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Abstract

Random coefficient dependent (RCD) missingness is a non-ignorable mechanism through which 

missing data can arise in longitudinal designs. RCD, for which we cannot test, is a problematic 

form of missingness that occurs if subject-specific random effects correlate with propensity for 

missingness or dropout. Particularly when covariate missingness is a problem, investigators 

typically handle missing longitudinal data by using single-level multiple imputation procedures 

implemented with long-format data, which ignores within-person dependency entirely, or 

implemented with wide-format (i.e., multivariate) data, which ignores some aspects of within-

person dependency. When either of these standard approaches to handling missing longitudinal 

data is used, RCD missingness leads to parameter bias and incorrect inference. We explain why 

multilevel multiple imputation (MMI) should alleviate bias induced by a RCD missing data 

mechanism under conditions that contribute to stronger determinacy of random coefficients. We 

evaluate our hypothesis with a simulation study. Three design factors are considered: intraclass 

correlation (ICC; ranging from .25 to .75), number of waves (ranging from 4 to 8), and percent of 

missing data (ranging from 20% to 50%). We find that MMI greatly outperforms the single-level 

wide-format (multivariate) method for imputation under a RCD mechanism. For the MMI 

analyses, bias was most alleviated when the ICC is high, there were more waves of data, and when 

there was less missing data. Practical recommendations for handling longitudinal missing data are 

suggested.
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Language that researchers use to describe their assumptions about missing data tends to be 

imprecise. It is common to read that missing data were ‘handled using full-information 

maximum likelihood,’ the implication being that maximum likelihood protects parameter 

estimates from bias as long as missing data are missing at random (MAR) conditional on 

observed data. However, such language underscores a small but fundamental 

misunderstanding about missing data that pervades social sciences. An intricacy that is lost 

in much of the discussion around missing data is that missing data assumptions apply to 

specific types of variables within specific models (Enders, 2013; Graham, 2009).

We define explicitly what the MAR assumption means when common approaches to 

handling missing data are used, and we show when this assumption has the potential to be 

problematic, focusing on a non-ignorable missing data mechanism that may arise when 

using multilevel models to analyze longitudinal data: random coefficient dependent (RCD) 

missingness. We suggest that data conditions resulting in high determinacy of latent growth 

factors may minimize parameter bias that arises from violating missing data assumptions if 

multilevel multiple imputation models (MMIs) are used instead of single-level imputation 

models.

First, we briefly review our notation for multilevel growth models and then describe the 

RCD missingness mechanism. Next we explain how RCD missingness might induce 

parameter bias when data are analyzed in a typical manner. We describe how the concept of 

growth factor score determinacy relates to RCD missingness and how MMIs might be 

leveraged to alleviate parameter bias without necessitating the formation of an explicit 

model for missing data. We test our hypotheses with a simulation design comparing 

parameter recovery when MMI is used with RCD missingness versus when a single-level 

imputation model is used to handle RCD missingness under a variety of data conditions that 

influence the level of growth factor determinacy.

Multilevel growth models follow the general form for person i: Yi = Xib + Ziui + εi, where 

Yi is an outcome vector of length T ×1 (T is the number of waves), Xi is a T × (K+1) design 

matrix for the fixed effects in b, which is of dimension (K+1)×1. Typically there are fixed 

effects for: an intercept and K predictors, including time (and potentially higher-order 

functions of time), along with time-invariant and time-varying covariates. Zi is a T × M 
matrix usually containing a column of 1’s as well as subset of time-varying variables, such 

as time itself, from Xi that have heterogeneous effects across subjects (i.e., random effects). 

ui is a M ×1 vector of latent subject-specific effects, which correspond to the columns of Zi, 

and are assumed to be distributed according to a multivariate normal distribution with 

unstructured covariance matrix T : (ui ~ MVN(0,T)). Finally, εi is a T ×1 vector of 

normally-distributed occasion-specific residuals (εi ~ MVN(0,σ2I)).
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RCD missingness occurs when the probability that Xti or Yti is missing for person, i, at 

wave, t, depends entirely or partially on the individual’s random coefficient values contained 

in the subject-specific, random effects, ui. The RCD mechanism results in a systematically 

skewed observation of Xi and Yi, which in turn produce biased parameter estimates when 

fitting a standard multilevel growth model. The nature of the bias depends upon the precise 

selection pressures exerted by this MNAR mechanism. The extent of the bias depends upon 

the severity of the selection pressure, and upon the reliability with which the random 

coefficients are determined by observed data (Gottfredson, 2011). It is not possible to 

determine with certainty whether any MNAR mechanism is contributing to missing data, so 

the plausibility and potential consequences of the existence of such a mechanism must be 

considered (e.g., Enders, 2011).

