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Abstract
Genomic and physiological responses in Gulf killifish (Fundulus grandis) in the northern

Gulf of Mexico have confirmedoil exposure of resident marsh fish following the Macondo

blowout in 2010. Using these same fish, we evaluated otolith microchemistryas a method

for assessing oil exposure history. Laser-ablation inductively-coupled-plasmamass spec-

trometrywas used to analyze the chemical composition of sagittal otoliths to assess

whether a trace metal signature could be detected in the otoliths of F. grandis collected from

aMacondo-oil impacted site in 2010, post-spill relative to pre-spill, as well as versus fish

from areas not impacted by the spill. We found no evidence of increased concentrations of

two elements associated with oil contamination (nickel and vanadium) in F. grandis otoliths
regardless of Macondo oil exposure history. One potential explanation for this is that

Macondo oil is relatively depleted of thosemetals compared to other crude oils globally.

During and after the spill, however, elevated levels of barium, lead, and to a lesser degree,

copper were detected in killifish otoliths at the oil-impacted collection site in coastal Louisi-

ana. This may reflect oil contact or other environmental perturbations that occurred concom-

itant with oiling. For example, increases in barium in otoliths from oil-exposed fish followed

(temporally) freshwater diversions in Louisiana in 2010. This implicates (but does not con-

clusively demonstrate) freshwater diversions from the Mississippi River (with previously

recorded higher concentrations of lead and copper), designed to halt the ingress of oil, as a

mechanism for elevated elemental uptake in otoliths of Louisianamarsh fishes. These

results highlight the potentially complex and indirect effects of the Macondo oil spill and

human responses to it on Gulf of Mexico ecosystems, and emphasize the need to consider

the multiple stressors acting simultaneously on inshore fish communities.
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Introduction
The Gulf of Mexico (GOM) is a highly dynamic and productive ecosystem that supports recrea-
tional and commercial fishing, tourism, as well as significant oil and gas exploration and extrac-
tion industries (~600 million barrels per year) [1,2]. On April 20, 2010, the explosion of the
Deepwater Horizon drilling rig precipitated the 84-day release of an estimated 4.5 million barrels
of Louisiana crude oil into the Gulf of Mexico [3]. Although the release of oil at great depth
impacted deep sea ecosystems [4–6], surface oil also reached the coastline by May, 2010, and ulti-
mately grounded along 25% of the beach and saltmarsh shorelines surveyed in Gulf states [7].

Louisiana coastal wetlands are inextricably linked to the health of GOM fisheries [8–10].
Therefore, there has been considerable interest in describing organismal [11–15] and popula-
tion-level responses [16,17] of saltmarsh-associated nekton to oil pollution throughout the
northern GOM. The Gulf killifish (Fundulus grandis) has served as a valuable model species to
assess oil-spill impacts. Fundulus spp. are numerically dominant marsh residents [17], serve as
an important trophic link in estuarine food webs [18], exhibit considerable site fidelity [19,20],
and performwell in laboratory trials without demonstrating handling artifacts on fitness [21].

Fundulus grandis has been a focal species in post-spill impact assessments, but studies
report mismatched outcomes. Negative impacts of oiling are consistently documented at the
organismal level as revealed through genomic, physiological, and developmental responses
[11–15], while population-level impacts have not been detected [16,17]. A recent review by
Fodrie et al. [22] highlighted the value of testing for sublethal effects of oil toxicity on fishes
such as F. grandis as a way of reconciling this apparent divergence in organismal and popula-
tion-level studies. Sublethal effects could either result in lagged effects at the population level
(thus not yet registering in population surveys), or perhaps affect vital rates that simply do not
have strong ties to individual or population-level fitness. Six years post-spill, however, it is diffi-
cult to collect fish and know to what degree individuals encountered oil during 2010, and there-
fore what expectation should exist regarding the potential for oil-related sublethal effects
among those fish (e.g., reduced growth).

One tool for potentially recovering the oil-exposure history of individual fish relies on
examination of the chemical composition of otoliths. Otoliths, “ear stones” of calcium carbon-
ate located in the inner ear of teleost fish, grow in daily increments around a central core. As
the otolith grows, trace elements from the environment are continuously incorporated into
successive rings in a manner that reflects the environmental conditions experiencedby that
individual [23]. For instance, salinity and temperature regimes experiencedby fish are often
reflected in the concentrations of strontium (Sr) and/or barium (Ba) [24–27].

Previous research in experimentalmesocosms demonstrated that crude oil constituents,
including magnesium (Mg), chromium (Cr), and Sr, were accumulated in juvenile flatfish–
likely through both food intake and via exchange across the gills and then incorporated into
the otoliths [28]. Nickel (Ni) and vanadium (V), also oil constituents [29], have been detected
in otoliths and used as a fingerprint for the magnitude and duration of oil contact by inverte-
brates [30,31] and fishes [32]. Macondo oil has several constituents, includingMg, V, Mn, Fe,
Co, Ni, Cu, Ba, and Pb, which occur at varying concentrations relative to oils from other
sources [33,34]. Indeed, oil constituents vary significantly depending on the source of the oil
[29], and therefore the suite of chemical markers used to identify oil contact may be unique to
each spill (sensu [35]). Despite the promise of this approach, to date, there is only one pub-
lished study that has evaluated otolith-basedmarkers for detecting oil contact in GOM fishes
following the Macondo spill [36]. In that study, F. grandis were collected from northern GOM
coastal marshes in 2012–2013 at sites that were either oiled in 2010 by the Macondo Spill based
on Shoreline Cleanup and Assessment Technique (SCAT) surveys [7] or near an active oil
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refinery. The results of that study indicate that there was no evidence of oil exposure in the oto-
liths of fish at oil-impacted sites 2–3 years after the spill.

