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Abstract

In this paper, we present a novel image mosaicking method that is based on Speeded-Up

Robust Features (SURF) of line segments, aiming to achieve robustness to incident scaling,

rotation, change in illumination, and significant affine distortion between images in a pan-

oramic series. Our method involves 1) using a SURF detection operator to locate feature

points; 2) rough matching using SURF features of directed line segments constructed via

the feature points; and 3) eliminating incorrectly matched pairs using RANSAC (RANdom

SAmple Consensus). Experimental results confirm that our method results in high-quality

panoramic mosaics that are superior to state-of-the-art methods.

1 Introduction

The automatic construction of large, high-resolution image mosaics is an active area of

research in the fields of photogrammetry, computer vision, image processing, and computer

graphics [1]. It is considered as important as other image processing tasks such as image fusion

[2], image denoising [3], image segmentation [4] and depth estimation [5]. Image mosaicking

finds applications in a wide variety of areas. A typical application is the construction of large

aerial and satellite images from collections of smaller photographs [1, 6]. More applications

include scene stabilization and change detection [7], video compression [8], video indexing [9]

and so on [1]. Some widely used commercial software packages for image mosaicking are

available, such as AutoStitch [10], Microsoft ICE [11], and Panorama Maker [12].

The key problem in image mosaicking is to combine two or more images by stitching them

seamlessly together into a new one that distorts the original images as little as possible [13].

Image mosaicking techniques can be mainly divided into two categories: grayscale-based

methods and feature-based methods. Grayscale-based methods are easy to implement, but

they are relatively sensitive to grayscale changes especially under variable lighting. Feature-

based methods extract features from image pixel values. Because these features are partially

invariant to lighting changes, matching ambiguity can be better resolved during image match-

ing. Matching robustness can be further improved by using feature points that can be detected

reliably. Many methods have been shown to be effective for the extraction of image feature
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points, for example, Harris method [14], Susan method [15], and Shi-Tomasi method [16].

Feature-based image mosaicking methods afford two main advantages: (1) the computation

complexity of image matching will be significantly reduced since the number of feature points

is far smaller than the number of pixels; (2) the feature points are very robust to unbalanced

lighting and noise, resulting in better image mosaicking results.

A wide variety of feature detectors and descriptors have been proposed in the literature (e.g.

[17–21]). Detailed comparisons and evaluations of these detectors and descriptors on bench-

mark datasets were performed in [22, 23]. Among various methods, SIFT [18] has been shown

to give the best performance [22]. Recent efforts (e.g. SURF [24], BRISK [25], FREAK [26],

NESTED [27], and Ozuysal’s method [28]) have been focused on improving SIFT-based

matching accuracy and reducing computation time. Arguably SURF [24] is among the best

methods. Fei Lei et al. proposed a fast method for image mosaicking based on a simple applica-

tion of SURF [29]. Jun Zhu et al. proposed an image mosaicking method that uses the Harris

detector and SIFT features of line segments [30]. For performance and efficiency, this method

uses Harris corner detection operator to detect key points. Then features of line segments are

used to match feature points owing to their effective representation of local image information,

such as textures and gradients. However, the Harris corner detector is very sensitive to changes

in image scale; so it does not provide a good basis for matching images of different sizes. Moti-

vated by this observation, we propose an image mosaicking method that is based on SURF fea-

tures [24] of line segments. First, the method uses the SURF detection operator to locate

feature points and then constructs a directed graph of the extracted points. Second, it describes

directed line segments with SURF features and matches them to obtain rough matching of

points. Finally, it adjusts matching points and eliminates incorrectly matched pairs through

the RANSAC algorithm [31]. The framework of our method is summarized in Fig 1.

2 SURF

SURF, like the SIFT operator, is a robust feature detection method that is invariant to image

scaling, rotation, illumination changes, and even substantial affine distortion. Both of these

descriptors encode the distribution of pixel intensities in the neighborhoods of the detected

points. SURF is computationally more efficient than SIFT owing to the use of integral images

[32] and the box filters [33] that approximate second order partial derivatives of Gaussian con-

volutions. Similarly to many other approaches, SURF consists of two consecutive parts, includ-

ing feature point detection and feature point description.

2.1 SURF feature-point detector

Similarly to the SIFT method, the detection of features in SURF relies on a scale-space repre-

sentation combined with first and second order differential operators. The key feature of the

SURF method is that these operations are approximated using box filters computed via inte-

gral images. So, the procedure of SURF feature detection involves first computing an integral

image, establishing an image scale space with box filters, and finally locating feature points in

the scale space.