Strategies for Handling Missing Data with Multilevel Growth Models

Maximum likelihood (ML)-based estimators that make use of all available data (e.g., full 

ML, restricted ML, and quasi-ML) identify parameter values to optimize concordance 

between the outcome variable for an individual, i, Yi, and its expected value under the fitted 

model conditional on predictors, denoted  (Laird & Ware, 1982; McCulloch, 1997). 

Software used to estimate these regression models typically treat predictors (Xi) as 

exogenous. Hence, no distributional assumptions are made about predictors in Xi and mean 

and (co)variance parameters for predictors in Xi are not estimated.

In contrast, software used to model longitudinal structural equation models tends to give the 

analyst the option of including the distribution of Xi in the likelihood (i.e., making Xi 

endogenous; Bollen, 2014). This is not the default option in common SEM software (e.g. 

Mplus), nor is it always a desirable choice; however, to our knowledge, this option is not 

possible with conventional multilevel modeling software. Thus, when using multilevel 

modeling software, the commonly cited assumption that missing data are MAR only applies 

to missing outcome variables (Yi
mis), and not to missing predictors in Xi (Xi

mis). Rather, 

observations with missing predictors are entirely omitted (i.e., deleted listwise) from the 

model likelihood. This is a problem for longitudinal studies, especially those with time-

varying predictors that may be missing on some occasions, because it requires missing 

values in Xi
mis to be missing completely at random (MCAR), a condition that would 

typically only occur if missing data are missing by design (Rubin, 1976), or missing 

exclusively due to observed covariates (Little & Zhang, 2011)

To avoid listwise deletion resulting from missing predictors, an analyst may choose to 

multiply impute missing predictors (and outcomes, if desired) prior to analysis. When 

missing data are imputed to form complete datasets, one need only assume that missing 

outcomes and predictors are MAR given all observed data in the imputation model. The 

analyst’s goal is to approach conditionally random missingness as closely as possible, 

reducing potential sources of bias to the fullest extent possible (Graham, 2009). It is 

therefore essential to follow an inclusive imputation strategy by incorporating as many 

auxiliary variables and statistical interactions as can reasonably be accommodated into the 

imputation model (Collins, Schafer, & Kam, 2001).
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Longitudinal data adds complexity in the multiple imputation procedure. Leaving the data in 

‘long’ format but using a single-level imputation approach and ignoring within-person 

correlation in the multiple imputation procedure is unprincipled; it results in over- or 

underestimation of the importance of covariates, underestimation of random effect variance, 

and conflation of within-person and between-person effects (Lüdtke, Robitzsch, & Grund, in 

press; van Buuren, 2011). However, because software options for imputing multilevel data 

have been limited historically, an analyst might be tempted to use the ad hoc approach of 

imputing missing data from a saturated imputation model using a ‘wide’ (multivariate) data 

structure in a single-level multiple imputation program (e.g. SAS Proc MI) in order to 

incorporate autocorrelation of the within-person data. Such an approach is preferable to 

assuming independence of all observations within person, but it is still potentially 

problematic for a couple of reasons. First, the ‘wide’ approach does not explicitly 

incorporate information about the timing of repeated measures. Second, the covariance 

structure in the saturated ‘wide’ imputation model may not be sufficiently general to reflect 

the hypothesized model-implied covariance structure; for instance, covariance features 

involving random slopes of predictors with individual-specific values (such as Xti; Wu, 

West, & Taylor, 2009) may not be fully accounted for during imputation. Both of these 

limitations of the ‘wide’ imputation approach may lead to substantial inefficiencies in the 

imputation model, and may lead to biased variability estimates. All of the aforementioned, 

common methods for handling missing data require the MAR assumption, which is the 

limitation that we address in this manuscript.

Fortunately, software for conducting multiple imputation with multilevel data is advancing 

rapidly. Enders, Mistler, and Keller (2016) summarized and compared two classes of 

multilevel multiple imputation (MMI) modeling approaches, and associated software, from 

which analysts may choose: joint models (Asparouhov & Muthén, 2010; Schafer & Yucel, 

2002) and chained equations (van Buuren, 2011). Presently, categorical data can be 

accommodated in joint MMI modeling software, but not in software that uses chained 

equations. While we expect that technology will progress quickly, in this paper we use the 

joint MMI modeling approach (specifically, the approach described in Schafer & Yucel, 

2002) due to this limitation of chained equations and its slower rate of convergence (the 

latter problem is a concern mainly for simulation studies such as ours).