To rigorously evaluate whether signatures of Macondo oil appear in the otoliths of fishes in
situ, a positive control is needed, in which other independentmarkers have confirmedoil expo-
sure for individual fishes. Throughout 2010, including before, during, and after the Macondo
spill, Whitehead et al. [11] collectedF. grandis frommarsh systems in Louisiana,Mississippi,
and Alabama in a Before-After-Control-Impact (BACI) design. At an oiled site, F. grandis
exhibited a pattern of altered genome-wide gene expression in liver tissues that was indicative of
exposure to oil. Within the gills of F. grandis exposed to oil, cytochromeCYP1A protein, a
widely used biomarker of exposure to polycyclic aromatic hydrocarbons (PAH) [37–39], was
elevated, correlating with the upregulation of associated genes coincident with the timing and
arrival of oil to the northernGOM. These molecular responses were diagnostic of oil exposure
[40] and were not consistent with other environmental variables such as salinity or temperature.
Following this study, Dubansky et al. [13] evaluatedmultiple tissues from these fish from 2010
and additional sampling in 2011 from Louisiana. Again, genome-wide gene expression, this
time in gills, and CYP1A protein in gill, liver, intestine, and kidney tissues were indicative of
exposure to contaminating oil. Furthermore, exposure of developing embryos to sediments col-
lected from sites in Louisiana caused similar molecular responses and induced developmental
abnormalities that were consistent with well-known effects caused by PAHs. From these studies,
we have clear evidence that these fish were exposed and responded to the toxic components of
oil from the Deepwater Horizon Oil Spill (DHOS) via complex biochemical responses. These
exposures persisted for more than a year following initial oiling, suggesting that fish from Loui-
siana marshes were exposed chronically to weathered oil [13]. Using these same oil-exposed fish
[11], our primary objective was to determinewhether trace metal signatures associated with the
Macondo spill could be detected at elevated concentrations in the otoliths of F. grandis. This is
essential proof-of-concept data to demonstrate the applicability of this approach across a diver-
sity of inshore and offshore taxa of concern in the northernGOM. Additionally, we evaluated
the chemical composition of the same otoliths to more broadly determine if other environmen-
tal perturbations in the GOMmay have affected otolith elemental composition.

Materials andMethods

Ethics Statement
The fish used in this study were euthanized by severing the spinal cord. The protocol was
approved by the Institutional Animal Care and Use Committee (IACUC) at Louisiana State
University (Protocol Number: 10–098). Saltwater ScientificCollectingpermits were provided
by the LA Department of Wildlife.

Fish Collections
We employed a BACI design to evaluate any changes in the chemical composition of otoliths
associated with the Macondo spill. Male and female Fundulus grandis were collected, as
reported inWhitehead et al. [11], using wire mesh traps placed along marsh edges in Grande
Terre, Louisiana (GT); Bayou La Batre, Alabama (BLB); Mobile Bay, Alabama (MB); and Fort
Morgan, Alabama (FMA) (Table 1, Fig 1). Whitehead et al. [11] dissected tissue samples from
male fish in situ for morphological analysis and immunohistochemical analysis of CYP1A pro-
tein expression in gills, genome expression in the liver, and analytical chemistry (total PAHs).
The remaining carcasses (57–99 mm total length, Table 1) were stored at -20°C until use for
otolith microchemistry analysis (Table 1). Analytical chemistry of tissue samples was not sensi-
tive for detecting oil pollution, yet biological responses were [11]; only fish from GT were
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directly exposed to Macondo oil and showed divergent genomic and physiologic responses
coincident with, and diagnostic of, oil exposure [11,13].

FMA and GT are barrier islands and experience similar salinity regimes (>20). MB, on the
other hand, experiences low salinities year-round (<10). BLB falls in the middle of this salinity
continuum (~10–20). Fish from our four study sites were collected on May 1–9, 2010 (n = 6)
before oil reached the coastline (pre-oil samples), on June 28–30, 2010 (n = 6) immediately fol-
lowing the peak of oil landfall in mid-June (peak-oil samples), and two months later on August
30-September 1, 2010 (post-oil samples, n = 6) (Table 1). No fish were collected in MB during
the post-oil sampling event.

Environmental Data
Trace elemental uptake is often influenced by both temperature and salinity. Therefore, the
environmental conditions experiencedby the fish in this study were evaluated. Mean values for
monthly temperature and salinity in April-August, 2010 (i.e., the periodmost relevant for our
collections), were obtained from USGS and NOAA meteorological stations in the vicinity of
each sampling site (see Table 1). Reportingmonthly means for both salinity and temperature is
appropriate for otolith microchemistry studies because otoliths integrate environmental infor-
mation over longer periods of time. For gene expression and many aspects of physiology with
short-term responses [41], records of daily salinity at the time the fish were collectedwere
appropriate and were reported inWhitehead et al. [11]. To characterize oil contamination
(total PAHs), surface water samples were collected during the three sampling efforts at all sites
after the grounding of oil, and sediment samples were collectedwithin a month of the last sam-
pling effort [11]. Analytical chemistry of surface water samples was not sensitive for detecting
oil pollution during pre-, peak, and post-oil sampling efforts, but high PAH levels in sediments
were detected at GT following oiling [11]. Of the field sites, only GT was directly oiled, which
occurred after the first sampling time point (May 09, 2010) and prior to the second sampling
time point (June 28, 2010). This was confirmed by satellite imagery, visual observation, biologi-
cal responses, and sediment chemistry as reported inWhitehead et al. [11].

Otolith Preparation
Frozen fish samples were transported to the Rutgers University Marine Field Station (IACUC
Protocol No. 88–042), Tuckerton, NJ, where otoliths were dissected and prepared for

Table 1. Gulf killifish (Fundulusgrandis) collectionsites, coordinates,meteorological stations (for temperature and salinity records), and sam-
pling dates during 2010.