The SIFT detector is based on the determinant of the Hessian matrix, which is defined at

point x = (x, y) and scale σ as

Hðx; sÞ ¼
Lxxðx; sÞ Lxyðx; sÞ

Lxyðx; sÞ Lyyðx; sÞ

2

4

3

5; ð1Þ

where Lxx(x, σ) is the convolution of the Gaussian second order derivative @2

@x2 gðsÞ with the

Image mosaicking using SURF features of line segments

PLOS ONE | https://doi.org/10.1371/journal.pone.0173627 March 15, 2017 2 / 15

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0173627


image I at point x, and similarly for Lxy(x, σ) and Lyy(x, σ). As mentioned before, in order to

reduce computation, SURF approximates Lxx, Lxy, Lyy with the box filtering using sum of the

Haar wavelet responses, resulting respectively in Dxx, Dxy, Dyy and

Happroxðx; sÞ ¼
Dxxðx; sÞ Dxyðx; sÞ

Dxyðx; sÞ Dyyðx; sÞ

2

4

3

5: ð2Þ

Fig 1. An overview of our method.

https://doi.org/10.1371/journal.pone.0173627.g001
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This can be performed very efficiently using an integral image I∑, which given an input

image I is calculated as

IPðxÞ ¼
Xi�x

i¼0

Xj�y

j¼0

Iði; jÞ: ð3Þ

The determinant of the approximated Gaussians is

detðHapproxÞ ¼ DxxDyy � 0:9Dxy

� �2

: ð4Þ

Thus, the interest points, including their scales and locations, are detected in approximate

Gaussian scale space. The size of the box filter is varied with octaves and intervals [34]:

Filter Size ¼ 3� 2octave � intervalþ 1ð Þ: ð5Þ

The filter sizes for various octaves and intervals are illustrated in Fig 2. Only pixels with

greater responses than their surrounding pixels are classified as interest points. The maximal

responses are then interpolated in scale and space to locate interest points with sub-pixel

accuracy.

2.2 SURF descriptor

The goal of a descriptor is to provide a unique and robust description of the intensity distribu-

tion within the neighborhood of the point of interest. In order to achieve rotational invariance,

the orientation of the point of interest needs to be determined. Orientation is calculated in a

circular area of radius 6s centered at the interest point, where s is the scale at which the interest

point is detected. In this area, Haar wavelet responses in x and y directions are calculated and

weighted with a Gaussian centered at the point of interest. By computing the sum of the hori-

zontal and vertical responses within a sliding orientation window of size π/3 and traversing the

entire circle every 5 degrees, 72 orientations can be obtained. The two summed responses then

yield a local orientation vector. The longest of such vector over all windows defines the main

orientation.

Once position, scale and orientation are determined, a feature descriptor is computed. The

first step consists of constructing a square region centered around the feature point and

Fig 2. Filter sizes for four different octaves and intervals (marked by arcs).

https://doi.org/10.1371/journal.pone.0173627.g002
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oriented along the orientation determined previously. The region is divided uniformly into

smaller 4 × 4 sub-regions. For each sub-region, Haar wavelet responses are computed at 5 × 5

regularly-spaced sample points. The x and y wavelet responses, denoted by dx and dy respec-

tively, are computed at these sample points weighting with a Gaussian centered at the interest

point and summed up over each sub-region to form a first set of entries to the feature vector.

In order to obtain information on the polarity of the intensity changes, the sums of the abso-

lute values of the responses, |dx| and |dy|, are also extracted. Therefore each sub-region is asso-

ciated with a four-dimensional vector

v ¼
P

dx;
P

dy;
P

dxj j;
P

dyj jð Þ: ð6Þ

Combining the vectors, v’s, from all sub-region yields a single 64-dimensional descriptor,

which is normalized to unit-norm for contrast invariance.

3 Matching of directed line segments

3.1 Rough matching

The best candidate match for each keypoint is found by identifying its nearest neighbor in the

set of keypoints generated from a reference image. The nearest neighbor is defined as the key-

point with the minimal Euclidean distance determined based on the invariant descriptor vec-

tor described above.

However, many features from an image do not have any matching counterparts in the refer-

ence image because they arise from background clutter or cannot be detected in the reference

image. Therefore, we use a global threshold on the distance to discard keypoints without good

matches. Fig 3 shows the Euclidean distance of 10000 keypoints with correct matches for real

image data. This figure was generated by matching images with different scales, rotation

angles, changes in illumination, and affine distortions. As shown in Fig 3, most of the matched

Fig 3. Euclidean distances of 10000 matched keypoints.

https://doi.org/10.1371/journal.pone.0173627.g003
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pairs have small Euclidean distances ranging from 0 to 0.15. We set the global threshold to 0.1

in our experiments, eliminating more than 90% of the false matches while discarding less than

5% of the correct matches.

