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Motivated by the recent theoretical study of (bright) soliton diode effects in systems with multiple scatterers,

as well as by experimental investigations of soliton-impurity interactions, we consider some prototypical case

examples of interactions of dark solitons with a pair of scatterers. In a way fundamentally opposite to the case

of bright solitons (but consonant to their “anti-particle character”), we find that dark solitons accelerate as they

pass the first barrier and hence cannot be trapped by a second equal-height barrier. A pair of unequal barriers

may lead to reflection from the second one, however trapping in the inter-barrier region cannot occur. We also

give some examples of dynamical adjusting the barriers to trap the dark soliton in the inter-barrier region, yet

we show that this can only occur over finite time horizons, with the dark soliton always escaping eventually,

contrary again to what is potentially the case with bright solitons.

I. INTRODUCTION

One of the principal themes within studies of solitons in

various physical contexts concerns their interactions with im-

purities, as well as with potential steps and barriers, within

their domain of propagation [1]. In addition to the intrinsic

interest of such an area within nonlinear wave theory [2, 3], it

is a subject broadly relevant, e.g., to solid state physics [4, 5],

and nonlinear optics [6, 7], and it has thus been studied both

for bright [8] and dark [9] solitons. In recent years, devel-

opments in the physics of atomic Bose-Einstein condensates

(BECs) [10–13] have provided a fertile playground where

such studies can not only be theoretically extended [14–24],

but also experimentally explored. In fact, the combined pres-

ence of solitons and defects in BECs has been considered in

experimentally relevant setups both for dark [25, 26] (where

the motion in the presence of defects has been used to produce

the solitons) and bright [27, 28], as well as for dark-bright [29]

solitons, in one- and multi-component BECs, respectively.

An intriguing variant of the problem that has been explored

recently, is that of inducing soliton trapping and transmission

from a pair of defects [30]. A principal finding of the work

of Ref. [30], where a bright soliton was scattered from the de-

fects, was the following. As the soliton passed the first defect,

it lost some of its energy into radiation, resulting in a reflection

from the second one (even if it was of equal size as the first),

if the energy was barely over the critical one needed to “over-

come” the first defect. This could be used in a two-fold way:

considering a weakly asymmetric barrier pair, i.e., a slightly

lower on the left and a slightly higher on the right, it was pos-

sible to have a bright soliton of the same energy get reflected

from the pair of the two barriers when coming from the left,

but get transmitted when incident from the right. This princi-

pal feature of this configuration was dubbed in the work [30]

a “soliton diode” effect. Similar diode features, but for linear

wavepackets in lattices with an asymmetric pair of nonlinear

elements, were also studied in Refs. [31, 32]. However, an

additional remarkable feature of the work of Ref. [30] was the

possibility of trapping of a soliton within a region of two equal

barriers. Here, the loss of energy for a weakly “supercritical”

barrier interaction results in the soliton energy being “subcrit-

ical” with respect to the second barrier and hence unable to

overcome it. As a result, the soliton remains forever trapped

in the region between the two defects.

Our aim in the present work is to study the scattering dy-

namics of a dark soliton by two potential barriers, and ex-

amine the possibility of soliton trapping, as per the spirit of

Ref. [30]. We find that dark solitons behave in a fundamen-

tally different way than bright ones: while bright solitons lose

energy and decelerate, being more prone to trapping, dark

ones accelerate, thus being amenable to escape dynamics. We

find that, while a temporary form of trapping may be en-

forced by an asymmetric barrier configuration, this is only

short lived, because the dark soliton keeps accelerating with

each collision, until it eventually overcomes one of the two

barriers.

Our presentation of these results will be structured as

follows. In section II, we will provide a dynamical systems

(theoretical) analysis of the soliton-two barrier interaction.

Then, in section III, we will complement this analysis by

means of direct numerical simulations. Finally, in section IV,

we will provide a summary of our results, as well as number

of directions for future study.

