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Abstract

The mechanism of intramolecular transfer dehydrogenation catalyzed by [Cp*M(VTMS)2] (1, 

M=Rh, 2, M=Co, Cp* = C5Me5, VTMS = vinyltrimethylsilane) complexes has been studied using 

vinyl silane protected alcohols as substrates. Deuterium-labeled substrates have been synthesized 

and the regioselectivity of H/D transfers investigated using 1H and 2H NMR spectroscopy. The 

labeling studies establish a regioselective pathway consisting of alkene directed α C–H activation, 

2,1 alkene insertion, and finally β-hydride elimination to give silyl enol ether products.

Graphical abstract
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Introduction

C–H activation/functionalization reactions using transition metal catalysts have received 

much attention in recent years, resulting in a burgeoning field of new synthetic methods.[1] 

Initial efforts investigated stoichiometric C–H activation reactions mediated by a transition 

metal. This early work has blossomed into new catalytic processes for the formation C–C, 

C–O, C–N, and C–X, bonds.[2] Such processes are finding multiple applications in the 

synthesis of natural products, pharmaceuticals, and agrochemicals.[3,4]

An alternate, less common strategy to employ C-H activation chemistry in synthesis is to 

convert saturated linkages to alkenes, R-CH2-CH2-R′ to R-CH=CH-R′.[5] Development of 

new routes to alkenes is attractive since alkenes represent a privileged class of substrates, 

readily converted into a myriad of other functional groups. Electrophilic additions, 

oxidations, and olefin metatheses represent just a few examples of the versatile 

transformations possible using alkenes. As with C–H to C–Y conversions, a 

dehydrogenation route to alkenes is attractive in that the method can potentially eliminate 

the need for pre-installed functional groups and the use of harsh reagents (e.g., strong base 

or acid).

While hydrocarbon cracking using a zeolite catalyst is a common industrial method for the 

production of short chain (<C6) alkenes, high temperatures are required for this 

“acceptorless” dehydrogenation and are not compatible with synthetic applications.[6] The 

hydrogen transfer methodology is most commonly employed to carry out dehydrogenations 

in solution under mild conditions. Transfer dehydrogenation of alkanes utilizing various 

olefins as acceptors has seen extensive development.[7] Iridium pincer complexes have 

emerged as the most robust and widely used catalysts in this regard. Catalysts are typically 

screened using t-butyl ethylene as the acceptor for the dehydrogenation of cyclooctane to 

cyclooctene, ΔG = −6 kcal/mol(Scheme 1). Iridium pincer catalysts have achieved turnover 

numbers of up to 6000 for this transformation.[7,8]

Despite the numerous studies of transfer dehydrogenation of simple alkanes, this method has 

seen little application for the preparation of functionalized olefins. [9,10] However, a recent 

report has expanded this work to simple heterocycles. Huang and coworkers have developed 

a new iridium pincer complex capable of dehydrogenating heterocycles using t-

butylethylene as the hydrogen acceptor. Additionally, two significant advances in the 

dehydrogenation of functionalized substrates utilizing Pd salts as catalysts have been 

reported. Yu and coworkers have shown in a series of stoichiometric and catalytic studies 

that the use of an appropriate directing group and benzoquinone as acceptor can promote a 

C–H activation/β-hydride elimination sequence for the directed installation of an alkene 

(Scheme 2). [11] Separately Stahl has shown in the absence of a traditional directing group, 

C–H activation followed by β-hydride elimination can be an effective strategy for 

constructing alkenes (Scheme 3). [12,13] In a series of elegant studies the authors 

demonstrated PdII salts coupled with O2 as the oxidant (acceptor) to be an effective system 

for the aerobic dehydrogenation of cyclic ketones to generate α,β unsaturated ketones and 

phenols. [14]
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Our work in this area has stemmed from early investigations using [Cp*M(VTMS)2] (1, 