CollectionSite Location (Latitude,
Longitude)

Meteorological Station (<1–
10 km)

KillifishCollectionDates (No. of otoliths
for chemical analysis)

Total Length (mm)

Pre-oil Peak oil Post-oil Mean ± SEM Size
Range

Grand Terre Island,
LA (GT)

29°16'22.93"N, 89°
56'41.87"W

Barataria Pass at Grand Isle,
LA

5/9/2010
(n = 6)

6/28/2010
(n = 6)

8/30/2010
(n = 6)

78.8 ± 2.4 61–97

Bayou La Batre, AL
(BLB)

30°22'42.43"N, 88°
14'47.42"W

Cedar Point, AL 5/2/2010
(n = 6)

6/29/2010
(n = 6)

9/1/2010(n = 6) 74.6 ± 1.7 57–90

Mobile Bay, AL (MB) 30°40'43.77"N, 87°
59'40.06"W

Meaher Park, Mobile Bay, AL 5/5/2010
(n = 6)

6/30/2010
(n = 6)

no samplesa

(n = 0)
84.1 ± 2.2 72–95

Fort Morgan, AL
(FMA)

30°14'1.25"N, 87°
57'40.84"W

Dauphin Island, AL 5/5/2010
(n = 6)

6/29/2010
(n = 6)

9/1/2010 (n = 6) 84.1 ± 2.2 70–99

aThere are no post-oil samples fromMB as the last fish collected at this site are from June (peak-oil).

doi:10.1371/journal.pone.0162699.t001
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Fig 1. Map of study sites in the northernGulf of Mexico.General (inset) and specific location of Gulf killifish (Fundulus
grandis) collection sites in Grande Terre [GT], LA; Bayou La Batre, AL [BLB]; Mobile Bay, AL [MB]; and Fort Morgan, AL
[FMA], throughout 2010 (May-August). The point labeledDwH indicates the site of the Deepwater Horizon explosion on April
20, 2010. The closest meteorological stations to the fish collection sites are marked by Xs.

doi:10.1371/journal.pone.0162699.g001
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microchemical analysis. All supplies used to handle the otoliths were washed in 10% nitric acid
(Optima). Both pairs of sagittal otoliths were extracted using teflon tip forceps. Visible tissue
was cleaned by gently rubbing the otoliths against a wet KimWipe (wet with MilliQ water,
Ultrapure) to remove attached organics. Right sagittal otoliths were soaked in MilliQ water for
5 minutes. Water was removed and a 200-μl solution of buffered (0.05 N NaOH) hydrogen
peroxide (15% H2O2) was added to each vial. Two minutes later, 200-μl of 1% nitric acid were
added to each vial. After 5 minutes, the solution in the vials was removed. The otoliths were
immediately rinsed three times with 200 μl of MilliQ water and then dried under a class-100
laminar flow hood (Air Control Inc.).

Otoliths were cut and polished to obtain a dorsoventral transverse section (~300 μm thick)
that exposed the core. First, clean otoliths were embedded in Epothin 2 Epoxy Resin and Hard-
ener. The anterior section of each otolith was cut along the transverse plane with a diamond saw
(Hillquist Inc.) at approximately 200–300 μm from the core. This cut side was slightly polished
and glued onto a petrographic slide using Epothin 2 Expoxy Resin and Hardener. The posterior
side of the otolith was then cut and polished with a diamond polisher (Hillquist Inc.) at a dis-
tance of 50–100 μm from the core. Polishing films (Precision Fiber Products, Inc.) of 30, 9, and
3 μm were used to carefully remove otolith material until the core was reached and the surface
of the otoliths was further smoothed using a Mircocloth fabric (Buehler) withMicroPolish solu-
tion (Buehler). Finally, the otolith cross sections were cleaned using a soft tooth brush soaked
first in 15% buffered hydrogen peroxide, then 1% nitric acid, and finally rinsed three times
usingMilli Q water. All samples were dried under the laminar flow hood before being stored.

Otolith Analysis
Otoliths were analyzed using laser-ablation inductively-coupled-plasma mass spectrometry
(LAICPMS) at the University of North Carolina at Chapel Hill’s Mass Spectrometry Facility in
September 2013. Otolith material was ablated using a Photon Machines Analyte G2 laser abla-
tion unit (193 nm wavelength). Each otolith was sampled by ablating one 150-μm line along
the most recent growth increments at the ventral edge of the otolith (4.2 mJ/cm2 intensity, 10-
μm/s scan speed, and 110-μm spot size). Based on otolith growth data for F. grandis of similar
sizes (Anthony Vastano, personal communication), the ablated portion of otoliths corre-
sponded to approximately the last month before capture. Ablated material was transported
from the laser unit using a mixture of helium (He) and argon (Ar) gases to a Thermo Scientific
Element XR Inductively-Coupled-Plasma Mass Spectrometer (ICPMS). The isotopes of eight
elements were recorded: calcium (48Ca), vanadium (51V), manganese (55Mn), nickel (60Ni),
copper (63Cu), strontium (88Sr), barium (138Ba), and lead (208Pb). To prevent nickel interfer-
ence, the ICPMS was fitted with an aluminum skimmer and sample cones (RA Chilton ICPMS
Cones Ltd.). Elements were selected for analysis based on their potential use as indicators of oil
(e.g., V and Ni; [42]) or pollution (e.g., Cu, Pb from terrestrial sources; [43]) exposure. The list
also included elements traditionally used as environmental indicators of temperature and salin-
ity, such as Sr and Ba [44,45], and sediment redox (Mn; [46]). Calciumwas used as a universal
internal standard to account for the amount of otolith material ablated. A glass standard spiked
with trace elements (National Institute Standards and Technology [NIST]-612 glass reference
material, [47]) was analyzed at the beginning and end of each day, as well as every time the
laser sample chamber was opened to exchange samples (~ every 10–15 otoliths). To correct for
daily machine drift, otolith element:Ca ratios were multiplied by a correction factor generated
from the NIST 612 standard runs. The NIST 612 data were also used to measure analytical pre-
cision (% relative standard deviation, RSD) for each element: V (10.1%), Mn (11.1%), Ni
(10.2%), Cu (10.3%), Sr (13.9%), Ba (14.1%), Pb (12.7%).
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Data Analysis
Data processing to determine elemental concentrations was conducted as describedby Fodrie
and Levin [48]. For each run, the mass spectrometer produced a chromatogram (counts over
time). Detection limits for each element were defined as three standard deviations (SD) above
the mean of the background. Detection limits (reported as element:Ca concentrations) were
calculated by averaging data from 16 otoliths and were based on acquiring 100 million 48Ca
counts per second: 0.04 μmol V /mol Ca; 0.16 μmol Mn/mol Ca); 0.50 μmol Ni/mol Ca);
0.36 μmol Cu/mol Ca); 0.25 μmol Sr/mol Ca); 0.02 μmol Ba/mol Ca); and 0.05 μmol Pb/mol
Ca). For signals above detection limits, background signals were subtracted from sample sig-
nals, and the area under the chromatogram peak was calculated (total counts). Elemental sig-
nals below the detection limits threshold were assigned a random value between zero and the
detection limit.