II. THEORETICAL ANALYSIS: PARTICLE DYNAMICS

We start our analysis by presenting our model, originat-

ing from the context of atomic BECs in the mean-field pic-

ture [10]. We consider a quasi one-dimensional (1D) setting

whereby a BEC is oriented along the x-direction and is con-

fined in a strongly anisotropic (quasi-1D) trap. In such a sett-

ting, the macroscopic wave function u(x, t) satisfies the fol-
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lowing dimensionless, 1D Gross-Pitaevskii equation [10–13]:

iut = −1

2
uxx + s|u|2u+ V (x)u, (1)

where subscripts denote partial derivatives, s = +1 (s = −1)

corresponds to respulsive (attractive) interatomic interactions,

while V (x) is the external potential. In our setting, the latter

is assumed to consist of two Gaussian barriers, namely:

V (x) =

2
∑

i=1

{

Vi exp

[

−1

2

(

x− li
σi

)2
]}

, (2)

where σi and Vi set their widths and amplitudes, respectively,

while li denotes the position of their respective centers. Such a

potential may be induced by a pair of far-detuned laser beams,

featuring the most natural beam shape, namely the Gaussian

profile [11]. Notice that the case Vi > 0 (Vi < 0) cor-

responds to blue- (red-) detuned laser beams, that repel (at-

tract) the atoms in the condensate. It is also relevant to men-

tion that in the limit σi → 0 the barriers’ profile become

strongly localized impurities. Furthermore, in the case where

Vi = bi/(
√
2πσi) (for fixed bi), the potential (2) features δ-

like peaks and can be approximated as:

V (x) =

2
∑

i=1

biδ(x− li). (3)

In order to find an effective particle-like equation of motion

for the soliton center we follow the analysis of Ref. [14] (see

also Ref. [18] for an application in the case of Gaussian barri-

ers). In particular, we first seek stationary solutions of Eq. (1),

of the form u = ub(x)e
−iµt, where the real function ub(x)

represents the spatial profile of the background field, and µ
is the chemical potential. Then, it is readily found that ub(x)
satisfies the equation:

ub +
1

2

d2ub

dx2
− u3

b = V (x)ub, (4)

where, without loss of generality, we have fixed the chemical

potential at µ = 1.

Let us now assume that the barriers’ amplitudes are suffi-

ciently small. In such a case, when the amplitude max |ub(x)|
is small, the nonlinear term in Eq. (4) can be neglected and,

taking into regard that in the homogeneous case (V (x) = 0)

the background amplitude is equal to 1 when µ = 1, we look

for a solution of Eq. (4) in the form:

ub(x) = 1 + f(x), (5)

where f(x) incorporates the perturbation by the two Gaussian

barriers and has the approximate form:

f(x) =

√

π

8

2
∑

i=1

Viσie
2σ2

i

×
{[

− 1 + erf

(

σi√
2

(

2 +
x− li
σ2
i

))

]

e2(x−li)

+

[

− 1− erf

(

σi√
2

(

−2 +
x− li
σ2
i

))

]

e−2(x−li]

}

.

(6)

This way, Eqs. (5)-(6) describe the spatial profile of the effec-

tive ground state wavefunction, as modified by the two barri-

ers. Note that in the limiting case of delta-like impurities, the

function f(x) can be well approximated by (see Ref. [14] for

details):

f(x) = −1

2

2
∑

i=1

bie
−2|x−li|. (7)

To describe the dynamics of a dark soliton on top of this

inhomogeneous background, we seek a solution of Eq. (1) in

the form

u(x, t) = ub(x) exp(−it)υ(x, t), (8)

where the unknown complex field υ(x, t) represents a dark

soliton. Notice that in the homogeneous case, the dark soliton

wavefunction is given by:

υ(x, t) = cosφ tanhX + i sinφ, (9)

where X ≡ cosφ[x − x0(t)] is the soliton coordinate, φ is

the soliton phase angle (|φ| < π/2) describing the “darkness”

of the soliton, with cosφ being the soliton depth (φ = 0 and

φ 6= 0 correspond to black and gray solitons, respectively),

while x0(t) and dx0/dt = sinφ denote the position of the

soliton center and velocity, respectively.

