⊂ [0, T ] and measurable maps q : [0, T ] → Ŝ,

sup
f∈SM

m

∫

I×X

‖G(q(s), y)‖ |f(s, y)|1{|f |≥βa(m)
√
m} λ(ds dy) ≤

γ̃4(β)

a(m)
√
m
,

sup
f∈SM

m

∥

∥

∥

∫

I×X

G(q(s), y)f(s, y)λ(ds dy)
∥

∥

∥ ≤ γ̃4(β)
( 1

a(m)
√
m

+
√

|I|
)

.

Proof. Fix f ∈ SMm . Note that

∥

∥

∥

∥

∫

I×X

G(q(s), y)f(s, y)λ(ds dy)

∥

∥

∥

∥

≤
∫

I×X

‖G(q(s), y)‖|f(s, y)|1{|f(s,y)|≥βa(m)
√
m} λ(ds dy)

+

∫

I×X

‖G(q(s), y)‖|f(s, y)|1{|f(s,y)|<βa(m)
√
m} λ(ds dy).

It follows from Lemma 5.2(a) that

∫

I×X

‖G(q(s), y)‖|f(s, y)|1{|f(s,y)|≥βa(m)
√
m} λ(ds dy)

≤
√
2

∫

I×X

|f(s, y)|1{|f(s,y)|≥βa(m)
√
m} λ(ds dy) ≤

√
2Mγ̃1(β)

a(m)
√
m

.
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This proves the first inequality in the lemma. From Cauchy-Schwarz inequality it follows that

∫

I×X

‖G(q(s), y)‖|f(s, y)|1{|f(s,y)|<βa(m)
√
m} λ(ds dy)

≤
(

∫

I×X

‖G(q(s), y)‖2 λ(ds dy)
)1/2(

∫

I×X

|f(s, y)|21{|f(s,y)|<βa(m)
√
m} λ(ds dy)

)1/2

≤
√

2‖Γ‖∞Mγ̃2(β)|I|,

where the last inequality follows from Lemmas 5.2(c) and 5.3. The second inequality in the lemma
now follows by combining the above two displays.

Recall the space UM+,m and the map Gm introduced in (5.4) and above (5.6), respectively. Let

for ϕ ∈ UM+,m, Z̄m,ϕ
.
= Gm( 1

mN
mϕ), where Nmϕ is as defined in (5.1). Then it follows from an

application of Girsanov’s theorem that (see for example the arguments above Lemma 4.4 in [9])

Z̄m,ϕ = a(m)
√
m(µ̄m,ϕ − p), (5.8)

where µ̄m,ϕ is the unique pathwise solution of

µ̄m,ϕ(t) = µm(0) +
1

m

∫

Xt

G(µ̄m,ϕ(s−), y)Nmϕ(ds dy).

The following moment bounds on Z̄m,ϕ will be useful for our analysis.

Lemma 5.8. For every M ∈ (0,∞),

sup
m∈N

sup
ϕ∈UM

+,m

E
∥

∥Z̄m,ϕ
∥

∥

2

∗,T <∞.

Proof. Given ϕ ∈ UM+,m, let Ñmϕ(ds dy)
.
= Nmϕ(ds dy)−mϕ(s, y)λ(ds dy) and ψ

.
= a(m)

√
m(ϕ−

1). Then recalling (3.8) and that b(q) =
∫

X
G(q, y)λX(dy),

µ̄m,ϕ(t)− p(t) = µm(0)− p(0) +
1

m

∫

Xt

G(µ̄m,ϕ(s−), y) Ñmϕ(ds dy)

+

∫

Xt

(

G(µ̄m,ϕ(s), y)−G(p(s), y)
)

λ(ds dy)

+

∫

Xt

G(µ̄m,ϕ(s), y)
(

ϕ(s, y)− 1
)

λ(ds dy).