Following our BACI design, the effect of collection location (control reference vs. impact
[i.e., oiled]) and time (before vs. after the grounding of oil at GT) on the elemental concentra-
tion of killifish otoliths was evaluated using two-way analysis of variance (ANOVA). Tradi-
tional BACI designs study one impact and one control location and do not replicate sites.
Underwood [49] stressed the importance of sampling multiple control sites and multiple
impacts sites when logistically possible, to increase the likelihood that observeddifferences are
due to the impact in question. In this instance, field sites were established prior to the arrival of
contaminating oil and we were not able to control the number of impacted or control sites as
the trajectory of oil was highly patchy along northern GOM coasts. Oil made landfall at the GT
site only, such that the remaining sites (BLB, MB and FMA) were considered unoiled reference
sites. Thus, we considered our two-way analyses in three distinct ways: (1) averaging all data
from BLB, MB and FMA in to an overall reference signature; (2) using only the data from FMA
as the reference signature, given that FMA was most environmentally similar (e.g., salinity,
temperature) to GT; and (3) using only data from BLB and FMA as the reference signature, in
essence removing MB from our analyses since that site was most environmentally distinct
from all other sites (low salinity), and post-spill data fromMB were not available. Notably, the
qualitative patterns we observedwith respect to statistical and biological significance in otolith
signals were conserved regardless of what approach we utilized for defining reference sites/
specimens (i.e., regardless of statistical approach, patterns were similar; see S1, S2, S3 and S4
Tables). For simplicity, we hereafter present only the merged results of BLB and FMA as the
reference signature.

Our final ANOVA model included site and sampling period as main factors, as well as the
effect of the site x sampling period interaction term. This design is based on the hypothesis that
temporal changes in otolith signatures at the oiled site (GT) before and after the grounding of
oil should be distinct from temporal changes that occur at unoiled control sites [50]. Thus, the
ANOVA term of most interest was the site x sampling period interaction.

Separate two-way ANOVAs were run for the seven element:Ca ratios that were evaluated.
Furthermore, separate two-way ANOVAs were run to first compare the pre-oil vs. peak-oil
periods, and then the pre-oil vs. post-oil periods (i.e., 14 total analyses). Because each of the ele-
ment:Cametrics across the two different temporal comparisons was considered a distinct,
independent test of oil contact, we did not make corrections to experiment-wise alpha [51].
Rather, for each element and across all sampling periods, we considered p values (without
denoting an arbitrary alpha), effect sizes, and variances to evaluate the strength of evidence for
otolith-basedmarkers of oil contact [52,53]. For the ANOVAs, all element:Ca data were Log (x
+ 1) transformed to meet the assumptions of normality and homoscedasticity, resulting in only
a fewmodest violations for parametric tests (against which ANOVAs are largely robust).
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Additionally, the associations between two environmental parameters, salinity and tempera-
ture, and otolith Ba:Ca and Sr:Cawere also evaluated using linear regression (i.e., four separate
analyses).

Results

Environmental Variables
Surface water temperatures at GT, BLB, MB, and FMA in 2010 were consistent with the 5-year
(2008–2013) seasonal mean for the northernGulf of Mexico (Fig 2A). At all sites, mean tem-
peratures were approximately 20°C during April, and experienced a seasonal increase to
approximately 30°C duringMay 2010, and remained at an average of 30°C from June to
August.

Salinity regimes for these four sites were variable (Fig 2B). Salinity levels near MB were the
lowest. Monthly mean salinity in MB remained below 1 from April-July and rose slightly to 2.5
in August. The salinity at BLB fluctuated considerably betweenApril and August (with daily
values ranging from 2 to24). Monthly salinity averages were lowest from April to June
(mean = 10) and highest in July-August (mean = 18). Near GT, monthly average salinity was
18 in April, decreased in May to 13, and reached the lowest average in June (7), before increas-
ing to 13 in July. Notably, freshwater diversions in Louisiana which were increased in volume
to slow the progression of oil into coastal habitats were evident at GT as revealed by the drop in
salinity in June and August, which averaged 6 lower than the calculated 5 year mean (2008–
2013) for that time of the year. Salinity data for FMA were not available for the first six months
of 2010. However, FMA had the highest salinity levels of all four sites during July and August,
fluctuating between 13 and 30 and averaging 22.

Otolith Responses
In the immediate aftermath of oil grounding at GT, changes in the otolith concentrations of Ba
(moderate evidence) and Pb (strong evidence)were distinct from the concentrations in otoliths
from fish at control sites (Table 2, Fig 3). Mean otolith Ba:Ca (mmol/mol) levels at GT
increased by 40% between the pre-oil and peak-oil sampling, while otolith Ba:Ca concentra-
tions among the control sites shifted negligibly over the same time. Statistical support for a
meaningful, consistent interaction between site and time in otolith Ba:Ca signatures was not
strong however (p = 0.112; Table 2). Similarly, mean otolith Pb:Ca signatures were similar
between fish from GT and control sites during pre-oil sampling, and then diverged notably
during peak-oil sampling. At GT, mean otolith Pb:Ca concentrations rose by over 300%
through time (note large standard deviation), while otolith Pb:Ca concentrations of fish at con-
trol sites (collected at the same time as peak oiling at GT) fell to near 50% of pre-oil levels (Fig
3). Statistical evidence supported a marginally significant interaction between site and time on
otolith Pb:Ca in our BACI design (p = 0.059; Table 2). Among all other elements, the only nota-
ble differences across space or time were as follows: (1) otolith V:Ca concentrations were con-
sistently higher (approximately double) at GT relative to control sites, regardless of sampling
period (main effect of site p = 0.056; Table 2); and (2) otolith Cu:Ca concentrations were con-
sistently lower (approximately a 40% decline) at GT relative to control sites, regardless of sam-
pling period (main effect of site p = 0.024; Table 2).

