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Abstract

Nearest shrunken centroids (NSC) is a popular classification method for microarray data.

NSC calculates centroids for each class and “shrinks” the centroids toward 0 using soft

thresholding. Future observations are then assigned to the class with the minimum distance

between the observation and the (shrunken) centroid. Under certain conditions the soft

shrinkage used by NSC is equivalent to a LASSO penalty. However, this penalty can pro-

duce biased estimates when the true coefficients are large. In addition, NSC ignores the fact

that multiple measures of the same gene are likely to be related to one another. We consider

several alternative genewise shrinkage methods to address the aforementioned shortcom-

ings of NSC. Three alternative penalties were considered: the smoothly clipped absolute

deviation (SCAD), the adaptive LASSO (ADA), and the minimax concave penalty (MCP).

We also showed that NSC can be performed in a genewise manner. Classification methods

were derived for each alternative shrinkage method or alternative genewise penalty, and the

performance of each new classification method was compared with that of conventional

NSC on several simulated and real microarray data sets. Moreover, we applied the geomet-

ric mean approach for the alternative penalty functions. In general the alternative (genewise)

penalties required fewer genes than NSC. The geometric mean of the class-specific predic-

tion accuracies was improved, as well as the overall predictive accuracy in some cases.

These results indicate that these alternative penalties should be considered when using

NSC.

Introduction

Nearest shrunken centroids (NSC) is one of the most frequently used classification methods

for high-dimensional data such as microarray data [1, 2]. NSC shrinks the average expression

(i.e., centroid) of each gene within each class toward the overall centroid via soft thresholding.

Genes whose expression levels do not significantly differ between the classes will have their

centroids reduced to the overall centroids, effectively removing them from the classification

procedure. The amount of shrinkage is determined by cross validation. Then class prediction
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is performed using the shrunken centroids, which allows one to identify important genes and

predict the class of unlabeled observations.

Wang and Zhu [3] showed that NSC is the solution to the regression problem that estimates

the class centroids subject to an L1 penalty (i.e., LASSO) of Tibshirani [4]. They observed that

the LASSO penalty applies the same penalties to all centroids, but the centroids for the same

gene should be treated as one group. To overcome this problem, they proposed two NSC

methods using different penalties: adaptive L1-norm penalized NSC (ALP-NSC) and adaptive

hierarchically penalized NSC (AHP-NSC). They showed that the two NSC methods have bet-

ter performance than the original NSC in terms of misclassification error rate and the number

of variables with nonzero centroids. However, ALP-NSC requires an exhaustive search to find

an index set satisfying certain condition. If no such indices exist, quadratic programming must

be employed to estimate the parameters. AHP-NSC requires an iterative procedure to estimate

the parameters, and this increases the computational burden as the number of genes increases.

While Wang and Zhu [3] sought to improve NSC by considering the correlation between

the centroids for the same gene, Guo et al. [5] improved NSC by regularizing the covariance

matrix of genes in addition to shrinking the class centroids. In fact, Guo et al. [5] modified the

classical linear discriminant score, not the diagonal linear discriminant score, and thus the

method of Guo et al. [5] is a generalized version of NSC. Pang et al. [6] proposed an improved

diagonal linear discriminant analysis (LDA) through shrinkage and regularization of the vari-

ances, but their method dose not perform variable selection. Several authors proposed new

types of sparse LDA and provided the related optimality conditions and asymptotic properties.

Shao et al. [7] applied the thresholding methodology, which was developed for function esti-

mation, to the estimation of the means and variances, and Mai et al. [8] used the least squares

formulation of LDA.

Another way to improve NSC is to modify the way to select an optimal threshold as in Bla-

gus and Lusa [9]. They improved NSC in class-imbalanced data by selecting the optimal

threshold as the value that maximizes the geometric mean of the class-specific prediction accu-

racies. Their numerical studies showed that the modified NSC improved the prediction accu-

racy of the minority class and area under the curve (AUC), and even the average prediction

accuracy of entire classes for some real data.

In this article, we proposed the methods that improve NSC through alternative shrinkage of

the class centroids. Like Wang and Zhu [3], we used an additional parameter, which controls

the amount of penalization given to the parameters for our methods. These alternative shrink-

ages were derived from three existing alternative penalized regression methods, namely the

smoothly clipped absolute deviation (SCAD) [10], the adaptive LASSO (ADA) [11], and the

minimax concave penalty (MCP) [12], which are known to outperform LASSO regression in

some situations. They enjoy the oracle property, which means that the efficiency of these esti-

mators is not reduced when the subset of variables with nonzero coefficients is unknown. As

noted earlier, under an orthonormal design (such as the case of NSC), the LASSO solution can

be obtained via soft thresholding. Similarly, these three regression methods also have simple

solutions in the NSC setting, so the computation is easy and fast. While the LASSO solution

yields biased estimates for large coefficients, these methods produce unbiased estimates. Sev-

eral researchers have considered the use of the alternative shrinkage methods in place of soft

shrinkage [2, 13, 14]. In this article, we will evaluate the performances of these alternative

shrinkage methods by comparing them with conventional soft shrinkage systematically

through simulation and real data studies.

Blockwise additive penalties, which were discussed in Antoniadis and Fan [15], were shown

to give alternative genewise shrinkage estimators of the class centroids in the NSC setting,

where the block is the gene. Similar to the methods of Wang and Zhu [3], these estimators use

NSC via genewise shrinkages
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the fact that the centroids from the same gene should be treated as a group, but they are less

computationally intensive than those of Wang and Zhu [3] because an iterative procedure is

not involved. The approach of Blagus and Lusa [9] was also applied for our alternative (gene-

wise) penalties to further improve NSC, especially for class-imbalanced data.

In the Methods section, we described the penalized least squares framework for general

shrinkage methods using the model of Wang and Zhu [3], which includes the special case of

NSC. We examined the performance of NSC with alternative penalty functions (ALT-NSC),

which include the SCAD, the adaptive LASSO and the MCP. We also described how ALT-NSC

can be used for genewise inference (GEN-NSC). In the Simulation section, we conducted sim-

ulation studies and showed that ALT-NSC and GEN-NSC have substantially better perfor-

mance than NSC in terms of predictive accuracy and feature selection in data sets with

multiple classes. In the Real Data Study section, we applied the proposed variants of NSC to

several real microarray data sets. A discussion and concluding remarks are provided in the last

two sections.

Methods

Penalized least squares for the nearest shrunken centroids

Adapting the framework of Wang and Zhu [3], let xij be the gene expression for the jth gene of

the ith sample (j = 1, . . ., p; i = 1, . . ., n). There are K classes and each sample i belongs to one of

K classes, that is i 2 Ck, where Ck is the set of sample indexes belonging to class k 2 {1, . . ., K},

and nk is the number of samples for class k. The average expressions for the jth gene in the kth

class and over the entire data set are �xkj ¼
P

i2Ck
xij=nk and �xj ¼

Pn
i¼1

xij=n respectively.