Substituting Eq. (8) into Eq. (1), a perturbed nonlinear

Schrödinger equation for the dark soliton wavefunction is ob-

tained. To treat analytically the soliton motion, we employ

the adiabatic perturbation theory developed in Ref. [33] –

see Appendix A for more details, as well as the reviews of

Refs. [11, 12] for applications of this approach in BECs. This

way, the following equation of motion for the soliton center is

obtained [18]:

d2x0

dt2
= −dW

dx0

=

√

π

8

2
∑

i=1

{

Viσie
2σ2

i

∫ +∞

−∞

[

F1i(x) + F2i(x)
]

dx

}

,

(10)
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where the functions F1i(x) and F2i(x) are given by:

F1i =

{

−1− erf

[

σi√
2

(

−2 +
x− li
σ2
i

)]}

e−2(x−li)

×
[

tanh (x− li − x0)− 1
]

× sech4 (x− li − x0) , (11a)

F2i =

{

−1 + erf

[

σi√
2

(

2 +
x− li
σ2
i

)]}

e2(x−li)

×
[

tanh (x− li − x0) + 1
]

× sech4 (x− li − x0) . (11b)

The effective potential W (x0) can then be determined by nu-

merically integrating Eq. (10). A similar equation of motion

for the soliton center can also be found in the limiting case of

δ-like impurities, namely:

d2x0

dt2
= −dW

dx0

=
3

8

2
∑

i=1

{

bi

∫ +∞

−∞

sgn(x− li) sech
4(x− x0)e

−2|x−li|dx

}

.

(12)

In this case too, the effective potential W (x0) can be found

upon integrating Eq. (12). Nevertheless, W (x0) can be well

approximated by a sum of sech2 functions (cf. Appendix A,

as well as Refs. [14, 23] for details) and, thus, W (x0) reads:

W (x0) ≈
1

4

2
∑

i=1

bisech
2 (x0 − li) . (13)

An example of the shape of the effective potential W (x0) for

both the Gaussian [dashed (red) line] and δ-like barriers [solid

(blue) line] is shown in Fig. 1.

According to the above particle picture for the soliton, a

dark soliton incident towards the first barrier can either be re-

flected or transmitted: if the soliton has a velocity v = dx0/dt
and, thus, a kinetic energy:

K =
1

2
v2 =

1

2
sin2 φ (14)

smaller (greater) than the maximum Wmax of the effective

potential, then it will be reflected (transmitted). For low

speeds/kinetic energies, one can further use the approxima-

tion sinφ ≈ φ in identifying the relevant critical point; this

consideration leads to φ < φc or φ > φc for reflection or

transmission, where the critical value φc of the soliton phase

angle is given by (in the small angle approximation):

φc ≈
√

2Wmax. (15)

x
0

-10 -5 0 5 10

W
(x

0
)

0

0.01

0.02

0.03

0.04

FIG. 1: (Color online) The effective potential W (x0), in the case of

two asymmetric Gaussian barriers [dashed (red) line], for V1 = 0.1,

V2 = 0.12, and σi = 0.5 (i = 1, 2). Shown also is the limiting case

of σi → 0, corresponding to the Dirac δ functions [solid (blue) line],

for bi = Viσi

√
2π, i.e., b1 = 0.12 and b2 = 0.15. In both cases

l1 = −5.5 and l2 = 5.5.

III. NUMERICAL RESULTS

A. Bright soliton–two barrier scattering: trapping events

Before we embark on the case of dark solitons in numerical

detail, we provide a case example of the trapping scenario that

can arise in the case of bright solitons. This is intended to

partially motivate our corresponding dark soliton results, and

is also partly shown because such a scenario was not explicitly

illustrated in Ref. [30]. In particular, we examine Eq. (1) with

s = −1, in the presence of a Rosen-Morse external potential,

namely:

V (x) =

2
∑

i=1

{

− Uisech
2
[

− αi (x− li)
]}

. (16)

Here, Ui, αi and li determine the depth, inverse width, and

the position of the center of the first and second potential, re-

spectively. The initial condition which is used has the form of

the exact bright soliton solution of the homogeneous version

of Eq. (1) for s = −1; this solution reads:

u(x, t = 0) = Aeivx sech
[

A (x− x0)
]

, (17)

where A sets the amplitude and inverse width of the soliton;

this parameter is taken to be A = 1. Finally, v and x0 denote,

respectively, the speed and initial position of the soliton.