M=Rh, 2, M=Co) (VTMS = vinyltrimethylsilane) complexes as catalysts for H/D exchange 

reactions in aromatic solvents and for hydroacylation of olefins. [15,16] The use of the labile 

bulky alkene, trimethylvinylsilane, allowed facile access to the reactive 16-electron 

fragment, Cp*M(VTMS), for C–H activation in these reactions. These complexes have been 

successfully applied to intramolecular transfer dehydrogenation reactions using protected 

alcohols and cyclic amines (Schemes 4 and 5). In this approach to transfer dehydrogenation, 

vinyl silane protecting groups are readily installed on the desired substrates and used as 

hydrogen acceptors. A series of studies in this area has resulted in new base-free, and mild 

routes to silyl enol ethers [17], 1,2-diheteroatom substituted olefins [18,19], and cyclic 

enamines. [20] Similar chemistry has been previously reported by Bradley using 

Cp*M(C6H6), M = Co.[21]

As part of these studies, we proposed a preliminary mechanism for intramolecular transfer 

dehydrogenation using the Cp*Rh(VTMS)2 complex as shown in Figure 1. [18] The 

catalytic cycle was entered by displacement of the labile VTMS ligand by excess substrate 

to yield 3. Alkene loss generates a 16-electron complex 4 that undergoes activation of the 

proximal C–H bond via oxidative addition to give 5. Then a series of migratory insertion, β-

hydride elimination, and reductive elimination reactions (via 6 and 7) generate the Rh-bound 

product 8. Finally, displacement of product by another equivalent of substrate closes the 

catalytic cycle. An analogous mechanism was proposed for the transfer dehydrogenation of 

protected amines to generate enamines using Cp*Co(VTMS)2 complexes. In this report we 

describe experiments aimed at elucidating the full mechanistic details of these 

transformations using a series of isotopically labeled substrates.

Results and Discussion

Regioselectivity Studies

To evaluate the regioselectivity of hydrogen transfer in conversion of 9 to 10 (Scheme 6) 

two deuterium-labeled substrates were synthesized and submitted to the optimized reaction 

conditions. Vinyl silane-protected alcohols labeled with deuterium at the α(11) and β(13) 

positions of the ethoxy group were used and the regioselectivity determined by 1H and 2H 

NMR spectroscopy (Scheme 7, a and b).

After subjecting 11 to the optimized reaction conditions using either rhodium complex 1 or 

cobalt complex 2, 12 was observed as the major d2 product (Scheme 7, a). Similarly, the 

isotopologue 13 led to 14 as the major d3 product (Scheme 7, b). Inspection of the 1H NMR 

spectra of 12 and 14 support the labeling patterns shown (Figure S1). The integrals of the 

terminal vinyl signals and the methylene signal of 12 indicate little or no deuterium 

incorporation (but see below). Furthermore, the methylene resonance is now a broad triplet 

(J=7.5 Hz), due to coupling to CH2D, and the methyl group appears as a triplet of triplets 

(J=7.8 Hz and 2 Hz) resulting from vicinal coupling to the methylene unit and geminal 

coupling to one deuterium. Likewise, the spectrum of 14 shows no evidence for significant 

incorporation of deuterium into either the methine group or the β-methyl group, which 

appears as a broad doublet (J = 7.5 Hz) due to coupling with a single vicinal H. The 

methylene group is now an unresolved multiplet integrating for ca. 1H. As captured in 
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Scheme 7, a and b, the primary modes of migration are from the α-methylene site of 11 to 

the β-methyl site in 12 and from the β-methyl site in 13 to the β-methylene site in 14.

The labeling experiments implicate a regioselective mechanism for hydrogen transfer that 

follows one of the two pathways (A or B) outlined in Scheme 8. Initial C–H activation can 

occur via alkene coordination and oxidative addition of either the α or β C–H bond. In 

pathway A activation of the α C–H bond followed by 2,1 alkene insertion leads to a 5-

membered metallacyclic intermediate, 15. β-Hydride elimination and C–H reductive 

elimination generates the observed product. In pathway B, activation of the β C–H bond 

followed 1,2 alkene insertion leads to a 7-membered metallacyclic intermediate, 16, which 

can proceed to product by β-elimination and reductive elimination. Below, we outline 

additional labeling experiments that are consistent with pathway A.

Isotope Scrambling

α-deuterium labeled substrate—Monitoring the reaction (a) in Scheme 7 at early 

conversions reveals extensive H/D scrambling in the starting material, 11. Results in the 

case of the cobalt complex 2 are summarized in Scheme 9. Even at short reaction times 

(15min) H/D scrambling has occurred to produce a ca. 1:1 ratio of 11 and scrambled product 

11s.