Although MMI is slightly more complicated than traditional multiple imputation from the 

longitudinal analyst’s perspective, it may confer the unique benefit of mitigating bias in the 

presence of the non-ignorable RCD missing data mechanism, and it may do this without 

requiring explicit modeling of the missing data mechanism. MNAR models, including 

multilevel growth model allowing for RCD missingness (Albert & Follmann, 2009; 

Gottfredson, Bauer, & Baldwin, 2014; Tsonaka, Verbeke, & Lesaffre, 2009; Vonesh, Greene, 

& Schluchter, 2006), require untestable assumptions and are sensitive to misspecification 

(Little, 1993; Roy, 2003). When missing longitudinal data are imputed using a multilevel 

model, empirical Bayes estimates of the unobserved random effects in ui, are generated and 

imputed values are conditioned on these estimated latent values (Schafer & Yucel, 2002). 

Thus, the MMI inherently accounts for missingness due to a RCD mechanism in proportion 

to the determinacy of the growth factors.

Gottfredson et al. Page 4

Prev Sci. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, there is an important limitation to MMI’s potential for mitigating bias resulting 

from RCD missingness: MMI software cannot condition imputations on random coefficients 

corresponding to time-varying covariates with missing values (Enders et al., 2016; Grund, 

Lüdtke, & Robitzsch, 2016). Consequently, MMI will be useful in reducing bias from non-

ignorable RCD missingness only if the mechanism involves the random intercept, a random 

slope for time (because time is always known), or a random slope corresponding to a time-

varying covariate that is completely observed. Unfortunately, the third situation may be 

unlikely in longitudinal designs because observations that are collected simultaneously on a 

given wave tend to be missing together. However, there are many exceptions (e.g., item-level 

missingness; when the source of outcome data differs from the source of predictor data; 

when predictors are lagged and the earlier time point is observed).

Study Overview

Under various realistic data scenarios, we conduct a simulation study to examine the 

performance of MMI relative to its most principled alternative: single level, multivariate 

‘wide’ MI (SWMI). Simulation methodology is appropriate for addressing our research 

questions because the MMI model is not intended to handle MNAR missingness, so its 

performance under realistic conditions is unknown. First, we hypothesize that MMIs will 

mitigate bias that is due to non-ignorable, RCD missingness. Second, we hypothesize that 

conditions related to determinacy of the growth factors will affect how well the MMI 

approach is able to recover true parameter estimates. We do not expect the same to be true 

for SWMI because random effects are not incorporated into the imputation model. To test 

these hypotheses, we evaluate and compare performance of MMI and SWMI under varying 

degrees of determinacy (c.f. factor score determinacy; Grice, 2001). In multilevel modeling, 

growth factor determinacy relates to the multiple correlation between the random 

coefficients and the repeated measures. We can therefore experimentally manipulate 

determinacy through the intraclass correlation (ICC) amongst repeated measures and number 

of repeated waves. We hypothesize that, when missing data are handled with MMI, bias 

resulting from a RCD missing data mechanism will be least severe when the ICC is 

relatively high and when there are more repeated measures. In a follow-up simulation we 

evaluate how another factor related to growth factor determinacy, percentage of missing 

data, affects performance of MMI in the presence of an RCD mechanism.

Simulation Study

Data Generation

We generated 500 replicated datasets per experimental condition using R software (R Core 

Team, 2015). There were 1000 clusters (i.e., level 2 units or “subjects”) in all conditions.

In the primary simulation study, two factors were crossed: the ICC (.25 and .75) and the 

number of waves (four and eight). ICC levels were chosen to reflect the range from modest, 

but non-negligible, nesting (.25) to high levels of nesting that would be observed in an 

intensive longitudinal study (.75; Bauer & Sterba, 2011). Approximately 30% of data were 

missing across all conditions in the first part of the simulation. The two alternative numbers 
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of waves were sampled from a realistic range that would be observed in most panel design 

studies or in short intensive longitudinal studies.

In the follow-up simulation, we held ICC constant at .5 and number of waves constant at 6 

and we varied percent of missing data from fairly low but not negligible (20%), to 

moderately large (33%), to extensive (50%) (Collins et al., 2001; Enders, 2010).

Data were generated using the following multilevel model, where time was coded to start 

with 0 and increase one unit with each wave (0:3, 0:5, or 0:7 for four, six, and eight waves, 

respectively), and Xti followed a standard normal distribution:

(1)

Parameters were chosen to optimize several criteria. First, ICCs had to equal .25, .5, or .75 

when time and Xti were equal to zero, and the ICCs were required to remain within 

reasonable bounds of these values at all levels of time and Xti

(2)

We aimed to have a  of.5 to retain constancy across all conditions. Finally, we maintained 

proportionality for values in b and T across all conditions (e.g., the ratio of τ10 to τ00 was .