Let

m0
kj ¼

�xkj � �xj

mksj
;

where sj is the pooled within-class standard deviation for the jth gene:

s2
j ¼

1

n � K

XK

k¼1

X

i2Ck

ðxij � �xkjÞ
2
;

and mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nk � 1=n

p
. Alternatively, sj + s0 can be used instead of sj to prevent the genes

with low expression levels from having large m0
kj values by chance due to very small sj values,

where s0 is a small constant. The statistic m0
kj is equivalent to dkj, in Tibshirani et al. [1, 2],

which is a t-statistic for the jth gene comparing class k to the average of the other classes.

Let yij ¼ ðxij � �xjÞ=ðmksjÞ and consider the following linear model:

yij ¼
XK

k¼1

zikmkj þ εij; ð1Þ

where zik = 1 if sample i belongs to the class k, and 0 otherwise, μkj is a parameter to be esti-

mated and εij is an independent error term that has variance 1=m2
k if sample i belongs to class

k. For a fixed gene index j, μkj is a deviation from the overall mean, so we have the constraint

that
PK

k¼1
mkj ¼ 0. The class index to which sample i belongs is denoted by k(i) 2 {1, . . ., K}. By

multiplying 1=
ffiffiffiffiffiffiffiffinkðiÞ
p

to both sides in Eq (1), we have

y�ij ¼
XK

k¼1

zik
ffiffiffiffiffiffiffiffinkðiÞ
p mkj þ ε

�

ij; ð2Þ

NSC via genewise shrinkages
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where y�ij ¼ yij=
ffiffiffiffiffiffiffiffinkðiÞ
p

and ε�ij ¼ εij=
ffiffiffiffiffiffiffiffinkðiÞ
p

. In vector notation, Eq (2) can be written as

y� ¼Wμþ ε�;

where

y� ¼
y11
ffiffiffiffiffiffiffiffinkð1Þ
p ;

y12
ffiffiffiffiffiffiffiffinkð1Þ
p ; :::;

y1p
ffiffiffiffiffiffiffiffinkð1Þ
p ;

y21
ffiffiffiffiffiffiffiffinkð2Þ
p ; :::;

ynp
ffiffiffiffiffiffiffiffinkðnÞ
p

 !T

;

ε� ¼
ε11
ffiffiffiffiffiffiffiffinkð1Þ
p ;

ε12
ffiffiffiffiffiffiffiffinkð1Þ
p ; :::;

ε1p
ffiffiffiffiffiffiffiffinkð1Þ
p ;

ε21
ffiffiffiffiffiffiffiffinkð2Þ
p ; :::;

εnp
ffiffiffiffiffiffiffiffinkðnÞ
p

 !T

;

μ ¼ ðm11; m12; :::; m1p; m21; :::; mKpÞ
T
;

μ0 ¼ ðm0
11
; m0

12
; :::; m0

1p; m
0
21
; :::; m0

KpÞ
T
;

where AT denotes the transpose of a vector or matrix A. The design matrix W = (W1, . . ., WKp)

is an np × Kp matrix, where Wl is a np × 1 vector that corresponds to the lth element of the vec-

tor μ for l = 1 ,. . ., Kp. If an index l belongs to a class index k and a gene index j, then nk(i) ele-

ments of Wl are 1=
ffiffiffiffiffiffiffiffinkðiÞ
p

and the rest of the elements are zeros because there are exactly nk(i)

samples belonging to class k(i). This implies that WT
l Wl ¼ 1 ðl ¼ 1; :::;KpÞ. In addition, we

can see that each row of W has only one non-zero value and the rest of the elements are zero.

This is because each yij takes only one μkj, and this implies WT
l Wh ¼ 0 for (l 6¼ h). Thus, W is

orthonormal. Note that μ0 = WT y� is the least squares estimator for μ, and let ŷ� ¼Wμ0. Since

W is orthonormal, a form of the penalized least squares is given by [10]:

1

2
k y� � Wμk2 þ l

Xp

j¼1

XK

k¼1

pðjmkjjÞ

¼
1

2
k y� � ŷ

�
k2 þ

1

2

Xp

j¼1

XK

k¼1
ðm0

kj � mkjÞ
2
þ
Xp

j¼1

XK

k¼1
plðjmkjjÞ;

ð3Þ

where pλ(�) = λp(�) is a penalty function and k A k2 ¼
Pn

i¼ a2
i when A = (a1, . . ., an)T. The

problem of minimizing Eq (3) with respect to μkj is equivalent to minimizing it component-

wise. By ignoring 1

2
k y� � ŷ� k2, which is irrelevant to the parameters, this allows us to con-

sider the following penalized least squares problem:

1

2
ðm0

kj � mkjÞ
2
þ plðjmkjjÞ: ð4Þ

Eq (4) shows that the minimization problem Eq (3) has been converted to a univariate min-

imization problem. Since, the univariate solutions for regression coefficients are presented in

the papers describing these penalized regression methods, we can use these solutions to obtain

m̂kj. NSC uses the LASSO penalty function pλ(|μkj|) = λ|μkj| [4], and the resulting estimator for

μkj is given by

m̂kj ¼ sgnðm0
kjÞðjm

0
kjj � lÞ

þ
;

where “sgn” is a sign function and z+ is the positive part of z. The LASSO solution is equivalent

to the soft shrinkage estimate [16]. The resulting estimators for μkj under alternative penalties

are presented in the next subsection.

NSC via genewise shrinkages
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To predict the class of a new sample x� ¼ ðx�
1
; :::; x�pÞ

T
, we define the discriminant score for

class k as

dkðx�Þ ¼
Xp

j¼1

ðx�j � x̂kjÞ
2

s2
j

� 2 log pk;

where x̂kj ¼ �xj þ m̂kjmksj is a shrunken mean and πk = nk/n is a prior probability estimate for

class k. The shrunken mean and the discriminant score depend on the shrinkage method used,

hence the choice of shrinkage method affects class prediction and gene selection. Finally, the

classification rule is given by

Cðx�Þ ¼ k�; where k� ¼ arg min
k

dkðx
�Þ:

Alternative shrinkage methods (ALT-NSC)

Here, we described several shrinkage methods that are possible alternatives to soft shrinkage.

The first order derivative of the SCAD penalty function [10] is defined as

p0
l;aðjmkjjÞ ¼ l Iðjmkjj � lÞ þ

ðal � mkjÞþ

ða � 1Þl
Iðjmkjj > lÞ

� �

;

for some a > 2. This penalty function gives smaller penalties on larger coefficients. The result-

ing estimator for μkj is

m̂kj ¼

sgnðm0
kjÞðjm

0
kjj � lÞ

þ
; if jm0

kjj � 2l

ða � 1Þm0
kj � sgnðm0

kjÞal

a � 2
; if 2l < jm0

kjj � al

m0
kj; if jm0

kjj > al:

8
>>>>><

>>>>>:

If a is close to 2, then SCAD behaves like a hard shrinkage estimate when estimating μkj.