In Fig. 2, we develop an example, similar to that pre-

sented in Ref. [30], using the following parameter values:

U1 = U2 = U = 3, αi = 1.73 for i = 1, 2, l1 = −6, l2 = 6.

For this set of parameters, and for a bright soliton incident

from left to right, the velocity needed for transmission through

the first barrier is vcr = 0.336 (in fairly good agreement with

the semi-analytical prediction vcr ≈ 0.42U−0.18 ≈ 0.34 of

Ref. [30]). The bright soliton is initially located at x0 = −20
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FIG. 2: (Color online) Contour plot for the evolution of a bright soli-

ton density depicting the effect of soliton trapping. The soliton’s

initial position and velocity are x0 = −20 and v = 0.338, respec-

tively; other parameter values: U1 = U2 = 3, α1 = α2 = 1.73,

l1 = −6, and l2 = 6.

and has an initial velocity slightly larger than the critical,

v = 0.338 in the figure. As a result, after it passes the first

barrier, the soliton loses part of its energy; hence, its veloc-

ity is reduced to v∗ = 0.335, which is smaller than the criti-

cal value for these (identical) barriers. As a consequence, the

soliton falls into a (nearly) periodic state –losing a minimal

amount of its energy after each collision–, remaining trapped

between the two defects. Therefore, in addition to the two ve-

locity regimes of reflection and transmission, there exists also

a third narrow parametric regime, whereby the radiation from

the first transmission leads to a subcritical incidence speed

with respect to the second barrier which, in turn, allows the

soliton to become indefinitely trapped.

B. Symmetric potentials

Turning now to the case of dark solitons, our first scenario

refers to the case of a symmetric potential, with two Gaussian

barriers bearing the same amplitudes (similarly to the bright

soliton case studied above). The relevant situation, shown

in Fig. 3, corresponds to parameter values V1 = V2 = 0.3,

σ1 = σ2 = 0.1, l1 = −5.5 and l2 = 5.5. Here, the en-

ergy threshold needed to be overcome by the dark soliton’s

kinetic energy in order for the soliton to be transmitted is

Wmax = 0.017; hence, according to Eq. (15), the critical

phase angle for transmission/reflection is φc ≈ 0.184.

We consider a soliton with initial position x0 = −10 and

phase angle slightly larger than the critical one, i.e. φ = 0.188
[cf. (red) square point in the phase plane shown in the top

panel of Fig. 3]. After the soliton passes the first barrier, it

emits radiation in the form of sound waves; as a result (and

this is the fundamental difference in the case of the dark soli-

tons, which operate as “negative mass” particles – cf., e.g.,

Refs. [12]), the soliton becomes shallower and thus faster. In

the bottom panel of Fig. 3, where a contour plot depicting

the evolution of the soliton density is shown, it is clear that

the analytical approximation based on the ordinary differential

x
0

   

-10 -5 0 5 10

dx
0
/d

t

-0.2

0

0.2
* * * **

*
*

**
*

FIG. 3: (Color online) The case of two symmetric Gaussian barriers,

with Vi = 0.3, σi = 0.1 (i = 1, 2), l1 = −5.5 and l2 = 5.5. Top

panel: phase plane, where stars depict PDE results showing how the

dark soliton accelerates upon incidence. As a result, while starting

essentially on the stable manifold of the first saddle point, upon col-

lision with the first barrier accelerates, becoming supercritical with

respect to the second saddle point. Bottom panel: contour plot show-

ing the evolution of the dark soliton density for the initial condition

depicted in the middle panel with the (red) square, i.e., x0 = −10
and φ = 0.188 > φc = 0.183. The dashed (white) curve depicts the

ODE result, which underestimates the distance traveled by the dark

soliton (see relevant discussion in the text).