06 regardless of ICC); also, each fixed effect explained the same proportion of variance in 

all conditions.

Waves of data were randomly selected to be missing based on a probabilistic RCD 

mechanism in which the log odds of missingness depended on subject-specific values of the 

random intercept (u0i) and the random slope for time (u1i). The intercept of the logit 

equation for missingness was varied to determine the total amount of missing information. 

Coefficients corresponding to the random effects varied by ICC so that the correlation 

between the random effects and the missingness probability was approximately .15.

Data Analysis

We used the MplusAutomation package in R to analyze the simulated data using the MMI 

procedure (Halliquist & Wiley, 2014). The Mplus input imputation script was modified from 

script presented in Enders et al.’s Appendix A (2016). Xti and timeti were listed as “within” 

variables. The imputation model included a random intercept and a random time coefficient, 

but it necessarily excluded the random coefficient for the effect of Xti because random 

coefficients are not permitted for covariates with missing values (as discussed previously; 

see also Grund et al., 2016). Xti and time were treated as endogenous in the imputation 
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model to avoid listwise deletion of missing waves of data. Twenty complete-case datasets 

were imputed for each replication. For comparison, we used PROC MI in SAS version 9.4 to 

generate 20 imputations per replication with a SWMI model. The MCMC method imputed 

missing data to match mean and covariance data from the saturated model for all observed 

Xi and Yi.

All imputed data were analyzed using the model shown in Equation 1 with a maximum 

likelihood estimator. Results were aggregated according to Rubin’s (2004) pooling formulae 

to obtain parameter estimates and standard errors.

We combined information about the bias and efficiency of fixed effect parameter estimates 

by constructing the average 95% confidence interval for each parameter using the following 

equation, where k represents a given model parameter, θk is the true value of a parameter, 

is its estimate, and R represents the number of replicated datasets (500):

(3)

Generating parameters varied by condition, so we report percent relative bias (PRB) instead 

of average point estimates. PRB was obtained by subtracting true generating parameters 

from the average point estimates and dividing by the true parameter value, as shown in 

Equation 4:

(4)

PRB adjusts for scale differences when comparing bias across differently-valued parameters 

so bias is interpreted relatively, as a percent discrepancy from the true value (as used in 

Maas & Hox, 2005). The average 95% confidence intervals around point estimates from 

Equation 3 were rescaled into the PRB metric in order to combine information about 

parameter bias with efficiency of the estimates.

Because variance component estimates are bounded at zero, we used a log transformation to 

create asymmetric confidence intervals that could not go below zero, analogous to the 

procedure used in IBM SPSS MIXED. The 95% confidence intervals for variance 

components were calculated as follows:

(5)

The upper- and lower- confidence bounds were then back-transformed by exponentiation 

before they were re-scaled into the PRB matric.
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We report results for all fixed effects and the random effect variance parameters. Results 

regarding random effect covariance parameters are available upon request.

Results

MMI versus SWMI Performance under RCD Mechanism

Figure 1 depicts the average 95% confidence intervals, re-scaled to PRB metric. The y-axes 

are scaled differently across parameters to accommodate different ranges. Dashed horizontal 

lines at +/− 10% indicate boundaries for what is sometimes considered an ‘acceptable’ level 

of bias (e.g., Bollen, Kirby, Curran, Paxton, & Chen, 2007). We note that although the RCD 

mechanism involved the random intercept (u0i) and random slope for time (u1i), bias was not 

isolated to b0, b1, τ00, and τ11, but instead propagated throughout the model (c.f., Kaplan, 

1988). Nevertheless, the parameters involved more directly in the RCD mechanism were the 

most affected.

Fixed Effects—None of the re-scaled 95% confidence intervals for fixed effect estimates 

cover the true parameter value under the SWMI model (represented as PRB = 0). In contrast, 

almost all of the re-scaled 95% confidence intervals for the MMI models cover the true fixed 

effect generating values. The two exceptions are the fixed effect of time (b1) when the ICC is 

low. Additionally, the re-scaled upper end of the 95% confidence interval for b1 just reaches 

the true parameter value (PSB = 0) when the ICC is high but there are only 4 waves. 

Examining Figure 1, we see that, with one exception, point estimates for fixed effects 

generated under MMI are within the “acceptable” range of PRB. The exception to this is for 

the fixed effect of time (b1) when determinacy is lowest (ICC = .25 and 4 waves). In 

contrast, re-scaled 95% confidence intervals for fixed effects generated by the SWMI model 

never even overlap with acceptable levels of PRB. This is true even as confidence intervals 

are wider in the SWMI models.