The adaptive LASSO penalty function [11], which is the LASSO penalty function with a

data-dependent weight, is given by

pl;aðjmkjjÞ ¼ ljmkjj=jm
0
kjj

a
;

where a > 0. The resulting solution is

m̂kj ¼ sgnðm0
kjÞðjm

0
kjj � l=jm0

kjj
a
Þ
þ
;

or

m̂kj ¼ m0
kjð1 � l=jm0

kjj
aþ1
Þ
þ
:

The adaptive LASSO solution is equivalent to soft shrinkage when a = 0 and is similar to

the nonnegative garotte when a = 1 [17] (although the nonnegative garotte requires additional

sign restrictions).

The MCP penalty function [12] is defined as

pl;aðjmkjjÞ ¼

ljmkjj � m2
kj=ð2aÞ; if jmkjj � al;

0:5al
2
; if jmkjj > al;

8
<

:

NSC via genewise shrinkages
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where a > 1. The resulting solution is given by

m̂kj ¼

sgnðm0
kjÞðjm

0
kjj � lÞ

þ

1 � 1=a
; if jm0

kjj � al;

m0
kj; if jm0

kjj > al:

8
>><

>>:

The MCP solution is equivalent to firm shrinkage, which offers advantages over soft and

hard shrinkage [18]. The MCP solution approaches hard shrinkage as a! 1 and soft shrinkage

as a!1.

As mentioned previously, these shrinkage methods are known to have oracle properties

under some mild conditions (for details, see [10], [11] and [12]). The LASSO solution is incon-

sistent because it produces estimates biased toward zero. This bias in the LASSO can also

cause its variable selection to be inconsistent [12]. The basic reason that the alternative shrink-

ages can produce better estimates is because they have different rules for estimating the coeffi-

cients μkj, which depend on the size of |μkj|. When the sizes of the coefficients are large, these

procedures leave them almost unpenalized (or completely unpenalized). Thus, they overcome

the tendency of soft shrinkage to produce biased estimates.

While soft shrinkage has one tuning parameter λ, the alternative shrinkage methods have

two tuning parameters, namely a and λ. The tuning parameter a controls the size of the penal-

ties for large coefficients. The tuning parameters are determined by cross validation (CV). In

our subsequent analysis, six values of the tuning parameter a were examined for each

ALT-NSC and genewise shrinkage method: (0.5, 1, 1.5, 2, 2.5, 3) for the adaptive LASSO pen-

alty, (2.01, 2.2, 2.5, 2.8, 3.2, 3.7) for the SCAD penalty and (1.01, 1.3, 1.7, 2, 2.5, 3) for the MCP

penalty. For each method, thirty values of λ were considered. For the case when there are ties

among the CV prediction accuracies or g-means, we chose the parameters resulting in a

smaller number of genes.

Genewise shrinkage methods (GEN-NSC)

Here we extend the shrinkage methods discussed in the previous subsection to genewise infer-

ence. Let μj = (μ1j, . . ., μKj)
T denote a K × 1 mean vector for the jth gene. Further let μ0

j ¼

ðm0
1j; :::; m

0
KjÞ

T
denote the corresponding mean estimator vector. The objective function to be

minimized for the genewise penalized least squares estimator is

1

2
k y�� Wμ k2 þ l

Xp

j¼1

pðk μj kÞ: ð5Þ

Note that instead of penalizing μkj, we penalize the vector μj. Using the fact that

Xp

j¼1

XK

k¼1

ðm0

kj � mkjÞ
2
¼
Xp

j¼1

k μ0

j � μj k
2

and the orthonormality of W, Eq (5) can be written as

1

2
k y� � ŷ�k2 þ

1

2

Xp

j¼1

k μ0

j � μjk
2 þ

Xp

j¼1

plðk μj kÞ: ð6Þ

NSC via genewise shrinkages
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The solution to Eq (6) is genewise separable, and thus one may solve it by minimizing

1

2
k μ0

j � μjk
2 þ plðk μj kÞ: ð7Þ

Using the result of Antoniadis et al. [15], the solution to Eq (7) is given by

μ̂ j ¼ rðk μ0
j kÞμ

0
j = k μ

0
j k; ð8Þ

where rðk μ0
j kÞ is the solution to

min
r
fðk μ0

j k � rÞ2 þ plðrÞg: ð9Þ

Since Eq (8) depends on the penalty function pλ(�), we can derive genewise shrinkage meth-

ods under diverse penalty functions. Note that the problem of solving Eq (9) is equivalent to

that of Eq (4), and thus, the computational complexity of the genewise shrinkages is the same

as that of the alternative shrinkages.

When the LASSO penalty is employed,

μ̂ j ¼ μ0
j ð1 � l= k μ0

j kÞþ:

If the SCAD penalty is used,

μ̂ j ¼

μ0
j ð1 � l= k μ0

j kÞþ; if k μ0
j k� 2l;

ða � 1Þ k μ0
j k � al

ða � 2Þ k μ0
j k

μ0

j ; if 2l <k μ0
j k� al;

μ0
j ; if k μ0

j k> al;

8
>>>>>><

>>>>>>:

where a > 2. For the adaptive LASSO penalty, the resulting solution is

μ̂ j ¼ μ0
j ð1 � l= k μ0

j k
aþ1Þ

þ
:

For the MCP penalty,

μ̂ j ¼

μ0
j ð1 � l= k μ0

j kÞþ

1 � 1=a
; if k μ0

j k� al;

μ0
j ; if k μ0

j k> al;

8
>><

>>:

where a > 1.

The thresholding rules of the genewise shrinkage methods are determined by k μ0
j k instead

of an individual m0
kj. By pulling information from the neighboring mean estimators belonging

to the same gene, the genewise shrinkage may allow the accuracy of the thresholding mean

estimators to be improved. Furthermore, Eq (5) has a nice Bayesian interpretation [15]: the

genewise penalized least squares method models the mean coefficients belonging to the same

gene by using proper prior distributions.

Geometric mean methods (GM)

Adpating the idea of Blagus and Lusa [9], we considered the optimal values of tuning parame-

ters (a, λ) of the (genewise) althernative shrinkage methods to be those that maximize the geo-

metric mean of the class-specific prediction accuracies.

NSC via genewise shrinkages
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Throughout the remainder of this manuscript, we will refer to the genewise version of each

method by adding “G” to the beginning of its abbreviated name. Moreover, when the tuning

parameters are determined by the geometric mean, we will add “GM-” to the beginning of

the name. For example, “GADA” refers to the genewise version of adaptive lasso, and

“GM-GADA” referes to “GADA” whose tunnig parameters are determined by the geometric

mean.