3.2 Line segment features

Features of line segments are effective representation of local image information, such as tex-

tures and gradients. Given two images I and I0 to be matched, the feature points are detected

for each image using SURF to construct two directed graphs, G = (V, E) and G0 = (V0, E0),
where V = {a1, a2,� � �,an} and V0 = {b1, b2,� � �,bm} are key points extracted from I and I0, and

E = {(ai, aj), i 6¼ j} and E0 = {(bi, bj), i 6¼ j} are the edge sets of directed graphs G and G0, respec-

tively. Features are generated for each line segment between two key points. For each edge of

graph G, eij 2 E, with starting point ai and end point aj, we equidistantly sample three points

{p1, p2, p3}, with pk = pi + ((k−1)/2) (pj−pi), k = 1, 2, 3. pi is the coordinates of point ai. The

SURF features are extracted for each of these points, giving a feature matrix S = [s1, s2, s3]. Each

sk is a 64-dimensional vector. For each line segment, we have a 192-dimensional feature vector.

3.3 Nearest neighbor matching

We use the nearest-neighbor matching criterion proposed in [30] for rough matching of line

segments. Assuming image I has n1 directed line segments, L = [l1, l2,� � �,ln1
], and image I0 has

n2 directed line segments, L0 ¼ ½l0
1
; l0

2
; . . . ; l0n2

�, the nearest-neighbor pairs can be encoded using

an adjacency matrix K 2 Rn1�n2 :

K i; jð Þ ¼
1 l0j is the nearest neighbor of li

0 otherwise:
ð7Þ

(

The distance between a pair of line segments li and l0j , with feature matrices Si and S0j respec-

tively, is defined using the F-norm of the feature matrices: dðli; l0jÞ ¼ kSi � S0jkF .

The matching is further refined as follows. With the sets of key points in two given images,

V = {a1, a2,� � �,an} and V0 = {b1, b2,� � �,bm}, we use the statistical voting method reported in [30]

to obtain the matching frequency of each point. A matrix G 2 Rn×m is initiated as a null matrix.

If based on K two straight lines match each other, we vote for the starting point pairs and the

ending point pairs of the two lines once. This is carried out by incrementing the corresponding

element in G by 1. A larger element in matrix G indicates higher probability of matching of

two points. The procedure for computation of matrix G is detailed in Algorithm 1.

Algorithm 1 Computation of G
Input:MatrixK
Output:MatrixG
1: procedureCOMPUTEMATRIX(K, G)
2: InitializeG 2 Rm×n as a null matrix
3: for i = 1, 2,. . .,n1, j = 1, 2,. . .,n2 do
4: if K(i, j) = 1 then
5: Find directedline segmentli[al! am], l0j½bp ! bq�

6: G(l, p) = G(l, p) + 1, G(m, q) = G(m, q) + 1
7: end if
8: end for
9: OutputmatrixG
10: end procedure

To avoid matching to too many points to one point, the criteria to select matching points

are as follows:

Image mosaicking using SURF features of line segments
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Fig 4. Image pairs with photometric or geometric variations. (A) lighting, (B) rotation, (C) blur, (D) scaling. Reprinted

from [30] under a CC BY license, with permission from [Computational and Mathematical Methods in Medicine], original

copyright [2014].

https://doi.org/10.1371/journal.pone.0173627.g004

Fig 5. Matching results based on SURF method.

https://doi.org/10.1371/journal.pone.0173627.g005

Fig 6. Matching results based on SIFT method.

https://doi.org/10.1371/journal.pone.0173627.g006
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• Discard pairs with G(i, j)� σ, where σ = 0.5 maxi, j G(i, j).

• Select pairs giving maximal values in all rows and columns as matched pairs.

• If the maximal element in row i and the maximal element in column j are not the same, select

the larger one. For example, assuming G(i, p) is the maximal element in row i and G(q, j) is

the maximal element in column j, if G(i, p)> G(q, j), then ai and bp match each other.

Incorrectly matched pairs are further removed by using RANSAC (RANdom SAmple Con-

sensus) [31] and then a homography matrix M is estimated for image alignment.

Fig 7. Matching results based on proposed method.

https://doi.org/10.1371/journal.pone.0173627.g007

Fig 8. Mosaicking results given by the method proposed in [30]. Reprinted from [30] under a CC BY

license, with permission from [Computational and Mathematical Methods in Medicine], original copyright

[2014].

https://doi.org/10.1371/journal.pone.0173627.g008
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4 Experimental results

In this section, the experimental results of the proposed method are presented. Evaluation was

performed with gray level images with different rotation angles, scales, illumination, and affine

distortions are used. Representative results are shown here.

In order to compare our proposed method with a recent state-of-the-art method presented

in [30], images downloaded from the website [35] were used. Representative image pairs are

shown in Fig 4. The lighting conditions in the two images are largely different in Fig 4(A).