Random Effect Variances—As is typical with maximum likelihood estimation, 

covariance parameters are not recovered as well as fixed effects and tend to be downwardly 

biased (Kenward & Roger, 1997). The average point estimates generated under MMI are 

outside of the acceptable range for τ11 when the ICC is low, and point estimates for τ22 are 

outside of the acceptable range for all conditions. However, the re-scaled 95% confidence 

intervals always cover or nearly cover the true parameter value (PRB = 0). When compared 

with the SWMI results, the MMI model produces less biased and much more precise 

confidence intervals for random effect variances than the SWMI.

Effects of ICC and Number of Waves on Parameter Recovery: Comparison of MMI and 
SWMI Models

MMI Models—Fixed effect estimates were more efficient as the ICC decreased because 

each observation necessarily provided more independent information about the fixed effects. 

On the other hand, estimates for random effect variances were more efficient the ICC 

increased, and covariance parameter estimates were less biased with a higher ICC. As 

expected, fixed effect estimates were less biased as the number of repeated measures 

increased. As we noted previously, re-scaled confidence intervals covered the true fixed 

Gottfredson et al. Page 8

Prev Sci. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect parameters (PRB = 0) in all cases except for the estimate of b1 (the effect of time) 

when determinacy was low. Specifically, the true value of b1 (PRB = 0) was not contained in 

the re-scaled 95% confidence interval when the ICC was low. The number of repeated 

measures did not have a strong influence on recovery of random effects when the ICC was 

high, but having more repeated measures resulted in more efficient estimates when the ICC 

was low.

SWMI Models—As expected, higher random coefficient determinacy did not result in 

systematically improved parameter estimates in the SWMI models. Having a higher ICC 

was worse for recovery of b0 and b2 and better for recovery of b1. As with the MMI model, 

higher ICCs were associated with more efficient estimation of the random effects. Likewise, 

there was no discernable pattern of the effect of number of repeated measures on recovery of 

fixed or random effect parameters, except that confidence intervals for random effects were 

wider when there were fewer waves and the ICC was low.

Percent of Missing Data

As has been previously shown with non-randomly missing data more generally (Collins et 

al., 2001), we find that having RCD missing data is associated with biased estimates of 

generating parameters. Figure 2 shows re-scaled average 95% confidence intervals. These 

results illustrate that the MMI model cannot accommodate RCD missingness that occurs in 

extreme amounts (e.g., 50% with our generating model). Recovery of random coefficients is 

worst as missing data increases, both in terms of parameter bias and loss of efficiency. The 

effect of missing data on parameter bias is consistent with our hypothesis that MMI 

performance under RCD is a function of determinacy; if performance were unrelated to 

determinacy then we would expect to see a loss of efficiency, but not increased bias, as the 

amount of missing data increased.

Discussion

Social scientists using longitudinal data have been cautioned repeatedly about the possibility 

that MNAR mechanisms may cause inferential errors that are impossible to detect 

empirically (Enders, 2011; Muthén, Asparouhov, Hunter, et al., 2011). Many different 

MNAR models are available for longitudinal analysts wishing to conduct sensitivity analyses 

(including shared parameter models: Albert & Follmann, 2009; pattern mixture models: 

Little, 1995; and seemingly countless extensions thereof). Unfortunately, none of these 

models is robust to mis-specification, all require significant assumptions about the missing 

data mechanism(s), and there is no empirical method for evaluating fit of MNAR models.

Thus, in spite of the existence of a variety of MNAR models, many analysts prefer to use 

multiple imputation to handle missing data because, although multiple imputation requires 

the MAR assumption (unless imputing specifically from a MNAR model, Demirtas & 

Schafer; 2003), it is considered to be robust and it is straightforward to implement in 

commonly used software packages. Given this tendency, it is fortunate that (under conditions 

of high random coefficient determinacy) MMI methods lead to the benefit of reducing bias 

due to a non-ignorable missing data mechanism that may be common in longitudinal 

research: RCD missingness. However, our results also show that failing to account explicitly 
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for the multilevel nesting structure during multiple imputation can have severe 

consequences.

Although researchers can never be sure of the extent to which an RCD mechanism might be 

causing missing data, they can have a good sense of the degree to which random coefficients 

are determined. Items with a higher communality (i.e., a higher ICC and less measurement 

error) lead to higher determinacy, and having more repeated measures and a higher 

proportion of observed data (i.e., less missing data) also increases determinacy. Thus, 

holding the severity of the RCD mechanism constant, a researcher with many repeated 

measures and a fairly stable, well-measured outcome has reason to be less concerned about 

parameter bias than a researcher with fewer repeated measures, measures that are less stable, 

and measures that are not as reliable. When data are more like the latter, we recommend 

evaluating parameter sensitivity using explicit MNAR models (e.g., Graham, 2012; Sterba & 

Gottfredson, 2015).