Simulations

In this section, we conducted simulation studies to compare ALT-NSC, GEN-NSC, and the

GM versions of ALT-NSC and GEN-NSC to conventional NSC. We examined the overall pre-

diction accuracy (PA), geometric mean (g-mean), area under the curve (AUC, only for a two-

class classification scenario), sensitivity (SEN) and positive predictive value (PPV). SEN is the

number of detected important genes divided by total number of important genes. PPV is the

number of detected important genes divided by total number of genes the method selects. As

in Dudoit et al. [19], we presented the median and upper quartiles of the evaluation measures.

In a two class classification scenario, we generated two classes from multivariate normal

distributions with sample sizes, n1 = nπ1 and n − n1: MVN(μ1, S) and MVN(μ2, S), each had a

dimension of p = 2500. μ1 was equal to 0 for all genes and μ2 was 0.5 for 100 genes and 0 for

the rest of genes. The differentially expressed (DE) 100 genes were randomly selected. As in

Guo et al. [5] and Pang et al. [6], S was a block diagonal matrix with each diagonal block Sρ

having an auto-regressive structure and alternating in sign. The block size was 50 × 50 and

there were 50 blocks, which gave a total of 2500 genes:

Sr ¼

1 r � � � r48 r49

r 1 . .
.

� � � r48

..

. . .
. . .

. . .
. ..

.

r48 � � � . .
.

1 r

r49 r48 � � � r 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

ρ took values of 0.5 and 0.9, indicating sparse and dense correlation blocks, and π1 took values

of 0.5 and 0.8, corresponding to class-balance and -imbalance.

The three class classification scenario is very similar to the previous one. We generated

three classes from multivariate normal distributions with the fixed proportions (π1, π2, π3) =

(0.4, 0.2, 0.4): MVN(μ1, S), MVN(μ2, S) and MVN(μ3, S), each of which had the same dimen-

sion as the previous scenario. Ninety differentially expressed genes were randomly selected

and those DE genes had mean vectors of (γ, 0,−γ). We used the same S as in the first simula-

tion. We let γ take the values of 0.5 and 0.1 to study how the effect size of DE genes is related to

the performances of the classifiers.

Given a, the tuning parameter λ was chosen to minimize the m-fold CV misclassification

error rate on training data set, and we let m = 5. We generated training data sets with sample

size 100 and test data sets with 10 times the sample size of the training data. Then test error

rates were computed using the tuning parameters selected by CV. Gene selection was per-

formed in the same way as in Tibshirani et al. [1, 2], where the genes with at least one nonzero

difference were selected (the jth gene is selected if there exists at least one k such that m̂kj 6¼ 0).
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Simulation results for the two-class scenario have been presented in Tables 1, 2, 3 and 4. All

of the proposed methods performed very similarly to NSC in terms of PA, g-mean and AUC

except when the diagonal block matrix was dense and class was imbalanced; ALT-NSC

improved the g-mean slightly, the GM versions of ALT-NSC and GEN-NSC also improved the

Table 1. Two groups with sparse block diagonal structure (ρ = 0.5) and class-balance (π1 = 0.5).

Method PA g-mean AUC SEN PPV

Median Upper Median Upper Median Upper Median Upper Median Upper

NSC 91.9 93.2 91.9 93.2 97.8 98.3 69.5 78.0 37.6 52.2

ADA 91.7 93.2 91.7 93.2 97.8 98.3 65.5 77.0 41.5 55.2

SCAD 92.1 92.8 92.1 92.8 97.8 98.1 81.0 87.0 24.3 33.1

MCP 91.7 92.7 91.6 92.7 97.6 98.1 58.5 70.2 53.1 64.4

GM-NSC 91.9 93.2 91.9 93.2 97.9 98.2 70.0 78.2 37.2 51.0

GM-ADA 91.9 93.2 91.8 93.2 97.9 98.3 67.0 77.2 39.2 53.2

GM-SCAD 92.1 93.0 92.1 93.0 97.8 98.1 81.0 87.2 24.3 32.4

GM-MCP 91.6 92.8 91.6 92.8 97.6 98.1 58.5 71.2 52.6 64.1

GNSC 91.9 93.2 91.9 93.2 97.7 98.3 66.0 75.2 42.4 51.9

GADA 92.0 93.3 92.0 93.3 97.9 98.3 66.0 75.2 43.0 56.5

GSCAD 91.7 92.9 91.7 92.9 97.7 98.2 79.0 85.0 27.0 36.2

GMCP 91.8 93.0 91.8 93.0 97.7 98.2 60.5 71.2 52.1 62.0

GM-GNSC 92.0 93.3 92.0 93.3 97.8 98.3 67.0 76.5 41.1 51.3

GM-GADA 92.0 93.3 92.0 93.3 97.9 98.3 66.0 75.2 43.1 56.5

GM-GSCAD 92.0 92.9 91.9 92.9 97.8 98.2 80.0 86.0 24.9 36.3

GM-GMCP 91.9 93.0 91.8 92.9 97.7 98.2 61.0 72.2 51.3 61.4

“PA”, “g-mean” and “AUC” are overall accuracy, geometric mean and AUC of class prediction, calculated from the test data set. “SEN” and “PPV” are

sensitivity and positive predictive value of gene selection obtained from the training data set. “Median” and “Upper” are median and upper quartiles of 100

repetitions. The scale of all the numbers is a percentage.

doi:10.1371/journal.pone.0171068.t001

Table 2. Two groups with dense block diagonal structure (ρ = 0.9) and class-balance (π1 = 0.5).

Method PA g-mean AUC SEN PPV

Median Upper Median Upper Median Upper Median Upper Median Upper

NSC 85.8 88.1 85.7 88.1 93.4 95.4 46.0 57.0 68.4 81.4

ADA 86.1 88.7 86.1 88.7 93.4 95.5 44.0 57.0 71.9 81.4

SCAD 85.3 87.8 85.3 87.8 93.1 95.1 51.5 65.0 61.5 78.3

MCP 86.0 88.6 86.0 88.6 93.5 95.6 34.5 47.0 81.8 90.7

GM-NSC 85.9 88.4 85.9 88.4 93.6 95.4 48.5 58.5 64.6 79.0

GM-ADA 86.1 88.6 86.1 88.5 93.4 95.5 45.0 59.0 69.0 80.1

GM-SCAD 85.3 87.9 85.3 87.9 93.3 95.1 54.0 66.2 60.2 72.7

GM-MCP 86.3 88.6 86.3 88.6 93.7 95.6 36.0 48.0 81.4 91.2

GNSC 85.0 87.9 85.0 87.9 93.1 95.2 47.0 54.0 69.9 81.9

GADA 84.8 88.0 84.8 88.0 92.9 95.3 45.0 55.0 73.0 83.8

GSCAD 84.3 87.1 84.3 87.1 92.9 94.5 50.0 64.2 63.5 80.9

GMCP 84.2 88.2 84.2 88.2 92.4 95.5 34.5 47.2 81.2 94.9

GM-GNSC 85.0 87.8 85.0 87.8 93.1 95.2 48.0 56.5 66.7 81.9

GM-GADA 84.7 88.3 84.7 88.3 92.8 95.3 44.5 55.0 72.3 83.8

GM-GSCAD 84.3 87.4 84.3 87.4 92.9 94.6 51.5 66.5 60.3 80.1

GM-GMCP 84.5 88.3 84.5 88.3 92.7 95.6 36.0 50.0 80.9 92.7

doi:10.1371/journal.pone.0171068.t002
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g-mean, and GM-GSCAD had the highest g-mean in this setting. The classifiers had poorer

prediction perfromance based on PA, g-mean and AUC when the block diagonal matrix was

dense and classes were imbalanced. Gene selection accuracy (SEN and PPV) also decreased

when class was imbalanced.