Using this and (5.8), write

Z̄m,ϕ = Am +Mm,ϕ +Bm,ϕ + Cm,ϕ, (5.9)
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where

Am
.
= a(m)

√
m(µm(0)− p(0)),

Mm,ϕ(t)
.
=
a(m)√
m

∫

Xt

G(µ̄m,ϕ(s−), y) Ñmϕ(ds dy),

Bm,ϕ(t)
.
= a(m)

√
m

∫

Xt

(

G(µ̄m,ϕ(s), y)−G(p(s), y)
)

λ(ds dy)

= a(m)
√
m

∫ t

0

(

b(µ̄m,ϕ(s))− b(p(s))
)

ds

Cm,ϕ(t)
.
=

∫

Xt

G(µ̄m,ϕ(s), y)ψ(s, y)λ(ds dy).

Noting that Mm,ϕ is a martingale, Doob’s inequality gives us

E ‖Mm,ϕ‖2∗,T ≤ 4a2(m)

m
E

∫

XT

‖G(µ̄m,ϕ(s), y)‖2mϕ(s, y)λ(ds dy).

It then follows from Lemma 5.6 that

sup
ϕ∈UM

+,m

E ‖Mm,ϕ‖2∗,T ≤ κ1a
2(m). (5.10)

Using Cauchy-Schwarz inequality and Condition 3.1(b) we have for all ϕ ∈ UM+,m,

‖Bm,ϕ‖2∗,t ≤ a2(m)mT

∫ t

0
‖b(µ̄m,ϕ(s))− b(p(s))‖2 ds ≤ TL2

b

∫ t

0

∥

∥Z̄m,ϕ
∥

∥

2

∗,s ds.

Since ψ ∈ SMm a.s., it follows from Lemma 5.7 that

sup
ϕ∈UM

+,m

‖Cm,ϕ‖2∗,T ≤ κ2

( 1

a(m)
√
m

+
√
T
)2

≤ 2κ2

( 1

a2(m)m
+ T

)

. (5.11)

Collecting these estimates we have for some κ3 ∈ (0,∞) and all ϕ ∈ UM+,m, t ∈ [0, T ],

E
∥

∥Z̄m,ϕ
∥

∥

2

∗,t ≤ κ3

(

‖Am‖2 + a2(m) +
1

a2(m)m
+ 1 +

∫ t

0
E
∥

∥Z̄m,ϕ
∥

∥

2

∗,s ds

)

.

The result now follows from Gronwall’s inequality, (1.1) and Condition 3.2(d).

Although G(q, y) is not a continuous map, using the specific form of G and properties of Γ, we
can establish the following Lipschitz property.

Lemma 5.9. There exits γ̃5 ∈ (0,∞) such that for all g ∈ Mb(X) and all q, q̃ ∈ Ŝ,
∥

∥

∥

∥

∫

X

(

G(q̃, y)−G(q, y)
)

g(y)λX(dy)

∥

∥

∥

∥

≤ γ̃5‖g‖∞‖q̃ − q‖.
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Proof. Observing that λX(Aij(q̃) △ Aij(q)) = |q̃iΓij(q̃) − qiΓij(q)| for i 6= j, where “△” denotes
the symmetric difference, we see

∥

∥

∥

∫

X

(

G(q̃, y)−G(q, y)
)

g(y)λX(dy)
∥

∥

∥

2

≤ ‖g‖2∞
∞
∑

i=1

(

∫

X

∣

∣

∣
Gi(q̃, y)−Gi(q, y)

∣

∣

∣
λX(dy)

)2

≤ ‖g‖2∞
∞
∑

i=1

(

∞
∑

j 6=i
|q̃iΓij(q̃)− qiΓij(q)|+

∞
∑

j 6=i
|q̃jΓji(q̃)− qjΓji(q)|

)2

≤ 4‖g‖2∞
[

∞
∑

i=1

(

∞
∑

j 6=i
|q̃iΓij(q̃)− qiΓij(q̃)|

)2
+

∞
∑

i=1

(

∞
∑

j 6=i
|qiΓij(q̃)− qiΓij(q)|

)2

+
∞
∑

i=1

(

∞
∑

j 6=i
|q̃jΓji(q̃)− qjΓji(q̃)|

)2
+

∞
∑

i=1

(

∞
∑

j 6=i
|qjΓji(q̃)− qjΓji(q)|

)2]

≡ 4‖g‖2∞
4
∑

k=1

Tk.