equation (ODE) Eq. (10), underestimates the soliton velocity:

the latter, upon incidence to the second barrier, has increased

to φ ≈ 0.2. As a result, the dark soliton not only avoids trap-

ping (entirely contrary to the case of the bright solitons), but

it emerges with a higher kinetic energy (and hence at a larger

distance than its theoretically predicted counterpart) after the

second barrier. The stars in the phase plane show the corre-

sponding partial differential equation (PDE) results [obtained

by direct integration of Eq. (1)]. It is clear from the phase

plane evolution that while starting very proximally to the sta-

ble manifold of the saddle point at the first barrier, upon inci-

dence, the soliton accelerates (its radiation emission enhances

its speed) and, hence, it finds itself definitively over the hetero-

clinic orbit associated with the second barrier, thus escaping

to positive infinity. Qualitatively similar results can also be

obtained for a variety of different parameters and are repre-

sentative of the nature of the dark soliton dynamics.
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C. Asymmetric potentials

Motivated by the above observations, the second scenario

that we consider concerns the case of slightly asymmetric de-

fects. This allows for regimes where the first defect transmits

yet the second one reflects. We thus make the choice of the

second barrier being a little higher than the first one. We ob-

serve that, as before, the dark soliton becomes shallower after

it passes the first barrier and it is accelerated following a dif-

ferent trajectory in the phase plane. Yet, in this case, it may

still remain within the region leading to reflection from the

second barrier. Nevertheless, when returning to the first, shal-

lower barrier, the dark soliton is supercritical with respect to

it, leading to its escape towards minus infinity.

The above configuration is shown in Fig. 4, where we have

used V1 = 0.3, V2 = 0.34, σ1 = σ2 = 0.1, l1 = −5.5 and

l2 = 5.5; in this case, the energy threshold Wmax is the same

as before, i.e., Wmax = 0.017. We consider a soliton with ini-

tial position x0 = −10 and, as before, a phase angle slightly

larger than the critical one, i.e., φ = 0.188 (cf. square (red)

point in the phase plane shown in the top panel of Fig. 4).

The stars in the phase plane show the corresponding PDE re-

sults. Indeed, the soliton velocity after it interacts with the

first defect becomes φ ≈ 0.2, yet it is still reflected from the

asymmetric (taller) second barrier.

Upon return to the first barrier, the soliton exits the trapping

region, once again with a larger speed than predicted from the

particle picture (dashed line in the figure). Here, too, quali-

tatively similar results are found for a variety of different pa-

rameter values, confirming the acceleration of the dark soliton

as a result of its radiation emission.

D. Time-dependent impurities

As we have already shown in the case examples of Figs. 3

and 4, when the soliton interacts with the first defect with a

speed close to the critical threshold, it passes the first defect,

and then it becomes shallower (and thus faster). If its velocity

is still smaller than the critical velocity needed to overcome

the second barrier it will there be reflected, but inevitably it

will be finally transmitted through the first barrier. Thus, it is

not possible to identify a regime for dark soliton trapping, sim-

ilar to the one found for bright solitons in the case of slightly

asymmetric (or symmetric) fixed defects.

Hence, we now focus on the case where the impurities

are –and in particular the first one (from the left) is– time-

dependent. In such a case, the external potential is of the fol-

x
0

-10 -5 0 5 10

dx
0
/d

t

-0.2

0

0.2
*

*
*

*

*

** *

***

FIG. 4: (Color online) Similar to Fig. 3, but for two asymmetric

Gaussian barriers, with V1 = 0.3, V2 = 0.34, σ1 = σ2 = 0.1,

l1 = −5.5 and l2 = 5.5.

lowing form:

V (x, t) = V1(t) exp

[

−1

2

(

x− l1
σ1

)2
]

+ V2 exp

[

−1

2

(

x− l2
σ2

)2
]

,

V1(t) =
1

2

[

(V ∗
1 + V1) + (V ∗

1 − V1) tanh
( t− t∗

w∗

)

]

,

(18)

where V1 is the (asymptotic) amplitude of the first barrier be-

fore the time t∗, while V ∗
1 is the (asymptotic) amplitude of the

first Gaussian well after that time. Here, we pick t∗ as a time

after the dark soliton is transmitted through the first barrier

but well before it returns to it. In turn, w∗ denotes the (chosen

to be short) time interval over which the first barrier changes

value between its asymptotic limits.