Two months later, at the “post-oil" sampling, otolith concentrations of Ba (strong evidence)
and Pb (strong evidence)were distinct between fish from oiled and reference sites (Table 3, Fig
4). Additionally, otolith concentrations of Cu (strong evidence) and Ni (verymodest evidence)
were suggestive of changes at GT that were different from patterns recorded across control
sites. Mean otolith Ba:Ca concentrations more than doubled between pre-oil and post-oil
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Fig 2. Monthlymean temperature and salinity at fish collection sites. (A) Temperature values were
obtained fromBarataria Bay Pass, LA (USGS 073802516) and were considered representatives of surface
waters in the northernGulf of Mexico. The solid line represents the values for GT in 2010 and the dashed line
the values for the 5-year mean. (B) Salinity values were obtained from stations near collection sites, including
Maeher Park, AL (MB), Cedar Point, AL (BLB), BaratariaPass, LA (GT), and Dauphin Island, AL (FMA). The
solid line represents values for GT in 2010 and the dashed line the values for the 5-year mean obtained from
Barataria Pass.

doi:10.1371/journal.pone.0162699.g002
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sampling at the GT site, while otolith Ba:Ca concentrations among the control sites increased
by only slightly between pre-oil and post-oil sampling. Moreover, the absolute change in oto-
lith Ba:Ca at GT (a 0.02 mmol/mol increase) was five-times greater than the change observed
at control sites (a 0.004 mmol/mol increase). Statistical support for an interaction between site
and time in otolith Ba:Ca signatures was compelling (p<0.001; Table 3). As before, Pb:Ca sig-
natures were similar betweenGT and control fish during pre-oil sampling, and then diverged
notably during post-oil sampling. At GT, mean otolith Pb:Ca concentrations rose by over
800% through time (note large standard deviation), while Pb:Ca concentrations at control sites
only doubled over the same period. Again, statistical evidence supported a marginally

Table 2. ANOVA table for two factor BACI design, pre- vs. peak oil comparison.

Element Source Sum of Squares (SS) Df F p

V Time: BA 1.60x10-5 1 1.87 0.402

Location: CI 0.001 1 129.53 0.056

Interaction: BACI 8.557x10-6 1 0.65 0.800

Error 0.004 32

Total 35

Mn Time: BA 0.001 1 2.298 0.371

Location: CI 1.360E-5 1 0.053 0.855

Interaction: BACI 0.000254 1 0.014 0.907

Error 0.584 32

Total 35

Ni Time: BA 0.001 1 0.740 0.548

Location: CI 0.002 1 1.206 0.470

Interaction: BACI 0.002 1 0.249 0.621

Error 0.247 32

Total 35

Cu Time: BA 0.000174 1 7.171 0.228

Location: CI 0.017 1 691.615 0.024

Interaction: BACI 2.434E-5 1 0.003 0.956

Error 0.251 32

Total 35

Sr Time: BA 0.012 1 5.169 0.264

Location: CI 0.003 1 1.136 0.480

Interaction: BACI 0.002 1 0.830 0.369

Error 0.088 32

Total 35

Ba Time: BA 5.391E-5 1 2.275 0.373

Location: CI 8.650E-5 1 3.650 0.307

Interaction: BACI 2.370E-5 1 2.676 0.112

Error 0.000283 32

Total 35

Pb Time: BA 0.002 1 0.324 0.671

Location: CI 0.008 1 1.578 0.428

Interaction: BACI 0.005 1 3.840 0.059

Error 0.042 32

Total 35

BLB and FMAwere used as the reference (control) signature. BA = before-after, CI = control-impact.

doi:10.1371/journal.pone.0162699.t002
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Fig 3. Composite of trace element concentrations in Gulf killifish (Fundulusgrandis) otoliths. Fish
were collected pre- (white bars) and peak (black bars) oil contamination at impacted (GT) and control sites
(FMA, BLB). Each plot depicts themean elemental concentrations (mean ± SEM) in μmol/mol (V, Mn, Cu, Pb)
or mmol/mol (Sr and Ba) of several otolith replicates. Sample sizes for the impacted sites are n = 6 (pre) and
n = 6 (peak) and for control sites n = 12 (pre) and n = 12 (peak). Before-after (pre vs. peak), impacted-control,
and/or interaction effects are noted with a BA, CI, and or BACI respectively along with p values. ANOVA
tables for the two-way, before-after control-impact (BACI) design are included in Table 2.

doi:10.1371/journal.pone.0162699.g003
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significant interaction between site and time on Pb:Ca in our BACI test (p = 0.070; Table 3).
While mean otolith Cu:Ca concentrations were nearly twice as high at control sites relative to
GT before the grounding of oil, this pattern was reversed with Cu:Ca concentrations being
twice as high at the oiled site relative to control sites during the post-oil sampling (statistical
test for a site x time interaction, p = 0.088; Table 3). This result was driven primarily by changes
over time at GT, as otolith Cu:Ca levels at control sites were relatively stable between pre-oil
and post-oil sampling. Mean otolith Ni:Ca concentrations were also elevated at GT post-spill
(i.e., a 400% increase relative to pre-oil levels) in a manner not reflected at control sites (where

Table 3. ANOVA table for two-factorBACI design, pre- vs. post-oil comparison.

Element Source Sum of Squares (SS) Df F p

V Time: BA 1.2E-4 1 449.69 0.030

Location: CI 0.001 1 3342.39 0.011

Interaction: BACI 2.672E-7 1 0.001 0.971

Error 0.006 32

Total 35

Mn Time: BA 0.025 1 5.262 0.262

Location: CI 0.003 1 0.676 0.562

Interaction: BACI 0.005 1 0.208 0.651

Error 0.733 32

Total 35

Ni Time: BA 0.064 1 1.233 0.467

Location: CI 0.050 1 0.963 0.506

Interaction: BACI 0.052 1 1.836 0.185

Error 0.906 32

Total 35

Cu Time: BA 0.020 1 0.747 0.546

Location: CI 0.001 1 0.055 0.854

Interaction: BACI 0.027 1 3.094 0.088

Error 0.274 32

Total 35

Sr Time: BA 0.049 1 100.558 0.063

Location: CI 0.006 1 12.078 0.178

Interaction: BACI 4.84E-4 1 0.172 0.681

Error 0.090 32

Total 35

Ba Time: BA 2.46E-4 1 2.556 0.356

Location: CI 2.03E-4 1 2.107 0.384

Interaction: BACI 9.634E-5 1 19.219 <0.001
Error 1.60E-4 32

Total 35

Pb Time: BA 0.040 1 2.202 0.378

Location: CI 0.023 1 1.287 0.460

Interaction: BACI 0.018 1 3.526 0.070

Error 0.165 32

Total 35

Data fromGT were used as the impact signature and data fromBLB and FMAwere used as the reference (control) signature. BA = before-after, CI = control-

impact.