The terms Tk for k = 1, 2, 3, 4, can be estimated as follows.

T1 =
∞
∑

i=1

[

(q̃i − qi)
2
(

∞
∑

j 6=i
Γij(q̃)

)2]

≤ ‖Γ‖2∞‖q̃ − q‖2.

Also, from Condition 3.2(b),

T2 ≤
∞
∑

i=1

q2i L
2
Γ‖q̃ − q‖2 ≤ L2

Γ‖q̃ − q‖2,

T3 =
∞
∑

i=1

(

∞
∑

j 6=i
|q̃j − qj|Γji(q̃)

)2
≤

∞
∑

i=1

[

∞
∑

j 6=i

(

|q̃j − qj|2Γji(q̃)
)

∞
∑

j 6=i
Γji(q̃)

]

≤ cΓ

∞
∑

i=1

∞
∑

j 6=i
|q̃j − qj|2Γji(q̃) ≤ cΓ‖Γ‖∞‖q̃ − q‖2,

T4 ≤
(

∞
∑

i=1

∞
∑

j 6=i
qj |Γji(q̃)− Γji(q)|

)2
≤
(

∞
∑

j=1

qjLΓ‖q̃ − q‖
)2

≤ L2
Γ‖q̃ − q‖2.

The result follows by combining above estimates.

The following lemma will allow us to apply the continuous mapping theorem to deduce the key
weak convergence property in the proof of Proposition 5.11.

Lemma 5.10. Let M ∈ (0,∞). Given ε ∈ D([0, T ] : l2) and f ∈ B2(M), there exists a unique
z ∈ D([0, T ] : l2) solving the following equation:

z(t) = ε(t) +

∫ t

0
Db(p(s))[z(s)] ds +

∫

Xt

G(p(s), y)f(s, y)λ(ds dy), t ∈ [0, T ], (5.12)
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namely there exists a measurable map h : D([0, T ] : l2) × B2(M) → D([0, T ] : l2) such that the
solution to (5.12) can be written as z = h(ε, f). Moreover, h is continuous at (0, f) for every
f ∈ B2(M).

Proof. The existence and uniqueness of solutions of (5.12) and the measurability of the solution
map are easy to check using Condition 3.2(c) in a manner similar to the proof of Theorem 3.1(b).
To see the continuity at (0, f) for f ∈ B2(M), first note that (5.12) can be written as

z(t)− ε(t) =

∫ t

0
Db(p(s))[z(s)− ε(s)] ds +

∫ t

0
Db(p(s))[ε(s)] ds +

∫

Xt

G(p(s), y)f(s, y)λ(ds dy).

Suppose (εm, fm) → (0, f) in D([0, T ] : l2) × B2(M) as m → ∞. Let zm
.
= h(εm, fm) and

z
.
= h(0, f). Since εm → 0 in D([0, T ] : l2) we see using Condition 3.2(c) that

∫ ·

0
Db(p(s))[εm(s)] ds → 0 in C([0, T ] : l2).

It follows from Lemma 5.4 that
∫

[0,·]×X

G(p(s), y)fm(s, y)λ(ds dy) →
∫

[0,·]×X

G(p(s), y)f(s, y)λ(ds dy) in C([0, T ] : l2).

Combining above results and applying Gronwall’s lemma gives us zm−εm → z−0 in C([0, T ] : l2).
Since εm → 0, we have that zm → z in D([0, T ] : l2) and the result follows.

We can now verify part (b) of Condition 5.1. Recall that for M ∈ (0,∞), CM =
√

Mγ̃2(1).