Similar reactivity is observed with catalyst 1 (Rh) under optimized reaction conditions 

(140°C), albeit at a reduced rate (see Figure 2). After 0.5h, H/D scrambling is observed in 

the starting material at the site α to oxygen, evident by the appearance of a multiplet at 3.6 

ppm in the 1H NMR spectrum. The signal at 3.6 ppm continues to grow and reaches a 

maximum at ca. 1.5h. At 2.5 h the 3.6ppm signal begins to diminish as hydrogen transfer 

product, 12, begins to accumulate as clearly seen by the appearance of the vinyl resonance at 

6.3ppm. After 18h, all of 11 and 11s have been converted to 12. The scrambling results for 

both the cobalt and rhodium systems show that this process occurs faster than formation of 

silyl enol ether product, 12. These results clearly suggest that pathway A (Scheme 8) 

operates and that once intermediate 15 forms it returns to starting material 11 faster than 

formation of 12. [21]

β-deuterium labeled substrate—Importantly, in contrast to the α-deuterium labeled 

substrate 11, H/D scrambling was not observed in starting material 13 under reaction 

conditions, as shown in scheme 10.

As with 12 (scheme 8), two analogous pathways could result in regioselective formation of 

the observed product, illustrated in scheme 11 for substrate 13.

If pathway B were viable, oxidative addition β to oxygen would lead to metallacycle 18, 

which would be expected to yield H/D scrambled product 13s as shown. The conspicuous 

absence of this product strongly suggests that the mechanism does not proceed via this path. 

These experiments are consistent with pathway A outlined above (Schemes 8 and 11), 

comprising initial oxidative addition α to oxygen, followed by 2,1-insertion producing a 5-

membered metallacyclic intermediate.
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A scrambling process can, however be observed by 2H NMR analysis following formation 

of 14. Upon prolonged heating (~18 hours) with catalyst 1 or 2, 2H signals begin to appear 

in the Si–methyl positions, while 1H signals grow into the β-vinyl positions (Scheme 12).

This product must ultimately stem from a silyl enol directed C–H activation mechanism as 

shown in Scheme 13, in which the product alkene directs oxidative addition to the C–H 

bonds α to Si producing intermediate 19. Collapse of this product can result in 2H 

incorporation into the Si-methyl group giving 14s.

1,2 Diheteroatom substrates—In an earlier report using a similar hydrogen transfer 

scheme we observed the formation of 1,2 diheteroatom-substituted olefins, a particularly 

difficult class of substrates to synthesize via direct methods. [19] Our mechanistic 

investigations next looked at this class of substrates by focusing on similar H/D labeling 

experiments used above. At the outset we envisioned the same two possible mechanisms 

(Scheme 14, pathways A and B) for the hydrogen transfer reaction with 1,2 diheteroatom 

substrates. However, in contrast to 9, in this class of substrate both pathways involve C–H 

activation α to a heteroatom. Thus these substrates provide an opportunity to investigate the 

importance of alkene chelation in regioselective transfer hydrogenation. Deuterium isotope 

labeling of the α C–H bonds provided a useful probe for distinguishing between these 

mechanistic pathways.

Submitting deuterium-labeled substrate 20 to reaction conditions too mild for hydrogen 

transfer to occur (Rh catalyst 1, 70 °C) resulted in significant H/D scrambling exclusively 

between the labeled C–D bond β to Si and the terminal vinyl positions as depicted in 

Scheme 15. After 140 minutes scrambling can be observed by the appearance of new 1H 

NMR resonances at 3.64 ppm (OCH2 and OCHD) accompanied by a change in the coupling 

patterns of the vinyl signals.

When 20 was exposed to hydrogen transfer conditions (100 °C, 4.5 h) 93% conversion to the 

silyl enol ether was observed (Scheme 16). Two stereoisomers were observed in the 1H 

NMR spectrum consistent with the trans and cis alkene products in an 8:1 ratio, 

respectively. Both the trans and cis enol ether products as well as the remaining starting 

material have undergone H/D exchange at the alpha C–H bond, results similar to that 

observed at 70 °C (Scheme 12).