Simulation results for the three-class scenario have been presented in Tables 5, 6, 7 and 8.

Unlike the two-class scenario, class sizes were always imbalanced. However, we considered dif-

ferent values of γ, which was the effect size of DE genes, and observed that our proposed meth-

ods performed significantly better than NSC. When the effect size of DE genes was moderate

Table 3. Two groups with sparse block diagonal structure (ρ = 0.5) and class-imbalance (π1 = 0.8).

Method PA g-mean AUC SEN PPV

Median Upper Median Upper Median Upper Median Upper Median Upper

NSC 84.5 85.3 48.4 52.8 93.4 94.4 66.0 74.0 18.4 23.7

ADA 84.5 85.3 47.9 52.8 93.2 94.3 58.0 64.0 23.1 33.8

SCAD 84.7 85.3 49.0 52.4 93.5 94.4 65.0 71.2 19.6 22.8

MCP 83.8 84.5 43.6 49.4 92.1 94.0 41.5 56.0 38.1 55.1

GM-NSC 84.5 85.4 48.5 52.8 93.4 94.4 66.5 75.2 18.1 21.7

GM-ADA 84.5 85.3 48.1 52.8 93.2 94.3 58.0 64.0 23.1 32.2

GM-SCAD 84.7 85.3 49.0 52.4 93.5 94.4 65.5 72.0 19.4 22.7

GM-MCP 83.9 84.8 44.7 49.9 92.3 94.1 44.0 56.2 37.4 50.7

GNSC 84.4 85.4 48.2 52.8 93.3 94.5 65.5 73.2 19.0 24.6

GADA 84.4 85.3 47.9 52.1 93.5 94.5 56.0 67.0 26.3 32.1

GSCAD 84.3 85.3 47.6 52.0 93.4 94.4 64.0 69.0 20.6 24.0

GMCP 83.8 84.9 44.9 50.0 92.1 94.0 44.5 58.0 34.3 54.0

GM-GNSC 84.5 85.4 48.4 52.8 93.3 94.5 66.0 74.0 18.8 23.9

GM-GADA 84.4 85.3 47.9 52.1 93.5 94.5 56.5 67.0 26.3 31.5

GM-GSCAD 84.5 85.3 49.0 52.8 93.5 94.4 64.0 69.5 19.8 23.4

GM-GMCP 83.9 84.9 45.2 50.0 92.2 94.1 46.0 58.2 32.5 53.2

doi:10.1371/journal.pone.0171068.t003

Table 4. Two groups with dense block diagonal structure (ρ = 0.9) and class-imbalance (π1 = 0.8).

Method PA g-mean AUC SEN PPV

Median Upper Median Upper Median Upper Median Upper Median Upper

NSC 82.4 83.6 47.2 53.2 82.6 86.7 54.0 64.2 29.6 38.0

ADA 83.1 84.2 50.7 56.2 83.9 88.2 49.0 60.0 35.3 46.1

SCAD 82.9 84.4 52.3 57.2 83.5 87.0 59.0 70.0 26.3 34.2

MCP 83.1 84.2 49.4 53.8 83.4 87.6 36.0 52.2 42.2 67.0

GM-NSC 82.5 83.7 56.3 59.4 80.8 84.3 66.0 72.0 20.0 24.8

GM-ADA 83.1 84.4 55.9 59.6 82.7 86.0 58.0 64.2 26.6 33.9

GM-SCAD 83.2 84.5 56.6 60.0 82.2 85.7 66.0 74.0 19.6 25.0

GM-MCP 83.2 84.6 53.9 58.9 83.2 86.8 53.0 63.3 31.0 44.0

GNSC 82.5 83.4 45.1 53.4 81.7 86.4 51.0 62.2 30.1 39.9

GADA 82.8 84.1 50.2 56.3 82.8 87.8 44.0 57.2 35.8 48.1

GSCAD 82.7 84.0 49.5 55.3 83.0 86.3 53.5 71.0 27.7 37.4

GMCP 82.6 84.2 48.8 53.3 82.3 87.9 33.5 48.2 49.7 63.4

GM-GNSC 82.4 83.6 56.0 60.2 80.6 83.8 68.0 75.0 19.2 23.3

GM-GADA 82.8 84.2 55.1 59.7 81.6 86.1 57.0 69.5 26.4 35.4

GM-GSCAD 83.2 84.6 56.7 60.1 82.5 85.9 66.0 76.0 19.8 22.9

GM-GMCP 83.1 84.3 52.4 58.0 82.3 86.5 49.0 63.3 31.9 49.6

doi:10.1371/journal.pone.0171068.t004
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(γ = 0.5), only the ALT-NSC had better PA and g-mean, but GEN-NSC and GM methods

showed no improvement. Under the very small effect size, all the classifiers performed very

similarly in terms of PA, but their performance varied with respect to g-mean. MCP had the

highest g-mean, and the other penalty functions gave zero as the median quartile of g-mean.

Secondly, GM significantly improved g-mean for all the penalty functions, and the amount of

the improvement was greater when the genewise penalties were used for the sparse block

matrix. Finally, gene selection was also improved by GM: SEN increased and PPV stayed at

Table 5. Three groups with class-imbalance (π1 = 0.4,π2 = 0.2,π3 = 0.4), sparse block diagonal structure (ρ = 0.5) and moderate mean difference

(γ = 0.5).