Proposition 5.11. Fix M ∈ (0,∞). Let {ϕm}m∈N be such that for every m ∈ N, ϕm ∈ UM+,m.
Let ψm1{|ψm|≤βa(m)

√
m} ⇒ ψ in B2(CM ) for some β ∈ (0, 1], where ψm

.
= a(m)

√
m(ϕm − 1). Let

G0 and Gm be as defined in and above (5.6), respectively. Then Gm( 1
mN

mϕm
) ⇒ G0(ψ).

Proof. We will use the notation from the proof of Lemma 5.8. From (1.1), (5.10) and Condi-
tion 3.2(d) we have that

E
∥

∥Mm,ϕm∥
∥

2

∗,T → 0 and ‖Am‖2 → 0

as m→ ∞. It follows from Condition 3.2(c) that

b(µ̄m,ϕ
m

(s))− b(p(s)) =
1

a(m)
√
m
Db(p(s))[Z̄m,ϕ

m

(s)] +Rm,ϕ
m

(s),

where
‖Rm,ϕm

(s)‖ .
= ‖θb(p(s), µ̄m,ϕ

m

(s))‖ ≤ cb
a2(m)m

‖Z̄m,ϕm

(s)‖2. (5.13)

Hence Bm,ϕm
= B̃m,ϕm

+ Em,ϕm

1 , where

B̃m,ϕm

(t)
.
=

∫ t

0
Db(p(s))[Z̄m,ϕ

m

(s)] ds, (5.14)

Em,ϕm

1 (t)
.
= a(m)

√
m

∫ t

0
Rm,ϕ

m

(s) ds.
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From (5.13) and Lemma 5.8 we see that

E

∥

∥

∥Em,ϕ
m

1

∥

∥

∥

∗,T
≤ a(m)

√
mE

∫ T

0
‖Rm,ϕm

(s)‖ ds ≤ cbT

a(m)
√
m
E
∥

∥Z̄m,ϕ
m∥
∥

2

∗,T → 0

as m→ ∞. Write Cm,ϕ
m
= C̃m,ϕ

m
+ Em,ϕm

2 + Em,ϕm

3 + Em,ϕm

4 , where

C̃m,ϕ
m

(t)
.
=

∫

Xt

G(p(s), y)ψm(s, y)1{|ψm(s,y)|≤βa(m)
√
m} λ(ds dy), (5.15)

Em,ϕm

2 (t)
.
=

∫

Xt

G(p(s), y)ψm(s, y)1{|ψm(s,y)|>βa(m)
√
m} λ(ds dy),

Em,ϕm

3 (t)
.
=

∫

Xt

(

G(µ̄m,ϕ
m

(s), y) −G(p(s), y)
)

ψm(s, y)1{|ψm(s,y)|>δm} λ(ds dy),

Em,ϕm

4 (t)
.
=

∫

Xt

(

G(µ̄m,ϕ
m

(s), y) −G(p(s), y)
)

ψm(s, y)1{|ψm(s,y)|≤δm} λ(ds dy),

and δm
.
= (a(m)

√
m)1/2 → ∞ as m→ ∞. Then using Lemma 5.7 we see that

∥

∥

∥Em,ϕ
m

2

∥

∥

∥

∗,T
≤ γ̃4(β)

a(m)
√
m

→ 0 (5.16)

as m→ ∞. Also applying Lemma 5.2(a) with β = δm
a(m)

√
m
, we see that as m→ ∞,

∥

∥

∥Em,ϕ
m

3

∥

∥

∥

∗,T
≤
∫

XT

∥

∥G(µ̄m,ϕ
m

(s), y)−G(p(s), y)
∥

∥ |ψm(s, y)|1{|ψm(s,y)|>δm} λ(ds dy)

≤ 2
√
2

∫

XT

|ψm(s, y)|1{|ψm(s,y)|>δm} λ(ds dy)