MMI software is under development and is being expanded fairly rapidly (Enders et al., 

2016; Lüdtke et al., 2016). Presently, categorical variables can be accommodated only with a 

joint MMI model, although this feature may soon be available with software that uses 

chained equations. An important limitation to current MMI software is its inability to 

incorporate random slopes for predictors with missing values. Were this restriction lifted, we 

would expect to see more bias reduction under more RCD conditions.

Limitations

In addition to the aforementioned software limitations, our study was subject to the 

limitation common to all simulation studies: conclusions are restricted to the range of 

simulated conditions. We sought to maximize generalizability of our findings by considering 

a range of realistic data conditions, varying parameters that were key for testing our 

hypothesis about random coefficient determinacy: ICC, number of waves, and percent of 

missing data. Parameters that were fixed across conditions were chosen to be moderate and 

representative of a typical longitudinal study. One limitation of the simulation study is that 

we did not vary the response distribution of the repeated outcomes. We would expect to see 

the same pattern of results with non-normal data, whereby higher determinacy relates to less 

bias. However, because censored or binned items convey less information than continuous 

items, we would expect that reductions in bias might not be as dramatic with such variables. 

Second, because MMI models take much longer to converge with chained equations than 

with joint modeling, we did not evaluate parameter recovery using chained equations. 

Enders et al. (2016) compared parameter recovery under a MAR missing data mechanism 

and found that the joint model performed better for recovering fixed effects and chained 

equations were better for recovering the variance of random effects. Fixed effect estimates 

tend to be interpreted more frequently than variance parameters, so we suspect that most 

analysts choosing between joint models and chained equations would choose the former, all 

else equal.
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Conclusion

Because of complexities inherent in longitudinal data collection, wave-level or item-level 

nonresponse is common. Multiple imputation is the modus operandi for handling 

longitudinal missing data because it protects against listwise deletion of cases. Until now, 

the ability of MMI to accommodate the RCD MNAR mechanism had not been understood; 

nor were the limitations of using SWMI to impute longitudinal data fully understood. By 

properly accounting for the multilevel structure of longitudinal data, analysts may take 

comfort in the fact that they will also be mitigating bias resulting from RCD mechanisms. 

We hope for continued development of MMI software, particularly the capability for 

inclusion of random slopes for predictors with missing values.
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Figure 1. 
Each pair of panels compares the percent relative bias (PRB) of estimates (solid shape) 

across data generating conditions (light shading: ICC = .75; dark shading: ICC = .25; circle: 

4 waves; triangle: 8 waves), as a function of the multiple imputation model. Error bars show 

the average lower- and upper- bounds of 95% confidence intervals for the parameters, re-

scaled to the PRB metric. Solid horizontal line indicates zero bias. The area inside of the 

dashed horizontal lines at +/− 10% represents ‘acceptable’ bias.
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Figure 2. 
Each panels displays the percent relative bias (PRB) of estimates (solid shape) as a function 

of the percent of missing data when multilevel multiple imputation is used. Error bars show 

average lower- and upper- bounds of 95% confidence intervals for the parameters, re-scaled 

to the PRB metric. Solid horizontal line indicates zero bias. The area inside of the dashed 