Method PA g-mean SEN PPV

Median Upper Median Upper Median Upper Median Upper

NSC 85.8 86.5 66.4 69.1 100.0 100.0 16.5 21.5

ADA 94.2 95.1 89.5 91.5 96.7 98.9 65.4 75.1

SCAD 95.5 96.3 92.4 93.9 100.0 100.0 24.2 28.9

MCP 96.4 97.2 94.6 95.7 85.0 90.3 94.2 97.4

GM-NSC 85.9 86.6 66.9 69.7 100.0 100.0 14.3 20.7

GM-ADA 94.2 95.3 89.6 91.6 96.7 98.9 66.0 75.3

GM-SCAD 95.6 96.3 92.6 94.3 100.0 100.0 23.5 28.5

GM-MCP 96.4 97.2 94.6 95.9 83.9 90.0 94.3 98.4

GNSC 85.3 86.2 64.8 68.3 100.0 100.0 20.4 29.0

GADA 92.2 93.4 85.1 87.6 96.7 97.8 71.7 81.6

GSCAD 93.5 94.5 88.4 90.4 100.0 100.0 31.2 40.7

GMCP 94.9 95.8 91.4 93.1 81.1 87.8 97.4 100.0

GM-GNSC 85.4 86.2 65.3 68.4 100.0 100.0 19.8 26.6

GM-GADA 92.2 93.4 85.4 87.7 96.1 97.8 72.4 82.9

GM-GSCAD 93.8 94.5 88.8 90.6 100.0 100.0 29.3 36.9

GM-GMCP 94.9 95.8 91.4 93.1 81.1 87.8 97.3 100.0

doi:10.1371/journal.pone.0171068.t005

Table 6. Three groups with class-imbalance (π1 = 0.4,π2 = 0.2,π3 = 0.4), dense block diagonal structure (ρ = 0.9) and moderate mean difference

(γ = 0.5).

Method PA g-mean SEN PPV

Median Upper Median Upper Median Upper Median Upper

NSC 84.6 85.5 62.6 67.5 98.9 100.0 28.7 36.7

ADA 92.5 93.6 86.3 88.5 94.4 96.7 74.6 84.1

SCAD 92.0 93.0 86.5 88.3 98.9 100.0 33.2 41.5

MCP 95.4 96.3 93.5 94.8 81.7 87.8 97.4 100.0

GM-NSC 84.8 85.6 68.2 70.1 100.0 100.0 16.5 21.4

GM-ADA 92.7 93.7 86.5 88.7 95.6 96.7 73.6 80.8

GM-SCAD 92.0 93.4 87.2 89.5 99.4 100.0 27.8 33.0

GM-MCP 95.3 96.3 93.5 94.8 81.7 86.9 97.4 100.0

GNSC 84.3 85.1 62.0 66.8 98.9 100.0 37.8 49.4

GADA 90.8 91.7 82.0 84.6 94.4 96.7 82.4 90.9

GSCAD 90.8 91.8 83.7 85.9 98.9 100.0 38.4 47.7

GMCP 94.1 94.9 90.3 91.9 78.3 86.7 98.6 100.0

GM-GNSC 84.2 85.1 66.0 68.1 100.0 100.0 20.6 30.2

GM-GADA 90.9 91.9 82.9 85.1 95.6 97.8 78.3 86.8

GM-GSCAD 90.9 91.9 84.0 86.3 98.9 100.0 34.0 43.0

GM-GMCP 94.2 94.9 90.3 91.6 78.3 86.9 98.6 100.0

doi:10.1371/journal.pone.0171068.t006
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almost the same value, compared to the corresponding methods based on the cross-validation

prediction accuracy criterion.

Real data study

In this section, we applied conventional NSC and the proposed methods (ALT-NSC and

GEN-NSC) to four real microarray data sets. The main characteristics of the four microarray

data sets are presented in Table 9.

Table 7. Three groups with class-imbalance (π1 = 0.4,π2 = 0.2,π3 = 0.4), sparse block diagonal structure (ρ = 0.5) and small mean difference

(γ = 0.1).

Method PA g-mean SEN PPV

Median Upper Median Upper Median Upper Median Upper

NSC 42.8 44.3 0.0 18.0 12.2 65.6 5.4 11.4

ADA 42.8 44.0 0.0 20.1 12.2 58.1 5.3 10.2

SCAD 42.9 44.3 0.0 18.0 21.7 77.8 4.5 9.2

MCP 42.9 44.1 16.3 20.8 11.1 53.9 5.9 11.2

GM-NSC 42.4 43.8 19.5 24.4 43.3 72.5 4.4 5.7

GM-ADA 42.8 43.8 21.0 23.6 28.3 43.6 5.4 7.1

GM-SCAD 42.3 43.8 20.3 23.9 40.0 54.7 4.9 5.9

GM-MCP 42.5 43.8 20.3 23.4 14.4 33.6 6.4 9.9

GNSC 42.8 44.0 0.0 19.1 13.3 89.2 5.9 12.7

GADA 42.6 43.6 10.8 19.5 12.8 68.9 5.9 12.6

GSCAD 42.9 44.5 0.0 19.2 18.9 82.5 4.6 11.8

GMCP 42.7 43.9 16.5 21.8 17.8 52.8 6.1 12.6

GM-GNSC 42.6 43.8 22.9 26.4 45.0 64.4 4.8 5.8

GM-GADA 42.6 43.6 23.1 26.0 23.9 48.1 6.0 8.0

GM-GSCAD 42.8 43.8 24.4 26.7 45.6 59.2 5.0 5.8

GM-GMCP 42.2 43.4 23.4 25.9 13.3 26.9 8.1 11.8

doi:10.1371/journal.pone.0171068.t007

Table 8. Three groups with class-imbalance (π1 = 0.4,π2 = 0.2,π3 = 0.4), dense block diagonal structure (ρ = 0.9) and small mean difference

(γ = 0.1).

Method PA g-mean SEN PPV

Median Upper Median Upper Median Upper Median Upper

NSC 40.5 41.8 0.0 27.5 5.6 25.8 6.7 17.9

ADA 40.7 41.9 0.0 28.3 5.0 30.0 6.3 17.2

SCAD 40.5 41.7 0.0 28.1 6.1 65.6 6.3 13.8

MCP 40.4 41.7 12.3 28.9 4.4 37.8 7.0 17.0

GM-NSC 38.7 40.1 31.2 33.0 61.7 86.9 4.4 5.2

GM-ADA 38.8 40.0 30.7 32.7 39.4 68.3 5.2 6.4

GM-SCAD 38.8 40.2 31.1 32.7 54.4 77.8 4.6 5.3

GM-MCP 39.3 40.3 29.5 31.9 17.8 50.0 6.2 9.1

GNSC 40.6 41.9 0.0 27.6 3.3 30.0 7.3 20.2

GADA 40.4 41.6 0.0 28.6 3.3 22.8 7.9 20.0

GSCAD 40.6 41.7 0.0 28.5 5.0 65.3 5.5 14.8

GMCP 40.1 41.2 21.4 30.0 5.0 26.1 7.2 17.3

GM-GNSC 38.6 39.5 30.8 32.4 55.6 81.4 4.6 5.8

GM-GADA 38.9 39.7 30.7 32.5 35.6 70.3 5.1 7.3

GM-GSCAD 38.6 39.5 31.3 32.8 48.3 75.6 4.7 5.5

GM-GMCP 38.9 39.9 30.5 32.2 25.0 53.6 6.0 9.6

doi:10.1371/journal.pone.0171068.t008
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The Gravier et al. [20] data set came from a breast cancer study that consists of 111 patients

with no events and 57 patients with early metastasis after diagnosis. The Pomeroy et al. [21]

data set is a CNS cancer study that consists of 10 medulloblastomas, 10 CNS AT/RTs (renal

and extrarenal rhabdoid tumors), 8 supratentorial PNETs and 10 non-embryonal brain

tumors (malignant glioma). The Yeoh et al. [22] data set is a acute lymphoblastic leukemia