≤
2
√
2Mγ̃1(

δm
a(m)

√
m
)

a(m)
√
m

≤ 8
√
2M

δm
→ 0,

where the last inequality is a consequence of the last statement in Lemma 5.1(a). Next, it follows
from Lemma 5.9 that

∥

∥

∥Em,ϕ
m

4

∥

∥

∥

∗,T
≤
∫ T

0

∥

∥

∥

∫

X

(

G(µ̄m,ϕ
m

(s), y)−G(p(s), y)
)

ψm(s, y)1{|ψm(s,y)|≤δm} λX(dy)
∥

∥

∥ ds

≤ γ̃5δm

∫ T

0
‖µ̄m,ϕm

(s)− p(s)‖ ds ≤ γ̃5T
δm

a(m)
√
m

∥

∥Z̄m,ϕ
m∥
∥

∗,T .

Since δm
a(m)

√
m

= (a(m)
√
m)−

1

2 → 0, it follows from Lemma 5.8 that E
∥

∥

∥
Em,ϕm

4

∥

∥

∥

∗,T
→ 0 as m→ ∞.

Putting above estimates together we have from (5.9)

Z̄m,ϕ
m

(t) = Em,ϕm

(t) + B̃m,ϕm

(t) + C̃m,ϕ
m

(t)

= Em,ϕm

(t) +

∫ t

0
Db(p(s))[Z̄m,ϕ

m

(s)] ds

+

∫

Xt

G(p(s), y)ψm(s, y)1{|ψm|≤βa(m)
√
m} λ(ds dy),

(5.17)
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where Em,ϕm .
= Mm,ϕm

+ Am + Em,ϕm

1 + Em,ϕm

2 + Em,ϕm

3 + Em,ϕm

4 ⇒ 0 in D([0, T ] : l2). Thus we
have

Gm
(

1

m
Nmϕm

)

= Z̄m,ϕ
m

= h(Em,ϕm

, ψm1{|ψm|≤βa(m)
√
m}),

where h is as introduced in Lemma 5.10. It follows from Lemma 5.2(c) that ψm1{|ψm|≤βa(m)
√
m}

takes values in B2(CM ) for all m ∈ N. Finally note that G0(ψ) = h(0, ψ) and

(Em,ϕm

, ψm1{|ψm|≤βa(m)
√
m}) ⇒ (0, ψ).

The result now follows by combining above observations and applying continuous mapping theo-
rem together with Lemma 5.10.

Now we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2: As noted earlier, it suffices to show that Condition 5.1 holds with Gm
and G0 above and in (5.6), respectively. Part (a) of the condition was verified in Proposition 5.5,
while part (b) was verified in Proposition 5.11.

5.2. Proof of Theorem 3.3

Fix η ∈ D([0, T ] : l2). We first argue that Ī(η) ≤ I(η). Let δ > 0 be arbitrary. Let u
.
= {uij}∞i,j=1

be such that uij ∈ L2([0, T ] : R),

1

2

∫ T

0

∞
∑

i=1

∞
∑

j=1,j 6=i
u2ij(s) ds ≤ I(η) + δ,

and (η, u) satisfies (3.13). Define ψ : XT → R by

ψ(s, y)
.
=

∞
∑

i=1

∞
∑

j=1,j 6=i
1Aij(p(s))(y)

uij(s)
√

pi(s)Γij(p(s))
1{pi(s)Γij(p(s))6=0}, (s, y) ∈ [0, T ]× X.

Then we have

∫

XT

ψ2(s, y)λ(ds dy) =

∫ T

0

∞
∑

i=1

∞
∑

j=1,j 6=i
u2ij(s)1{pi(s)Γij (p(s))6=0} ds <∞

and hence ψ ∈ L2(λ). Also note that for q ∈ Ŝ and i 6= j,

∫

X

G(q, y)1Aij(q)(y)λ(dy) = (ej − ei)qiΓij(q).