doi:10.1371/journal.pone.0162699.t003
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Fig 4. Composite of trace element concentrations in Gulf killifish (Fundulusgrandis) otoliths. Fish
were collected pre- (white bars) and post (gray bars) oil contamination at impacted (GT) and control sites
(FMA, BLB). Each plot depicts themean elemental concentrations (mean±SEM) in μmol/mol (V, Mn, Cu, Pb)
or mmol/mol (Sr and Ba) of several otolith replicates. Sample sizes for the impacted sites are n = 6 (pre) and
n = 6 (post) and for control sites n = 12 (pre) and n = 12 (post). Before-after (pre vs. post), impacted-control,
and/or interaction effects are noted with a BA, CI, and or BACI respectively along with p values. ANOVA
tables for the two-way before-after control-impact (BACI) design are included in Table 3.

doi:10.1371/journal.pone.0162699.g004
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Ni:Ca levels remained stable through time). However, statistical evidence for a site x time inter-
action in Ni:Ca was weak (p = 0.185; Table 3), and we note that the elevated post-oil mean at
GT was driven by an outlier. Again, V:Ca concentrations were consistently higher at GT than
all other sites (approximately double; main effect of site p = 0.011), and over time we recorded
a 25% increase in V:Ca evenly across sites (main effect of time p = 0.030, Table 3). Sr:Ca levels
also increased by roughly 25% between pre-oil and post-oil sampling regardless of site type
(main effect of time p = 0.063; Table 3).

Changes in Ba and Sr concentrations were associated with temporal and spatial changes in
salinity. The relationship between salinity and Ba concentration was negative (R2 = 0.373,
p = 0.046) (Fig 5A), while the relationship to Sr concentration was positive (R2 = 0.69,
p = 0.002) (Fig 5B). No significant relationship between Ba concentrations and temperature
(R2 = 0.02, p = 0.677) or Sr concentrations and temperature (R2 = 0.105, p = 0.330) were
detected.

Discussion
We detected differences in the chemical composition of F. grandis otoliths collected before and
after the Macondo oil spill at impacted vs. control sites, but not necessarily in the elements that
we initially expected. Spatial and temporal patterns in otolith elemental concentration varied
according to the element being examined, the sites, and the time of fish collection (pre, peak, or
post-oil). There were no temporal changes (before-after [BA] effects) when we compared oto-
liths collected before the oil reached the marshes in May (pre-oil) and a few days after it
reached the marshes in late-June (peak-oil). However, spatial differences (control-impact [CI]
effects) in both V and Cu concentrations were detected, but there was no interaction effect
between site and time (no BACI effect). The only exception was Pb, where an increase in con-
centration was observedonly at the impacted site (GT) following oiling, but not at any refer-
ence sites (interaction effect).Most importantly, two months following oiling (post-oil), there
was an observed increase in the concentrations of Cu, Ba, and Pb only in otoliths at the
impacted site (interaction effect), which could indicate a signature of DHOS oil or another dis-
tinction for fish from GT in environmental exposure to these elements.

V and Ni: Putative Oil Markers
Crude oil is composed primarily of C, H, O, N, S, V, Ni, and Fe [42]. The initial goal of this
study was to determine whether exposure to crude oil, which has typically higher concentra-
tions of V and Ni than seawater, would result in an increase in concentration of these two ele-
ments (previously highlighted as oil markers) in otoliths of fish known to have been exposed to
oil. Based on our analysis of these data, there was no clear, consistent evidence of an increase in
V or Ni in the otoliths of oil-impacted killifish at the GT site or reference sites. This is perhaps
not surprising, since V and Ni are not always consistently increased in tissues following expo-
sure to oil [54]. We do acknowledge that in comparing pre-oil vs. post-oil samples, mean Ni
concentrations increased at GT (driven by an outlier) while no increase was observed at our
control sites. However, Ni loads in otoliths of individuals collected at GT post-oiling were
highly variable and, thus, it is unclear if Ni can serve as a reliable marker of oil exposure. Nota-
bly, V concentrations in GT otoliths were already higher than in BLB and FMA before the oil
spill, which may reflect a long history (~70 years) of oil exploration and previous spills in Loui-
siana (USMinerals Management Service and US Coast Guard data in Turner et al. [55]) rela-
tive to Alabama.

We consider several explanations for the mismatch between documented genomic and
physiological responses of killifish and the absence of elevated V and Ni in the otoliths of oil-
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Fig 5. Relationshipsbetween (A) Ba and (B) Sr concentrations in in Gulf killifish (Fundulusgrandis)
otoliths. Fish were collected in MB, FMA, GT, and BLB. Salinity averages include themonths preceding pre-
oil (white circles), peak (black circles), and post-oil (gray circles) collections. Because salinity data could not
be obtained for May-Jun at FMA, salinitymeasured at the time of collectionwas used for this plot.

doi:10.1371/journal.pone.0162699.g005
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impacted fish. First, the most likely explanation is that the trace elements that traditionally
serve as oil indicators (i.e. V and Ni) occur in low concentrations in Macondo oil relative to
other crude oils. V and Ni are the most abundant metals in petroleum, but the concentrations
vary among oil reservoirs around the world [29]. Depending on the source, concentrations of
V can reach up to 1580 ppm and Ni up to 340 ppm [56]. Relative to other crude oils, the con-
centrations of V and Ni in Macondo oil are relatively low, <1.0–1.7 ppm, and<2.0–7.3 ppm,
respectively [33,34].