(ALL) study that consists of six types of pediatric ALL subtypes: 43 T-cell lineage ALL

(T-ALL), 27 E2A-PBX1, 79 TEL-AML1, 20 MLL rearrangements, 15 BCR-ABL, and 64 hyper-

diploid karyotypes with more than 50 chromosomes (HK50). The Ramaswamy et al. [23] data

set consists of 14 types of cancer samples as follows: 12 breast adenocarcinoma, 14 prostate

adenocarcinoma, 12 lung adenocarcinoma, 12 colorectal adenocarcinoma, 22 lymphoma, 11

bladder transitional cell carcinoma, 10 melanoma, 10 uterine adenocarcinoma, 30 leukemia,

11 renal cell carcinoma, 11 pancreatic adenocarcinoma, 12 ovarian adenocarcinoma, 11 pleu-

ral mesothelioma and 20 central nervous system.

We randomly split each data set into a training set and a test set with 33% of the data allo-

cated to the test set. This process was iterated 100 times. We chose optimal tuning parameters

(a, λ) as the values that give the maximum of 5-fold CV prediction accuracy or g-mean under

Table 9. Characteristics of the real microarray data sets.

Author Reference Disease Class Gene Sample

Gravier et al. (2010) [20] Breast cancer 2 2905 168

Pomeroy et al. (2002) [21] CNS cancer 4 5597 38

Yeoh et al. (2002) [22] Leukemia 6 12625 248

Ramaswamy et al. (2001) [23] Cancer 14 16063 198

CNS: central nervous system.

doi:10.1371/journal.pone.0171068.t009

Table 10. Gravier (2010) data set: Breast cancer study with 2 classes.

Method PA g-mean AUC N-sig

Median Upper Median Upper Median Upper Median Upper

NSC 75.0 78.6 68.5 73.9 79.5 83.5 685 1176

ADA 75.0 78.6 68.5 73.9 79.9 83.3 550 1174

SCAD 75.0 78.6 69.3 73.9 79.9 83.3 928 1550

MCP 73.2 78.6 67.4 73.0 78.5 82.5 370 863

GM-NSC 75.0 78.6 70.5 75.7 80.9 83.8 660 968

GM-ADA 75.0 78.6 68.8 75.2 80.3 83.8 475 859

GM-SCAD 75.0 78.6 70.0 74.6 80.8 83.7 692 1196

GM-MCP 73.2 78.6 67.5 73.9 79.8 83.5 458 858

GNSC 75.0 78.6 70.4 74.1 80.0 83.5 720 1794

GADA 75.0 78.6 68.5 73.9 79.7 83.4 548 1198

GSCAD 75.0 78.6 68.5 73.9 80.0 83.2 908 1570

GMCP 73.2 78.6 67.5 72.2 78.4 82.9 435 1071

GM-GNSC 75.0 78.6 70.4 74.5 80.8 83.9 681 1396

GM-GADA 75.0 78.6 69.1 73.9 80.5 83.5 516 1007

GM-GSCAD 75.0 78.6 69.6 74.6 81.1 84.1 733 1191

GM-GMCP 75.0 78.6 68.5 73.5 79.7 83.3 480 848

“PA”, “g-mean” and “AUC” are accuracy, geometric mean and AUC of class prediction, calculated from the test data set. “N-sig” is the number of selected

genes from the training data set. “Median” and “Upper” are median and upper quartiles of 100 repetitions. The scale of all the numbers is a percentage.

doi:10.1371/journal.pone.0171068.t010
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the training data set. We compared prediction accuracy, g-mean, AUC (only for the Gravier

data set) and the number of selected genes.

The Gravier data set is slightly imbalanced; the proportions of “no events” and “early metas-

tasis” are 0.66 and 0.34. There was no improvement of PA, g-mean and AUC by the proposed

methods, but using the alternative penalty functions reduced N-sig. MCP had the smallest N-

sig (Table 10). The Pomeroy data set is balanced. ALT-NSC improved g-mean, but not PA,

and reduced N-sig, with the exception of SCAD. GM did not improve either PA or g-mean.

MCP performed the best with higher PA and g-mean and smaller N-sig compared to NSC.

GMCP performed very similarly to MCP with slightly inferior prediction performance but

much smaller N-sig (Table 11). The Yeoh data set is imbalanced. Like the Golub data set [24],

the prediction was easy for this data set despite the large number of classes. PA and g-mean

were not improved, but N-sig was reduced by the proposed methods. Both ALT-NSC and

GEN-NSC reduced N-sig, with GMCP having the smallest N-sig. GMCP selected 418 genes,

while NSC selected 1456 genes at the median quartile (Table 12). The Ramaswamy data set has

a large number of classes, and, as a result, all the classifeirs had low g-mean values. All the

MCP methods and GM-SCAD had positive g-mean values, but the other methods had zero as

the 90% quantile of g-mean (Table 13).

Discussion

In this article, we proposed several variations of NSC that use alternative genewise shrinkages.

We derived these methods using three penalized regression models that enjoy oracle proper-

ties and have closed-form solutions under an orthonormal design. We also further modified

these variants of NSC by adapting genewise penalty functions that use the correlations between

the parameters belonging to the same gene, and the geometric mean approach for class-imbal-

anced data. We showed that these methods have better performance than conventional NSC

in terms of prediction accuracy, g-mean and gene selection through simuation and real data

studies.

Table 11. Pomeroy (2002) data set: CNS study with 4 classes.

Method PA g-mean N-sig

Median Upper Median Upper Median Upper

NSC 80.2 84.6 68.7 76.0 422 2706

ADA 81.8 84.6 76.0 81.6 383 1911

SCAD 83.3 85.7 76.0 84.1 822 2776

MCP 83.3 91.7 76.0 85.7 212 584

GM-NSC 81.8 84.6 70.7 81.6 1264 4679

GM-ADA 83.3 84.6 76.0 81.6 480 2905

GM-SCAD 83.3 85.7 76.0 84.1 1183 3206

GM-MCP 83.3 91.7 76.0 84.1 212 584

GNSC 78.6 83.7 67.2 76.0 500 2378

GADA 81.8 84.6 68.7 81.6 378 1683

GSCAD 81.8 84.6 69.7 81.6 714 2574

GMCP 83.3 90.9 76.0 84.1 52 228

GM-GNSC 81.8 84.6 69.7 81.6 1442 3929

GM-GADA 81.8 84.6 70.7 82.3 448 2063

GM-GSCAD 81.8 84.6 70.7 82.3 1184 3018

GM-GMCP 83.3 85.7 76.0 84.1 54 267

doi:10.1371/journal.pone.0171068.t011
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We conducted simulation studies to evaluate the proposed methods. We used a block diag-

onal covariacne matrix with the block being an auto-regresive structure with a paramter ρ.