The 1H NMR spectra of 21/22 (d2 and unlabeled) are shown in Figure 3 and clearly illustrate 

deuterium incorporation within the methyl group. The coupling pattern of the CH2 protons 

in d2- 21, centered at 0.58 ppm, has changed (compared to that of unlabeled 21 and 22) to a 

broadened triplet due to coupling to the terminal CH2D group. The methyl resonance, which 

is centered at 0.94 ppm, shows a coupling pattern which consists primarily of a triplet of 

triplets (vicinal coupling to CH2(2JHH = 8 Hz) and a geminal coupling (1JHD = 1.8 Hz) to 

one deuterium atom). Transfer dehydrogenation performed with Co catalyst 2 provided 

identical results. While there is minor overlap between the trans and cis products the spectra 

show no evidence of deuterium incorporation into the alpha position of the silyl ethyl chain.
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These experiments support a hydrogen transfer mechanism involving C–H activation at the 

position α to the siloxy group via pathway A, Scheme 13. Given that the C-H bonds α and β 

to the siloxy group have relatively similar bond strengths, the regioselective activation of the 

α C-H bond must be the result of alkene chelation directing activation of this bond and 

formation of a five-membered chelate. The H/D scrambling noted in 20 prior to product 

formation establishes that once the five-membered metallacycle is formed it returns to 21 
faster than forming product, similar to the mechanism of 11 discussed above.

Summary/Conclusion

After a series of deuterium labeling studies we have established a general mechanism for 

hydrogen transfer with catalysts 1 and 2. These results implicate a highly regioselective 

pathway outlined in Figure 4 below. Following the dissociation of VTMS groups by 

substrate to give 23, an alkene directed, reversible α C–H activation occurs to produce 

intermediate 24. This step is followed by 2,1 alkene insertion to generate a 5-membered 

metallacycle 25. β-Hydride elimination to give 26 and C–H bond-forming reductive 

elimination leads to the product-bound complex 27. The H/D scrambling observed after 

product formation proceeds through a similar intermediate 28 in a similarly regioselective 

manner, again illustrating the reversibility of these steps. The overall transformation is 

thermodynamically favored via the formation of an enol or enamine product.

Studies with 1,2 diheteroatom substrates have shown the high regioselectivity observed in 

hydrogen transfer reactions with 1 and 2 is a result of both the alkene directing group and 

high preference for formation of a 5-membered metallacycle. Despite the similar bond 

dissociation energies of the α, β C–H bonds accessible in this system, both 1 and 2 prefer the 

pathway proceeding through α C–H activation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proposed mechanism for the intramolecular hydrogen transfer reactions

Bolig et al. Page 8

Polyhedron. Author manuscript; available in PMC 2017 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
1H NMR spectra for conversion of 11 using catalyst 1
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Figure 3. 
Comparison of 1H NMR spectra of d2-21/22 with unlabeled 21/22
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Figure 4. 
General Mechanism Established for Hydrogen Transfer Catalyzed by 1 or 2
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Scheme 1. 
Dehydrogenation of cyclooctane with t-butylethylene.
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Scheme 2. 
Yu’s ligand-directed dehydrogenation
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Scheme 3. 
Stahl’s aerobic dehydrogenation

Bolig et al. Page 14

Polyhedron. Author manuscript; available in PMC 2017 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
Synthesis of silyl enol ethers and 1,2-diheteroatom substituted olefins via transfer 

dehydrogenation.
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Scheme 5. 
Synthesis of enamines via transfer dehydrogenation
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Scheme 6. 
Representative example of transfer dehydrogenation with 1 or 2
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Scheme 7. 
Hydrogen transfer reactions of deuterium-labeled 11 and 13
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Scheme 8. 
Possible pathways for regioselective hydrogen transfer illustrated for 11.
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Scheme 9. 
H/D scrambling results observed with 11
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Scheme 10. 
Hydrogen transfer with β-deuterium-labeled substrate.
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Scheme 11. 
Possible pathways for regioselective hydrogen transfer of 13.
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Scheme 12. 
H/D Scrambling of 14 with catalyst 1.
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Scheme 13. 
α-Si-Me Activation in 14 by 1 or 2
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Scheme 14. 
Proposed Pathways for Hydrogen Transfer using 1,2 Diheteroatom Substrates
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Scheme 15. 
H/D scrambling observed with 20
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Scheme 16. 
Hydrogen transfer reaction with 20
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