From this it follows that (η, ψ) satisfies (3.11). Thus

Ī(η) ≤ 1

2

∫

XT

ψ2(s, y)λ(ds dy) =
1

2

∫ T

0

∞
∑

i=1

∞
∑

j=1,j 6=i
u2ij(s)1{pi(s)Γij (p(s))6=0} ds ≤ I(η) + δ.

Since δ > 0 is arbitrary, we have that Ī(η) ≤ I(η).
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Conversely, suppose ψ ∈ L2(λ) is such that

1

2

∫

XT

ψ2(s, y)λ(ds dy) ≤ Ī(η) + δ

and (3.11) holds. For i, j ∈ N with i 6= j and s ∈ [0, T ], define uij : [0, T ] → R by

uij(s)
.
=

∫

X
1Aij(p(s))(y)ψ(s, y)λX(dy)
√

pi(s)Γij(p(s))
1{pi(s)Γij(p(s))6=0}.

An application of Cauchy-Schwarz inequality shows that

u2ij(s) ≤
∫

X

1Aij(p(s))(y)ψ
2(s, y)λX(dy),

and hence uij ∈ L2([0, T ] : R) for all i 6= j. We set uii
.
= 0 for i ∈ N and let u

.
= {uij}∞i,j=1. It is

easy to check that (η, u) satisfies (3.13), and hence

I(η) ≤ 1

2

∫ T

0

∞
∑

i=1

∞
∑

j=1,j 6=i
u2ij(s) ds ≤

1

2

∫

XT

∞
∑

i=1

∞
∑

j=1,j 6=i
1Aij(p(s))(y)ψ

2(s, y)λ(ds dy)

≤ 1

2

∫

XT

ψ2(s, y)λ(ds dy) ≤ Ī(η) + δ.

Since δ > 0 is arbitrary we have I(η) ≤ Ī(η). The result follows.

Appendix A: Proof of Theorem 3.1

Part (a) can be established using a recursive construction of the solution from one jump to the
next. Note that although Ẽnm(Xt) = ∞ for all t > 0, the property that

λX





∞
⋃

i=1

∞
⋃

j=1,j 6=i
Aij(q)



 ≤
∞
∑

i=1

∞
∑

j=1,j 6=i
qiΓij(q) ≤ ‖Γ‖∞ <∞, ∀q ∈ Ŝ,

allows one to enumerate the jump instants t at which the state of µ̃m(t) changes. At any such
jump instant we define µ̃m(t)

.
= µ̃m(t−) + 1

mG(µ̃
m(t−), y) if the jump corresponds to the point

(t, y) of the point process nm. We omit the details.

For part (b), uniqueness of solution of (3.8) follows from an application of Gronwall’s lemma
along with Condition 3.1(b). For existence of solution we follow a standard iteration scheme.
Define p0(t)

.
= p(0) and for n ∈ N,

pn+1(t)
.
= p(0) +

∫ t

0
b(pn(s)) ds, t ∈ [0, T ].

From Condition 3.1(b) we see that

‖pn+1 − pn‖∗,t =
∥

∥

∥

∥

∫ ·

0
(b(pn(s))− b(pn−1(s))) ds

∥

∥

∥

∥

∗,t
≤ Lb

∫ t

0
‖pn − pn−1‖∗,s ds,
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which implies {pn}∞n=0 is a Cauchy sequence in C([0, T ] : l2). Hence there exists some p̃ ∈ C([0, T ] :
l2) such that pn → p̃ and it is easy to see that p̃ is a solution to (3.8).