When ρ is small, the block matrix becomes sparse, and thus it behaves like an identity matrix.

Ohterwise, when ρ is large, the block matrix becomes dense, and thus it behaves like a block

exchageable matrix. We varied ρ, the degree of class imbalance and the effect size of DE genes.

Table 12. Yeoh (2002) data set: Leukemia study with 6 classes.

Method PA g-mean N-sig

Median Upper Median Upper Median Upper

NSC 95.2 96.7 91.3 95.6 1456 2050

ADA 95.2 97.5 91.9 95.6 1044 2152

SCAD 95.2 96.4 92.1 94.8 1451 1991

MCP 95.2 96.4 93.9 95.5 1022 1454

GM-NSC 95.2 96.4 91.8 95.0 2168 3847

GM-ADA 95.2 97.5 94.0 95.6 2112 2310

GM-SCAD 95.2 96.4 92.2 94.8 1834 4072

GM-MCP 95.1 96.4 92.1 94.8 1454 2449

GNSC 96.3 96.4 93.9 95.6 690 1114

GADA 95.2 97.6 93.9 95.6 642 1041

GSCAD 96.3 97.6 94.0 95.6 990 1312

GMCP 96.4 97.6 93.5 95.6 418 496

GM-GNSC 95.2 96.4 93.9 95.6 931 1528

GM-GADA 95.2 96.7 94.0 95.6 820 1290

GM-GSCAD 96.3 96.4 93.5 95.3 1154 1998

GM-GMCP 96.4 97.6 94.4 95.6 484 911

doi:10.1371/journal.pone.0171068.t012

Table 13. Ramaswamy (2001) data set: Cancer study with 14 classes.

Method PA g-mean N-sig

Median Upper Median 90%* Median Upper

NSC 70.0 75.0 0.0 0.0 1570 4430

ADA 71.9 76.9 0.0 0.0 1346 3069

SCAD 70.6 75.4 0.0 0.0 2414 5233

MCP 72.3 77.4 0.0 62.1 1157 2566

GM-NSC 63.9 72.3 0.0 0.0 4610 16063

GM-ADA 69.7 76.9 0.0 0.0 2313 10264

GM-SCAD 68.7 75.8 0.0 55.6 6174 14779

GM-MCP 72.1 78.5 0.0 62.7 1575 4535

GNSC 68.7 73.8 0.0 0.0 396 1205

GADA 69.2 75.4 0.0 0.0 306 1042

GSCAD 68.2 73.6 0.0 0.0 539 5160

GMCP 70.3 77.0 0.0 0.0 206 578

GM-GNSC 18.5 68.7 0.0 0.0 6 16063

GM-GADA 60.3 71.6 0.0 0.0 466 16037

GM-GSCAD 60.9 70.4 0.0 0.0 3027 15757

GM-GMCP 69.2 75.5 0.0 58.3 234 3853

90%*: ninty percent quantile

doi:10.1371/journal.pone.0171068.t013
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The proposed methods had better peformance in terms of prediction accuracy and gene selec-

tion compared to NSC when the block matrix was dense and class was imbalanced. When the

effect size was moderate, ALT-NSC methods performed well and among those MCP per-

formed the best. When the effect size is small, GM method performed well with the highest g-

mean.

We applied the proposed methods to four real microarray data sets. The proposed methods

improved the g-mean, but not the overall prediction accuracy, in the data sets we considered.

When the number of classes was two (Gravier data set) or prediction was easy (Yeoh data set),

only gene selection was improved by the alternative penalty functions. In the data set with the

moderate number of classes (Pomeroy data set), g-mean was improved by the alternative pen-

alty functions. When the data set had very large number of classes (Ramaswamy data set),

using the genewise penalty functions reduced the performance.

In many applications, it is desirable to develop classifiers that use the smallest possible num-

ber of genes. For example, one may wish to use an RT-PCR assay to discriminate between dif-

ferent types of tumors or to determine the prognosis of a patient with a given tumor type. Such

an assay will be prohibitively expensive if the expression levels of more than a handful of genes

are needed. Thus, a classification method that produces comparable accuracy to another

method using fewer genes would be considered superior in these situations. Hence, the fact

that our proposed methods consistently use fewer genes than conventional NSC represents a

significant advantage of our methods even if prediction accuracy is not always improved. MCP

would be very useful in real applications becacuse they have shown to select the most reliable

parsimonious gene set with competitive predictive accuracy.

Both simulation and real data studies showed that our proposed methods produced

greater improvement compared to conventional NSC in the data sets with three or four clas-

ses, but not in data sets with very large numbers of classes. When the number of classes is

large, the sample size per class is usually small, and this affects the efficiency of shrunken

mean estimators. By the virtue of the oracle property, ALT-NSC can produce more efficient

estaimtes of the shrunken means, which yields better performance on both prediction and

gene selection. Genewise shrinkages also improve the NSC classifier by combining the

related genes in the same class, producing more accurate estimates when the size of the class

is small (which commonly occurs when the number of classes is large). Clearly, the genewise

penalty (GEN-NSC) shrinks a mean estimator toward zero faster than the non-genewise pen-

alty (ALT-NSC), as shown in the simulations and the real data study. Appropriately fast

shrinkage will be able to remove noisy genes effectively. However, one observes that when

the number of classes is large, such as the Ramaswamy data set, the amount of shrinkage pro-

duced by the genewise penalty is so large that NSC loses some prediction accuracy. Thus,

applying GEN-NSC to data sets with too many classes may not be recommended when the

objective is to maximize predictive accuracy (rather than minimize the number of selected

genes).

The performance of the methods can be affected by heterogeneity of gene expression, and

this heterogeneity happens when the variances of genes differ by groups. This was pointed out

by Tibshirani et al. [2] and was observed in the compariative study of Lee et al. [25]. Tibshirani

et al. [2] suggested an ad-hoc method to account for heterogeneity. However, that method is

only applicable in the case where class centroids are not separated. The method of Pang et al.

[6] may overcome this problem because it combines the linear and quadratic discriminant

scores, where the latter assumes unequal variances by classes. Since the method does not per-

form varaible selection, applying the mean shrinkage to their method would be a future

research to handle this heterogeneit problem.
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Supporting information

S1 Rscript. R source code. This file contains the R functions that implement ALT-NSC and

GEN-NSC.
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