The left image has longer exposure time than the right one. The two images in Fig 4(B) were

taken by ordinary camera in different orientations. The two images have different resolutions

Fig 9. Mosaicking results given by our method.

https://doi.org/10.1371/journal.pone.0173627.g009

Fig 10. Images with affine distortion.

https://doi.org/10.1371/journal.pone.0173627.g010
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in Fig 4(C). The left one is a blurred low-resolution image and the right one has higher

resolution. In Fig 4(D), the left image is taken with the lens of the camera zoomed relative to

the right one. Therefore, the buildings in the left image appear larger than the ones in the

right.

Results of matching by different methods are shown in Figs 5–7. Fig 5 indicates that SURF

cannot even stitch the images correctly due to incorrectly matched points. Figs 6 and 7 demon-

strate that both SIFT and our method obtain good results. However, Fig 6(B) indicates that

SIFT still results in wrongly matched points. Our method incorporates robust statistical voting

and rough matching strategies that could eliminate incorrectly matched pairs.

Fig 11. Matching by different methods. (A) SURF, (B) SIFT, (C) Our method.

https://doi.org/10.1371/journal.pone.0173627.g011
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Figs 8 and 9 show the panoramic images stitched by our method and the algorithm pre-

sented in [30]. As shown in Fig 8(A) and 8(D) (in regions marked with red circles), the com-

parison method results in ghosting due to inaccurate matching.

As shown in Figs 8(C) and 9(C), we can see Fig 9(C) is not clear as the Fig 8(C). The reason

is that the quality of the original image downloaded from the website is not good.

Fig 12. Mosaicking results by different methods. (A) SIFT, (B) Our method.

https://doi.org/10.1371/journal.pone.0173627.g012

Fig 13. Test image pairs taken from textured and structured scenes under photometric or geometric

transformations. (A) Bikes (blur), (B) tree (blur), (C) Leuven (lighting), (D) bark (scaling and rotation), (E) wall

brick (viewpoint), (F) boat (rotation), (G) graffiti (viewpoint), (H) UBC (JPEG).

https://doi.org/10.1371/journal.pone.0173627.g013
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Fig 10 shows an image pair with significant affine distortion. Results of matching by differ-

ent methods are shown in Fig 11(A)–11(C). Fig 12 shows the panoramic images stitched by

SIFT and our method. We can see that the panoramic image stitched by our method is cleaner

than the one given by SIFT.

To evaluate the proposed method quantitatively, we used some representative test image

pairs from website [36], taken for the textured and structured scenes, as shown in Fig 13. The

following metric is used:

1 � precision ¼
# false matches

# true matchesþ # false matches
: ð8Þ

Note that a correct match is a match where two keypoints correspond to the same physical

location, and a false match is one where two keypoints come from different physical locations.

Table 1 presents the comparison of the matching results, including the number of correct

matches over the number of total matches and 1-precision. The results in the table indicate

that our proposed algorithm is superior in terms of 1-precision.

5 Conclusion

In this paper, we have introduced a novel image mosaicking method based on SURF features

of line segments. This method firstly uses SURF detection operator to detect feature points.

Secondly, it constructs directed line segments, describes them with SURF feature, and matches

those directed segments to acquire rough point matching. Finally, the RANSAC (RANdom

SAmple Consensus) algorithm is used to eliminate incorrect pairs for robust image mosaick-

ing. Experimental results demonstrate that the proposed algorithm is robust to scaling, rota-

tion, lighting, resolution and a substantial range of affine distortion.

Recently, Ji et.al [37] proposed a novel compact bag-of-patterns (CBoP) descriptor with an

application to low bit rate mobile landmark search. The CBoP descriptor offers a compact yet

discriminative visual representation, which significantly improves search efficiency. In the

future, we will try these new methods [37–39] proposed in the fields of mobile visual location

recognition and mobile visual search to further improve the performance of our algorithm.

Supporting information

S1 File. Euclidean distances of 10000 matched keypoints.

(TXT)

Table 1. Performance comparison with state-of-the-art methods.

Image #CM/#TM 1-Precision

SURF SIFT Proposed SURF SIFT Proposed

A 122/156 234/353 133/156 0.22 0.34 0.15

B 67/95 140/592 81/96 0.29 0.73 0.16

C 63/88 97/192 74/88 0.28 0.49 0.16

D * 76/156 28/56 * 0.51 0.50

E 60/133 176/445 73/133 0.55 0.60 0.45

F 29/62 158/186 53/62 0.53 0.15 0.15

G 8/23 9/57 13/23 0.65 0.84 0.43

H 368/422 484/723 388/422 0.13 0.33 0.08

CM: correct matches; TM: total matches; *: matching failed.

https://doi.org/10.1371/journal.pone.0173627.t001
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