horizontal lines at +/− 10% represents ‘acceptable’ bias.
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	Abstract
	Language that researchers use to describe their assumptions about missing data tends to be imprecise. It is common to read that missing data were ‘handled using full-information maximum likelihood,’ the implication being that maximum likelihood protects parameter estimates from bias as long as missing data are missing at random (MAR) conditional on observed data. However, such language underscores a small but fundamental misunderstanding about missing data that pervades social sciences. An intricacy that is lost in much of the discussion around missing data is that missing data assumptions apply to specific types of variables within specific models (Enders, 2013; Graham, 2009).We define explicitly what the MAR assumption means when common approaches to handling missing data are used, and we show when this assumption has the potential to be problematic, focusing on a non-ignorable missing data mechanism that may arise when using multilevel models to analyze longitudinal data: random coefficient dependent (RCD) missingness. We suggest that data conditions resulting in high determinacy of latent growth factors may minimize parameter bias that arises from violating missing data assumptions if multilevel multiple imputation models (MMIs) are used instead of single-level imputation models.First, we briefly review our notation for multilevel growth models and then describe the RCD missingness mechanism. Next we explain how RCD missingness might induce parameter bias when data are analyzed in a typical manner. We describe how the concept of growth factor score determinacy relates to RCD missingness and how MMIs might be leveraged to alleviate parameter bias without necessitating the formation of an explicit model for missing data. We test our hypotheses with a simulation design comparing parameter recovery when MMI is used with RCD missingness versus when a single-level imputation model is used to handle RCD missingness under a variety of data conditions that influence the level of growth factor determinacy.Multilevel growth models follow the general form for person i: Yi = Xib + Ziui + εi, where Yi is an outcome vector of length T ×1 (T is the number of waves), Xi is a T × (K+1) design matrix for the fixed effects in b, which is of dimension (K+1)×1. Typically there are fixed effects for: an intercept and K predictors, including time (and potentially higher-order functions of time), along with time-invariant and time-varying covariates. Zi is a T × M matrix usually containing a column of 1’s as well as subset of time-varying variables, such as time itself, from Xi that have heterogeneous effects across subjects (i.e., random effects). ui is a M ×1 vector of latent subject-specific effects, which correspond to the columns of Zi, and are assumed to be distributed according to a multivariate normal distribution with unstructured covariance matrix T : (ui ~ MVN(0,T)). Finally, εi is a T ×1 vector of normally-distributed occasion-specific residuals (εi ~ MVN(0,σ2I)).RCD missingness occurs when the probability that Xti or Yti is missing for person, i, at wave, t, depends entirely or partially on the individual’s random coefficient values contained in the subject-specific, random effects, ui. The RCD mechanism results in a systematically skewed observation of Xi and Yi, which in turn produce biased parameter estimates when fitting a standard multilevel growth model. The nature of the bias depends upon the precise selection pressures exerted by this MNAR mechanism. The extent of the bias depends upon the severity of the selection pressure, and upon the reliability with which the random coefficients are determined by observed data (Gottfredson, 2011). It is not possible to determine with certainty whether any MNAR mechanism is contributing to missing data, so the plausibility and potential consequences of the existence of such a mechanism must be considered (e.g., Enders, 2011).Strategies for Handling Missing Data with Multilevel Growth ModelsMaximum likelihood (ML)-based estimators that make use of all available data (e.g., full ML, restricted ML, and quasi-ML) identify parameter values to optimize concordance between the outcome variable for an individual, i, Yi, and its expected value under the fitted model conditional on predictors, denoted  (Laird & Ware, 1982; McCulloch, 1997). Software used to estimate these regression models typically treat predictors (Xi) as exogenous. Hence, no distributional assumptions are made about predictors in Xi and mean and (co)variance parameters for predictors in Xi are not estimated.In contrast, software used to model longitudinal structural equation models tends to give the analyst the option of including the distribution of Xi in the likelihood (i.e., making Xi endogenous; Bollen, 2014). This is not the default option in common SEM software (e.g. Mplus), nor is it always a desirable choice; however, to our knowledge, this option is not possible with conventional multilevel modeling software. Thus, when using multilevel modeling software, the commonly cited assumption that missing data are MAR only applies to missing outcome variables (Yimis), and not to missing predictors in Xi (Ximis). Rather, observations with missing predictors are entirely omitted (i.e., deleted listwise) from the model likelihood. This is a problem for longitudinal studies, especially those with time-varying predictors that may be missing on some occasions, because it requires missing values in Ximis to be missing completely at random (MCAR), a condition that would typically only occur if missing data are missing by design (Rubin, 1976), or missing exclusively due to observed covariates (Little & Zhang, 2011)To avoid listwise deletion resulting from missing predictors, an analyst may choose to multiply impute missing predictors (and outcomes, if desired) prior to analysis. When missing data are imputed to form complete datasets, one need only assume that missing outcomes and predictors are MAR given all observed data in the imputation model. The analyst’s goal is to approach conditionally random missingness as closely as possible, reducing potential sources of bias to the fullest extent possible (Graham, 2009). It is therefore essential to follow an inclusive imputation strategy by incorporating as many auxiliary variables