We now argue that µm ⇒ p as m→ ∞. For t ∈ [0, T ],

E sup
s≤t

‖µm(s)− p(s)‖2 ≤ 3‖µm(0) − p(0)‖2 + 3E sup
s≤t

∥

∥

∥

∫ s

0

(

b(µm(u))− b(p(u))
)

du
∥

∥

∥

2

+ 3E sup
s≤t

∥

∥

∥

1

m

∫

Xs

G(µm(u−), y) Ñm(du dy)
∥

∥

∥

2

≤ 3‖µm(0) − p(0)‖2 + 3T

∫ t

0
E‖b(µm(s))− b(p(s))‖2 ds

+
12

m

∫

Xt

E‖G(µm(s), y)‖2 λ(ds dy)

≤ κ‖µm(0) − p(0)‖2 + κ

m
+ κ

∫ t

0
E sup
u≤s

‖µm(u)− p(u)‖2 ds,

where the second inequality follows from Doob’s inequality and the third inequality follows from
Lemma 5.3. The result now follows from Gronwall’s inequality and Condition 3.1(c).

Appendix B: Proof of Remark 3.2(iv)

Suppose that for some n ∈ N,
∑∞

m=1[a(m)]2n < ∞. We need to show that a(m)
√
m‖µm(0) −

p(0)‖ → 0 almost surely. To simplify the notation, we will abbreviate µm(0), p(0), µmi (0), pi(0) as
µm, p, µmi , pi. It follows from Markov’s inequality that for ε > 0,

P(a(m)
√
m‖µm − p‖ > ε) ≤

(

a(m)
√
m

ε

)2n

E‖µm − p‖2n =
[a(m)]2n

ε2n
mn

E

[ ∞
∑

i=1

(µmi − pi)
2

]n

.

Since
∑∞

m=1[a(m)]2n <∞, by Borel-Cantelli lemma, it suffices to show that for every n ∈ N there
exists some γ̂n ∈ (0,∞) such that

E

[ ∞
∑

i=1

(µmi − pi)
2

]n

≤ γ̂n
mn

. (B.1)

We will prove (B.1) when n = 2 in detail and then sketch the argument for n > 2. Write

µmi − pi =
1

m

m
∑

j=1

1{ξj=i} − pi ≡
1

m

m
∑

j=1

Yij,

where Yij
.
= 1{ξj=i} − pi is such that for α, β ∈ N,

|Yij| ≤ 1, EYij = 0, EY 2α
ij ≤ EY 2

ij ≤ pi, EY 2α
ij Y

2β
kl ≤ EY 2

ijY
2
kl ≤ pipk for i 6= k.

Now write

E

[ ∞
∑

i=1

(µmi − pi)
2

]2

= E





∞
∑

i=1





1

m

m
∑

j=1

Yij





2



2

=
1

m4
E





∞
∑

i=1

m
∑

j,j′=1

YijYij′





2

=
1

m4
E

∞
∑

i,k=1

m
∑

j,j′,l,l′=1

YijYij′YklYkl′ . (B.2)
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From independence of {ξj} it follows that Yij and Ykl are independent for j 6= l. Hence EYijYij′YklYkl′ 6=
0 only if j, j′, l, l′ are matched in pairs (e.g. j = j′ and l = l′). Using this observation, (B.2) can
be written as

1

m4
E

5
∑

r=1

∑

(i,k,j,j′,l,l′)∈Hr

YijYij′YklYkl′ ≡
5
∑

r=1

T m
r ,

where H1, H2, H3, H4 and H5 are collections of (i, k) ∈ N
2 and (j, j′, l, l′) ∈ {1, . . . ,m}4 such

that {j = j′ 6= l = l′}, {j = l 6= j′ = l′}, {j = l′ 6= j′ = l}, {j = j′ = l = l′, i = k} and
{j = j′ = l = l′, i 6= k}, respectively. For T m

1 , it follows from independence of {ξj} that

T m
1 =

1

m4
E

∞
∑

i,k=1

m
∑

j,l=1
j 6=l

Y 2
ijY

2
kl =

1

m4

∞
∑

i,k=1

m
∑

j,l=1
j 6=l

EY 2
ijEY

2
kl ≤

1

m2

∞
∑

i,k=1

pipk =
1

m2
.