We focus on two different cases. In the first case, the left

Gaussian impurity remains repulsive over time, and in the sec-

ond one it changes sign turning from attractive to repulsive.

For the first case, cf. Fig. 5, we have chosen V1 = 0.1,

V ∗
1 = 0.5, V2 = 0.5, σ1 = σ2 = 0.1, l1 = −5.5 and

l2 = 5.5. We consider a soliton with initial position x0 = −10
and phase angle φ = 0.11, slightly larger than the critical one.

After the soliton is transmitted, as expected, from the first bar-

rier it is accelerated but it still has a velocity smaller than the
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FIG. 5: (Color online) The case where the first Gaussian impurity

is time-dependent, and remains repulsive, for V1 = 0.1, V ∗

1 = 0.5,

V2 = 0.5, σ1 = σ2 = 0.1, l1 = −5.5 and l2 = 5.5. Top panel: cor-

responding phase plane associated with the final value of the V1, i.e.

V ∗

1 = 0.5. Dashed (black) line and (black) arrows depict respective

PDE results showing the continuous acceleration of the dark soliton

that eventually lead to its departure from the trapping region. Bot-

tom panel: contour plot showing the evolution of the dark soliton

density for the initial condition depicted in the top panel with the

(red) square, i.e., x0 = −10, φ = 0.11.

critical threshold of the second barrier. Meanwhile, the am-

plitude of the first (left) Gaussian is tuned to become equal

to the second (right) Gaussian’s amplitude (notice that, in ex-

perimental realizations of such barriers [27, 29], this amounts

to a straightforward tuning of the laser beam). Hence, when

the dark soliton interacts again with the first barrier it is re-

flected from it, resulting in an oscillation between the two po-

tential barriers. Nevertheless, as the soliton starts oscillating

back and forth now, being temporarily trapped between the

two barriers, these oscillations acquire, in fact, progressively

smaller period (the soliton keeps getting faster and faster) due

to the emitted radiation; as a result, eventually the soliton is

transmitted through one of the two barriers.

As observed in Fig. 5, the soliton completes four oscilla-

tions before it escapes. We have also tried different parameter

values and, as conclusion, for smaller amplitude differences,

i.e., V ∗
1 −V1, we expect less oscillations, while for bigger am-

plitude differences we observe more oscillations. Neverthe-

less, in a fashion fundamentally different than its bright soli-

ton counterpart, the “anti-particle” nature of the dark soliton

x
0

-10 -5 0 5 10
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0
/d
t

-0.2

0

0.2

t

0 500 1000 1500
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0
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0.6
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FIG. 6: (Color online) Similar to Fig. 5, but for the case where the

first Gaussian impurity is time-dependent, while changing its sign,

for V1 = −0.5, V ∗

1 = 0.5, V2 = 0.5, σ1 = σ2 = 0.1, l1 = −5.5
and l2 = 5.5. Parameter values for the dark soliton: x0 = −10,

φ = 0.01.

and its progressive acceleration will always lead to its expul-

sion from the trapping region.

This can be also observed in the phase plane associated with

the final value of the V1, i.e. V ∗
1 = 0.5, shown in the top panel

of Fig. 5. The dashed (black) line depicts the first oscillations

of the corresponding PDE results. After the soliton interacts

with each barrier, it is getting faster following different orbits

of an increasing speed –and amplitude– in the phase plane (see

(black) arrows). This leads the soliton to follow a spiral tra-

jectory that eventually will allow its departure from the region

between the two barriers.

Let us now consider the second case where, initially, the

first defect provides a well rather than a barrier, facilitating

the dark soliton’s transmission. Relevant results are shown in

Fig. 6, where we have used V1 = −0.5, V ∗
1 = 0.5, V2 = 0.5,

σ1 = σ2 = 0.1, l1 = −5.5 and l2 = 5.5. Again, the phase

plane associated with the final value of the V1, i.e. V ∗
1 = 0.5,

is shown in the top panel of the same figure. The soliton is

initially placed at x0 = −10 and it has a phase angle much

smaller than before, equals to φ = 0.01.