A recent study by Nelson et al. [36] acknowledged the chemically “light” nature of Macondo
oil in terms of trace metal loads. In that study, the researchers found distinct regional signa-
tures in the chemical composition of F. grandis otoliths collected two years post-spill across the
northern GOM, but no statistically significant differences in the otoliths of fish from paired
oiled versus unoiled sites. However, nearly all of their individuals were spawned after the
Macondo oil reached shore, based on maximum age estimates of 23 months [57]. Thus, it was
unclear if the animals used in those experiments had in fact been exposed to oil. Our results
agree with Nelson et al. [36] and strengthen the conclusion that Ni and Vmarkers do not docu-
ment a history of exposure to Macondo oil in F. grandis otoliths.

Second, following exposure to Macondo oil, fish growth rates and physiological performance
could have been impacted, decreasing the rate of incorporation of Ca and other divalent cations
into the otoliths. Direct exposure to oil and other toxicants does impact the metabolic and ener-
getic function of fish [58]. Exposure to oil can alter cell membrane structure and function and
can lead to abnormal gill morphology and function [59], potentially affecting respiration and
metabolic potential. Moreover, the metabolic cost associatedwith PAH metabolism is likely high,
potentially requiring reallocation of energy from growth, reproduction, etc. [58]. Reducedweight
and prey-capturing ability has been associatedwith mercury contamination in Atlantic killifish
(F. heteroclitus), indicating that a metabolic cost associatedwith toxicity is manifested in growth
[60], and the expression of several genes associatedwith metabolic activity were divergent in
these fish [11,13]. Further, decrease in otolith growth due to crude oil exposure has been observed
in juvenile sea bass [61]. It follows that because the fish fromGT in the present study clearly
exhibited physiological responses to oil pollution, it is possible that somatic or otolith growth
could have been reduced, and as a result, oil signatures were not incorporated into the otoliths.

Alternatively, an increase in otolith growth due to crude oil has also been reported following
previous oil spills. A decrease in abundance of large Atlantic killifish (F. heteroclitus) following
an oil spill in the Arthur Kill, New Jersey, was associated with an increase in food resources
available to young-of-the-year (small) Atlantic killifish one year after the spill, likely explaining
an increase in fish abundance and faster growth rates among smaller size classes [62]. However,
fish assemblage comparisons conducted two years after the Macondo oil spill in Barataria Bay,
Louisiana, indicate that there was no significant difference in the length frequency distributions
of F. grandis in oiled vs. unoiledmarshes [17]. Therefore, there is no evidence that F. grandis
growth rates were affected in a manner that explains our otolith marker results.

Third, increases in levels of Ni and V in the otolith may be delayed relative to other elements
based on the pathway of incorporation. For instance, V may only be bioavailable (in aqueous
phase) followingmicrobial degradation of oil [63]. Incorporation of these elements into higher
trophic organisms may therefore be different because of physiological or perhaps food-web fil-
ters. For example, bivalve tissues and shells monitored for increased levels of V and Ni following
the “Erika” tanker oil spill in France exhibited an increase in V only after five months, while ele-
vated Ni levels persisted a year after oiling [31]. Although elemental profiles are generally an
indication of surrounding water composition, food sources play a role in the accumulation of
some of the elements that become incorporated into the otolith [64]. Indeed, temporal differ-
ences in the accumulation of V and Ni in otoliths can be attributed to the food habits of different
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taxa (e.g., marsh periwinkles,mussels, dogwelks; [30]. As adults, F. grandis feed on a variety of
resources, including fiddler crabs, amphipods, tanaids, marsh periwinkles, and polycheates [65].
Evidence suggests that while some of these resources were suppressed by DHOS oil exposure
(e.g. fiddler crabs), others were not (e.g., marsh periwinkles) [66], and oil can remain bound in
sediments and associated food sources for years [13,67,68]. Killifish from this study showed
high CYP1A expression in the intestine of GT fish for over one year following landfall of oil,
indicating that these fish were likely exposed to PAHs through the diet or from inadvertent sedi-
ment consumption during feeding [13]. Still, it is unclear to what extent food sources could con-
tribute to metal accumulation in otoliths over time in fish exposed to oil from the DHOS. To
date, we have found no evidence in the literature to suggest that trace metals associated with the
Macondo oil spill are present in higher concentrations in marsh food webs. For instance, trace
element concentrations in oyster shells exposed to oil also did not corroborate oil exposure [69].

Cu and Pb: Freshwater Diversion or Oil Markers
Notable increases in the concentrations of Cu and Pb were detected in the otoliths of fish col-
lected two months after oil landfall at the GT impacted site (BACI effect). GT was not only
oiled in the summer of 2010, but also experienced an unprecedented freshwater diversion in an
effort to flush oil from the Barataria watershed. This influx of fresh water was released from the
Mississippi River at six times the normal discharge volume, lasted from late-April to late-
August, and reduced salinity in Barataria Bay well below typical values [70]. Therefore, it is
possible that elevated Cu and Pb concentrations in fish otoliths could be associated with either
the freshwater diversions (river source) or oil exposure (offshore source), or a combination of
both sources and other contamination.

Historically, the main sources of Cu and Pb in the Mississippi River have beenmunicipal
wastewaters and mining (in addition to natural sources). Accordingly, these elements are both
monitored because they can be indicators of pollution (e.g., [71,72]). Measurable traces of dis-
solved Cu (2 ppb) and Pb (<0.1 ppb) have been documented in Mississippi River waters [73].
However, their presence in estuaries is longstanding, where significant Pb loads in southern
Louisiana are attributed to oil refinery effluent (Pb concentrations of 20 to 14,245 ppm in wet-
lands; [74]). In addition, some elements may bemore bioavailable in lower salinities. For exam-
ple, the accumulation of Cu in tissues at lower salinities has been reported for the congener F.
heteroclitus [75]. By contrast to Mississippi River waters, Cu and Pb concentrations in
Macondo oil are 0.5 and 0.3 ppm, respectively, and oil mousse samples collected near salt
marshes in Mississippi were only slightly higher in concentration (closer to 3.3 and 1.5 ppm,
respectively) [33]. Yet, Hanson and Zdanowicz [76] argued that organic contaminant exposure
(PAHs) may also affect Cu levels in otoliths, as it is known to affect hepatic Cu concentration
[77]. Following the Prestige oil spill in Spain, Cu and Pb concentrations in seabird feathers
were two and five times higher than pre-spill levels, respectively, but returned to previous back-
ground concentrations after three years [54]. In our study, Cu and Pb concentrations in oto-
liths from GT fish sampled post-oil were also two and five times higher, respectively, than pre-
oil samples, indicating that increased Cu and Pb in the otoliths could be indicative of oil expo-
sure in GT fish. Notably, V and Ni were not detected in seabird feathers in the Moreno et al.
[54] study, thus corroborating our results that do not support the utility of V or Ni as indicators
of DHOS oil exposure in otoliths of Gulf fish species.