For T m
2 , using independence of {ξj} and Cauchy-Schwarz inequality we have

T m
2 =

1

m4
E

∞
∑

i,k=1

m
∑

j,l′=1
j 6=l′

YijYil′YkjYkl′ =
1

m4

∞
∑

i,k=1

m
∑

j,l′=1
j 6=l′

E (YijYkj)E (Yil′Ykl′)

≤ 1

m4

∞
∑

i,k=1

m
∑

j,l′=1
j 6=l′

√

EY 2
ijEY

2
kjEY

2
il′EY

2
kl′ ≤

1

m2

∞
∑

i,k=1

pipk =
1

m2
.

Similarly, T m
3 ≤ 1

m2 . For T m
4 ,

T m
4 =

1

m4
E

∞
∑

i=1

m
∑

j=1

Y 4
ij ≤

1

m3

∞
∑

i=1

pi =
1

m3
.

Finally for T m
5 , we have

T m
5 =

1

m4
E

∞
∑

i,k=1
i 6=k

m
∑

j=1

Y 2
ijY

2
kj ≤

1

m3

∞
∑

i,k=1
i 6=k

pipk ≤
1

m3
.

Combining above estimates we see that (B.2) is bounded by 3
m2 + 2

m3 . This proves (B.1) when
n = 2.

For the case n > 2, write

E

[ ∞
∑

i=1

(µmi − pi)
2

]n

= E





∞
∑

i=1





1

m

m
∑

j=1

Yij





2



n

=
1

m2n
E





∞
∑

i=1

m
∑

j=1

m
∑

k=1

YijYik





n

=
1

m2n
E

∞
∑

i1,...,in=1

m
∑

j1,k1,...,jn,kn=1

Yi1j1Yi1k1 · · ·YinjnYinkn . (B.3)

Once again E (Yi1j1Yi1k1 · · ·YinjnYinkn) 6= 0 only if j1, k1, . . . , jn, kn are matched in pairs. Hence the
2n-fold summation over j1, k1, . . . , jn, kn in (B.3) can be reduced to no more than an n-fold sum.
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We can break up the outer sum into n terms where the M -th term, M = 1, . . . , n, corresponds to
indices (i1, . . . , in) of which exactlyM indices are distinct. Similarly the inner sum can be split into
n terms where the N -th term, N = 1, . . . , n, corresponds to indices (j1, k1, . . . , jn, kn) matched in
pairs with exactly N distinct pairs. Furthermore each such (M,N)-term can be split into a finite
number of terms, each of which corresponds to a collection {cαβ , α = 1, . . . ,M, β = 1, . . . , N} of

non-negative integers representing how {Yij} is paired up, with
∑M

α=1 cαβ ≥ 1,
∑N

β=1 cαβ ≥ 1 and
∑M

α=1

∑N
β=1 cαβ = 2n. By independence of {ξj}, the contribution of each such (M,N, {cαβ})-term

to (B.3) is at most

κn
m2n

∞
∑

i1,...,iM=1
i1,...,iM distinct

m
∑

j1,...,jN=1
j1,...,jN distinct

E

(

Y c11
i1j1

Y c21
i2j1

· · ·Y cM1

iM j1

)

· · ·E
(

Y c1N
i1jN

Y c2N
i2jN

· · ·Y cMN

iM jN

)

, (B.4)

where κn ∈ (0,∞) only depends on n. A simple calculation gives that for all β = 1, . . . , N ,

∣

∣

∣E

(

Y
c1β
i1jβ

Y
c2β
i2jβ

· · ·Y cMβ

iM jβ

)∣

∣

∣ ≤ κ̃np
c1β∧1
i1

· · · pcMβ∧1
iM

,

where κ̃n ∈ (0,∞) only depends on n. Hence (B.4) is bounded by κnκ̃Nn
m2n−N ≤ κnκ̃nn

mn . So (B.3) is

bounded by γ̃n
mn for some γ̃n ∈ (0,∞), which gives (B.1) and completes the proof.
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