Here, after the interaction with the first barrier, the soliton’s

energy does not change significantly; thus, the soliton is re-

flected from the second barrier and returns to the first defect

which, in the meantime, has become a barrier as well. Given

its minimal speed, the dark soliton is able to execute many
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oscillations between the two defects in this case, until it is fi-

nally able to escape due to the same mechanism as discussed

above.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work we have revisited the phenomenon of

dark soliton scattering in the presence of a two-defect poten-

tial. This was partially motivated by the intriguing findings

for bright solitons in the earlier work of Ref. [30]: there, phe-

nomena such as a “soliton diode” were identified in the case

of asymmetric barriers, and the possibility of soliton trapping

was also predicted even for symmetric potential barriers.

We developed a particle picture allowing us to explore the

motion of dark solitons within the realm of two barriers. The

most fundamental feature identified was that a scenario of two

equal barriers can never trap a dark soliton, fundamentally

contrary to what is the case with a bright one. This is because

the “anti-particle” character of the dark soliton leads to its in-

crease in speed, upon scattering from the first defect, hence it

will always overcome the second defect. Making the barriers

asymmetric will not help either, because although the second

barrier may reflect the soliton, the first one will always trans-

mit it upon its return, so trapping cannot be achieved. The

only possibility for the latter is a phenomenology employing

time-dependent barriers. Even here, the dark soliton cannot

be trapped indefinitely, yet it can be trapped for long intervals

of evolution time, executing many oscillations.

We conjecture that given a very general potential supported

sufficiently far from an initial dark soliton, the dark soliton is

nonetheless asymptotically stable in that the dynamics lead to

a nearby dark soliton moving left or right, depending upon the

initial phase angle φ. Recent progress on the Gross-Pitaevskii

equation with delta function potentials was made in Ref. [2],

where orbital stability of stationary dark solitons in the setting

of a single δ function potential was proved. The mathematical

theory for this setting initiated with the works of Refs. [34,

35].

There are numerous interesting questions for future study

that are emerging from the present work. For one thing, it

would be especially interesting to explore whether the radia-

tion from the dark soliton could in any analytical (see, e.g.,

Refs. [36]) or even numerical (see, e.g., Refs. [37]) way be

captured. If, especially, analytical results were available then

the radiation could be incorporated in the equations of mo-

tion, so as to enable a quantitative characterization of the soli-

ton dynamics in the presence of sound waves. Additionally, it

would be quite relevant to explore somewhat systematically

the phenomenology of scattering in the presence of a dou-

ble well, rather than a double barrier (see relevant work in

Ref. [38]). Finally, extending the relevant considerations to

the realm of a larger number of components or a larger di-

mension would be important. In the former, the examination

of the interaction of dark-bright solitons with multiple barriers

would be a natural next step [39], while in the latter, explor-

ing the interaction of vortices with such potentials would be

of particular interest [11].

Appendix A: Particle dynamics with δ function defects

Here we provide some details on the perturbation theory for

dark soliton dynamics in the presence of δ function defects. A

similar analysis can also be applied for the case of Gaussian

barriers, leading to the results presented in Sec. II.

Our starting point will be the perturbed NLS equation stem-

ming from the substitution of Eq. (8) into Eq. (1):

iυt +
1

2
υxx − (|υ|2 − 1)υ = P (υ), (A1)

where perturbation P (υ) = 2f
(

1− |υ|2
)

υ − (df/dx)υx
(with f(x) given in Eq. (7)) can be expressed as follows:

P (υ) =
2

∑

i=1

{

bie
−2u0|x−li|

[

(

1− |υ|2
)

υ−sgn(x−li)υx

]

}

.