Sr and Ba: Oil Signature or Record of Freshwater Diversions
Strontium and barium are commonly employed as proxies for salinity and temperature expo-
sure history. As notes above, freshwater diversions in southern Louisiana were intended to
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slow the entry of oil into coastal areas [78]. At the USGS station in Barataria Pass (<200 meters
from the GT collection site), very low salinity was recorded: almost 10 units below the 5-year
mean (Fig 2B). In the present study, an increase in Ba concentration in fish otoliths was nega-
tively correlated with salinity. The uptake of Ba in the otolith matrix can be regulated by (1)
salinity, (2) temperature, and/or the (3) availability of Ba in the water column [79]. Ba has been
negatively related to salinity in juvenile Atlantic croaker (Micropogonias undulatus) [79] and
striped bass [80]. Therefore, the increase in Ba concentrations in otoliths from fish collected in
GTmay have been due to the low salinity derived from the freshwater diversions. Sr uptake is
also associated with salinity, but the relationship is expected to be positive (Sr decreases with a
decrease in salinity, e.g., Fig 2b). Therefore, our Sr observations (increase following freshwater
diversion) may suggest that the change in Ba was not exclusively associated with lower salini-
ties. Alternatively, the diversions could have resulted in an increase in Ba in the water column,
as well as an increase in other trace elements. Multiple trace elements are found in higher con-
centrations in the Mississippi River and the northernGulf of Mexico [55]. Joung and Shiller
[81] highlighted the importance of considering both natural and anthropogenic sources of Ba
when studying the Ba-salinity relationship in this region.

It is important to note that salinity measured at the time the fish were collected did not cor-
relate with gene expression in theWhitehead et al. [11] study and the patterns of gene expres-
sion were not a result of changes in salinity, but exposure to oil. Consideration of monthly
means for both salinity and temperature is appropriate for otolith microchemistry because
environmental patterns are integrated into the otolith over longer periods of time. By contrast,
for gene expression and many aspects of physiology with short-term responses [41], monthly
means are not relevant. Moreover, environmental parameters like salinity are not necessarily
associated with stress indicators, but PAHs solubility is higher at lower salinities [82] and this
can enhance PAH-induced mortality (reviewed by Whitehead et al. [83]).

Crude oil also contains trace concentrations of Sr and Ba [29]. However, Sr and Ba concen-
trations in Macondo oil are similar to seawater [34]. While barite (barium sulfate [BaSO4]) is
present in the drillingmuds used to stem the flow from the Macondo blowout, it is unlikely to
explain the higher Ba signal in the otoliths of F. grandis collected at MB. Furthermore, it seems
unlikely that drilling-mud-derivedBa could have reached coastal estuaries at concentrations
high enough to explain chemical signatures observed at GT (or MB). Barium from discharge
drillingmuds is a concern for benthic communities near areas of high use, and can persist at
high concentrations for decades following drilling [72]. However, barite has a low solubility in
water [84]. Others reported high concentrations of Ba within the oil plume (1000–1300 m
deep) near the Macondo well, but the concentration of Ba peaked 6 km away from the well
[34]. Considering that GT is approximately 150 km from the blowout, it is unlikely that the
drillingmuds used at the Macondo well contributed to the high Ba content at the GT site.

Limitations of the Study
A long history of oil contamination in Louisiana, the nature of the Macondo oil spill, and the
unpredictable trajectory of the oil to coastal marshes limited some aspects of this study. First,
marshes in Louisiana have been exposed to oil contamination due to small scale oil spills and
refinery effluent for over 70 years [55]. Therefore, we speculate that background levels of some
trace elements associated with oil (e.g., V in this study) may be higher in these marshes than in
other areas of the Gulf of Mexico, complicating our ability to conduct large-scale, control-
impact comparative research. Second, the interpretation of these results is also limited because
only one of the sites sampled pre-oil was also (a) directly contaminated by oil and (b) exposed
to freshwater diversions. Ideally, fish would have been collected at different sites across coastal
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Louisiana that included both areas directly contaminated by oil and not impacted by freshwater
diversions as well as sites affected by freshwater diversions but not oil contamination. However,
it was not possible to predict where these sites would be at the time the study was initiated.

Conclusions
The functional resilience and integrity of the Gulf of Mexico is being perturbedby both local
(e.g., shoreline development; [85] and regional (climate change; [86]) stressors. Coastal Louisi-
ana, in particular, is susceptible to a variety of oil impacts due to a long history of oil produc-
tion and refinery activity [87], but also compounding stressors such as hurricanes [88,89], sea-
level rise [90,91], large-scale freshwater diversions [10,92], and coastal subsidence from
reduced sedimentation associated with the channelization of the Mississippi River, fossil fuel
extraction, and marsh compaction [93]. Temporal fluctuations in water chemistry are also
common. Despite known oil exposure in GT F. grandis, and the utility of otolith microchemis-
try in assessing oil exposure from other spills (e.g., Prestige Oil Spill: [28]), the use of otolith
microchemistry for detecting oil exposure is complicated by the nature of the DHOS oil (source
and weathering), the large geographical region over which oil was spilled, the long period of
oiling, and re-oiling events. Moreover, other environmental stressors such as salinity change
are likely recorded in hard body parts of GOM species (e.g., fish otoliths, oyster shells). In the
present study, we detectedmulti-elemental differences across space and time. Low salinity rec-
ords indicate changes in Ba concentrations may have been, in part, due to freshwater diver-
sions, designed to halt the ingress of oil. Changes in Cu and Pb concentrations may also be
linked to land pollution via freshwater diversions and/or be indicative of oil exposure. Our
results highlight the potentially complex and indirect effects of the Macondo oil spill and
human responses oil spills in Gulf of Mexico ecosystems and emphasize the need to consider
multiple stressors acting simultaneously on inshore fish communities.
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