and statistical interactions as can reasonably be accommodated into the imputation model (Collins, Schafer, & Kam, 2001).Longitudinal data adds complexity in the multiple imputation procedure. Leaving the data in ‘long’ format but using a single-level imputation approach and ignoring within-person correlation in the multiple imputation procedure is unprincipled; it results in over- or underestimation of the importance of covariates, underestimation of random effect variance, and conflation of within-person and between-person effects (Lüdtke, Robitzsch, & Grund, in press; van Buuren, 2011). However, because software options for imputing multilevel data have been limited historically, an analyst might be tempted to use the ad hoc approach of imputing missing data from a saturated imputation model using a ‘wide’ (multivariate) data structure in a single-level multiple imputation program (e.g. SAS Proc MI) in order to incorporate autocorrelation of the within-person data. Such an approach is preferable to assuming independence of all observations within person, but it is still potentially problematic for a couple of reasons. First, the ‘wide’ approach does not explicitly incorporate information about the timing of repeated measures. Second, the covariance structure in the saturated ‘wide’ imputation model may not be sufficiently general to reflect the hypothesized model-implied covariance structure; for instance, covariance features involving random slopes of predictors with individual-specific values (such as Xti; Wu, West, & Taylor, 2009) may not be fully accounted for during imputation. Both of these limitations of the ‘wide’ imputation approach may lead to substantial inefficiencies in the imputation model, and may lead to biased variability estimates. All of the aforementioned, common methods for handling missing data require the MAR assumption, which is the limitation that we address in this manuscript.Fortunately, software for conducting multiple imputation with multilevel data is advancing rapidly. Enders, Mistler, and Keller (2016) summarized and compared two classes of multilevel multiple imputation (MMI) modeling approaches, and associated software, from which analysts may choose: joint models (Asparouhov & Muthén, 2010; Schafer & Yucel, 2002) and chained equations (van Buuren, 2011). Presently, categorical data can be accommodated in joint MMI modeling software, but not in software that uses chained equations. While we expect that technology will progress quickly, in this paper we use the joint MMI modeling approach (specifically, the approach described in Schafer & Yucel, 2002) due to this limitation of chained equations and its slower rate of convergence (the latter problem is a concern mainly for simulation studies such as ours).Although MMI is slightly more complicated than traditional multiple imputation from the longitudinal analyst’s perspective, it may confer the unique benefit of mitigating bias in the presence of the non-ignorable RCD missing data mechanism, and it may do this without requiring explicit modeling of the missing data mechanism. MNAR models, including multilevel growth model allowing for RCD missingness (Albert & Follmann, 2009; Gottfredson, Bauer, & Baldwin, 2014; Tsonaka, Verbeke, & Lesaffre, 2009; Vonesh, Greene, & Schluchter, 2006), require untestable assumptions and are sensitive to misspecification (Little, 1993; Roy, 2003). When missing longitudinal data are imputed using a multilevel model, empirical Bayes estimates of the unobserved random effects in ui, are generated and imputed values are conditioned on these estimated latent values (Schafer & Yucel, 2002). Thus, the MMI inherently accounts for missingness due to a RCD mechanism in proportion to the determinacy of the growth factors.However, there is an important limitation to MMI’s potential for mitigating bias resulting from RCD missingness: MMI software cannot condition imputations on random coefficients corresponding to time-varying covariates with missing values (Enders et al., 2016; Grund, Lüdtke, & Robitzsch, 2016). Consequently, MMI will be useful in reducing bias from non-ignorable RCD missingness only if the mechanism involves the random intercept, a random slope for time (because time is always known), or a random slope corresponding to a time-varying covariate that is completely observed. Unfortunately, the third situation may be unlikely in longitudinal designs because observations that are collected simultaneously on a given wave tend to be missing together. However, there are many exceptions (e.g., item-level missingness; when the source of outcome data differs from the source of predictor data; when predictors are lagged and the earlier time point is observed).Study OverviewUnder various realistic data scenarios, we conduct a simulation study to examine the performance of MMI relative to its most principled alternative: single level, multivariate ‘wide’ MI (SWMI). Simulation methodology is appropriate for addressing our research questions because the MMI model is not intended to handle MNAR missingness, so its performance under realistic conditions is unknown. First, we hypothesize that MMIs will mitigate bias that is due to non-ignorable, RCD missingness. Second, we hypothesize that conditions related to determinacy of the growth factors will affect how well the MMI approach is able to recover true parameter estimates. We do not expect the same to be true for SWMI because random effects are not incorporated into the imputation model. To test these hypotheses, we evaluate and compare performance of MMI and SWMI under varying degrees of determinacy (c.f. factor score determinacy; Grice, 2001). In multilevel modeling, growth factor determinacy relates to the multiple correlation between the random coefficients and the repeated measures. We can therefore experimentally manipulate determinacy through the intraclass correlation (ICC) amongst repeated measures and number of repeated waves. We hypothesize that, when missing data are handled with MMI, bias resulting from a RCD missing data mechanism will be least severe when the ICC is relatively high and when there are more repeated measures. In a follow-up simulation we evaluate how another factor related to growth factor determinacy, percentage of missing data, affects performance of MMI in the presence of an RCD mechanism.
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