(A2)

We now employ the adiabatic perturbation theory [11, 12, 33],

according to which, the functional form of the soliton remains

unchanged, but its parameters x0 and φ become slowly vary-

ing functions of time t. In other words, we seek solutions of

Eq. (A1) of the form

υ(x, t) = cosφ(t) tanhX + i sinφ(t), (A3)

with X = cosφ(t)[x − x0(t)] and

x0(t) =

∫ t

0

sinφ(s)ds. (A4)

Then, following energy considerations [11, 12, 33], the fol-

lowing equation for the evolution of the soliton phase angle

can be derived:

dφ

dt
=

1

2 cos2 φ sinφ
Re

(
∫ ∞

−∞

P (υ)ῡtdx

)

, (A5)

with P (υ) and υ defined, respectively, in Eqs. (A2) and (A3)

above. Notice that only the real part of υ is x-dependent,

which greatly simplifies calculations. Computing the integral

in Eq. (A5), and using the assumption that the solitons are

nearly black (i.e., φ → 0), we end up with the result:

dφ

dt
=

3

8

2
∑

i=1

{

bi

∫ +∞

−∞

sgn(x−li) sech
4(x−x0)e

−2|x−li|dx

}

.

(A6)

The integral in the above equation, which is of the form

I =
∫ +∞

−∞

[

sgn(x) sech4(x − x0)e
−2|x|

]

dx, can be evaluated

using that I = (2/3) sech2(x0) tanh(x0). Combining this

simplified equation with Eq. (A4), we obtain – from the equa-

tion of motion for the soliton center – Eq. (13), namely the

effective potential.

Finally, it is worth noticing that a similar feature to the

Gaussian barriers occurs in the case of the δ potential barriers

as well. In the case of symmetric potentials with b1 = b2 = b
for instance, it is found that, for a given value of b, there is a

critical value of φ such that below this critical value the dark
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FIG. 7: (Color online) Contour plots showing the evolution of the

dark soliton density for two symmetric Dirac delta barriers located at

l1 = −2 and l2 = 2; the soliton is initially placed at x0 = −10 and

has a phase angle φ = 0.2 (top panel) and φ = 0.25 (bottom panel).

The dashed lines show the particle picture from Eq. (12).

soliton is reflected at the first barrier, and above the dark soli-

ton is transmitted through both barriers. A typical example

is shown in Fig. 7; note that the full δ potential is simulated

using a finite element decomposition, similar to that proposed

in Ref. [8], which allows the δ functions to enter in a non–

approximate form through the weak formulation of equation

(1).
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[12] R. Carretero-González, D. J. Frantzeskakis, and P. G.

Kevrekidis, Nonlinearity 21, 139 (2008); D. J. Frantzeskakis,

J. Phys. A 43, 213001 (2010).

[13] V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Mal-

omed and D. Mihalache, Rom. Rep. Phys. 67, 5 (2015).

[14] D. J. Frantzeskakis, G. Theocharis, F. K. Diakonos, P.

Schmelcher, and Yu. S. Kivshar, Phys. Rev. A 66, 053608

(2002).

[15] N. Bilas and N. Pavloff, Phys. Rev. A 72, 033618 (2005).

[16] N. Bilas and N. Pavloff, Phys. Rev. Lett. 95, 130403 (2005).

[17] G. Herring, P. G. Kevrekidis, R. Carretero-González, B. A. Mal-
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[29] A. Álvarez, J. Cuevas, F. R. Romero, C. Hamner, J. J. Chang,

P. Engels, P. G. Kevrekidis, and D. J. Frantzeskakis, J. Phys. B:

At. Mol. Opt. Phys. 46, 065302 (2013).

[30] M. Asad-uz-zaman and U. Al Khawaja, EPL 101, 50008

(2013).

[31] S. Lepri and G. Casati, Phys. Rev. Lett. 106, 164101 (2011).

[32] S. Lepri and B. A. Malomed, Phys. Rev. E 87, 042903 (2013); J.

D’Ambroise, P. G. Kevrekidis, and S. Lepri, Chaos 23, 023109

(2013); J. D’Ambroise, S. Lepri, B. A. Malomed, and P. G.

Kevrekidis, Phys. Lett. A 378, 2824 (2014).

[33] Yu. S. Kivshar and X. Yang, Phys. Rev. E 49, 1657 (1994).

[34] P. Gérard, Ann. Inst. H. Poincaré Anal. Non Linéaire 23,
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