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Abstract
Certain biological reactions, such as receptor-ligand binding at cell-

cell interfaces and macromolecules binding to biopolymers, require many
smaller molecules crowding a reaction site to be cleared. Examples include
the T cell interface, a key player in immunological information processing.
Diffusion sets a limit for such cavitation to occur spontaneously, thereby
defining a timescale below which active mechanisms must take over. We
consider N independent diffusing particles in a closed domain, contain-
ing a sub-region with N0 particles, on average. We investigate the time
until the sub-region is empty, allowing a subsequent reaction to proceed.
The first passage time is computed using an efficient exact simulation
algorithm and an asymptotic approximation in the limit that cavitation
is rare. In this limit, we find that the mean first passage time is sub-
exponential, T ∝ eN0/N2

0 . For the case of T cell receptors, we find that
stochastic cavitation is exceedingly slow, 109 seconds at physiological den-
sities, however can be accelerated to occur within 5 second with only a
four-fold dilution.

Diffusion drives many biological processes, both positively, by delivering
cargo to a target, and negatively, by removal of cargo from a region of in-
terest (ROI). While the temporal dynamics of diffusional delivery have been
extensively studied [5, 4, 24, 12], diffusion-driven removal has been less charac-
terized experimentally or theoretically [3]. Removal is of particular interest in
the crowded environment of cells, where large biomolecules and cellular struc-
tures require the displacement of smaller molecules, a phenomenon we term
stochastic cavitation.

A specific example arises in the study of cell-cell interfaces including the
T-cell/antigen-presenting-cell interface [22, 2, 29, 8] (see Fig. 1). A fundamen-
tal question for all cell-cell interfaces is how receptors and ligands come into
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contact, despite being separated by large molecules, the extracellular fluid, and
other structures in the glycocalyx. On either cell surface, large molecules such
as CD45 and LFA-1 undergo 2D diffusion in the cell membrane with a diffusion
coefficient of D ∼ 0.1µm2/s [27, 6]. These large molecules impair interactions
between smaller pairs of molecules, such as the T cell receptor and its ligand—a
key step in immunological information processing and decision-making. It has
been estimated that a region of radius ∼ 100nm, devoid of large molecules, is
necessary for spontaneous T cell receptor interaction [2], which is occupied by
on average ∼ 30 particles at equilibrium. A natural question is whether this
empty region can form spontaneously in a biologically relevant time. Under-
standing contact formation will address cell-cell interactions in the crowded,
heterogeneous environment inside organisms and what machinery is necessary
for general cell-cell interactions [15, 31].

Examples of diffusional cavitation in biology also arise in other dimension-
alities. In 1D, microtubules (inflexible polymers of the protein tubulin) are
decorated by hundreds of microtubule-associated proteins [1, 28]. These pro-
teins exhibit significant crowding [11] and lateral diffusion along the microtubule
lattice [13, 17]. Large microtubule-binding molecules may therefore have to wait
for a region to be clear before binding. What is the mean time for such clearance,
and is it the rate-limiting step in microtubule binding? A similar situation oc-
curs for DNA and the myriad of DNA-binding molecules, some of which undergo
lateral diffusion across base pairs [16, 25]. A significant waiting-time for large
DNA-binding molecules has potential implications for the study of the chemical
modification of DNA and RNA, all of which require an enzyme to attach to the
polymer.

For some of the above scenarios, it has been hypothesized that clearance of
the target region requires an active process [2, 18]. To address the feasibility
of passive diffusion-driven cavitation, a theoretical assessment of the timescales
involved is needed. In other words, can diffusion-driven cavitation reliably oc-
cur on biologically relevant timescales? To address this question, we consider
N independent particles undergoing simple diffusion in either the 1D domain

Figure 1: Cell-cell interface formation between a T-cell and an antigen-
presenting cell. CD45 molecules (black) block the receptor-ligand (purple) bond
from forming while they inhabit the ROI (orange).
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(−L,L) or the 2D domain (−L,L)2. In each case, we study the first-passage
time until a smaller region, a disk of radius L0, is empty.

The cavitation event can be rare (i.e., the first passage time can be very
large compared to the diffusion timescale L2/D) under certain circumstances.
To understand this, consider the 1D domain with N particles. At equilibrium,
each particle has a uniformly distributed postion within the domain. In the
limit L → ∞ and N → ∞ with the average particle density ϕ = N/(2L)
fixed, the equilibrium probability of finding a region of radius L0 containing no
particles is small, P = e−N0 , where N0 = 2Lϕ. Therefore, when N0 � 1 we
expect cavitation to be a rare event. Although we might expect the 1D mean
first-passage time (MFPT) to scale as1 T ∝ P−1 ∼ eN0 , we instead we find an
asymptotic scaling of T ∝ eN0/N2

0 .
In this Letter, we develop a simulation algorithm to efficiently generate ex-

act realizations of the first passage time, based on Green’s function reaction
dynamics [26]. For situations where cavitation is a rare event and computa-
tion becomes unfeasible, i.e., when N is very large or the ROI occupies most of
the explorable area, we develop an asymptotic approximation of the mean first
passage time.

Consider N independent random walkers Yn(t), with n = 1, · · · , N , that are
confined to the interval −L < y < L. The ROI is the inner domain centered at
the origin with radius L0 < L. The event we wish to characterize is the first time
at which the ROI is empty (i.e., minn{Yn(t)} = L0). We first nondimensionalize
the problem using the space scale L and the time scale L2/D, where D is the
diffusion coefficient. We define the nondimensional distances Rn = |Yn| /L,
ε = 1 − L0/L, and l0 = L0/L. Then, a given particle is inside the ROI if
0 < Rn < l0.

By formulating a simulation algorithm, we can generate exact samples of the
first passage time. We take advantage of explicit formulas for the probability dis-
tributions that govern single particle Brownian motion in a closed domain. Note
that even though we focus on the 1D and 2D cavitation problem in this letter,
exact distributions are also known for 3D Brownian motion [7]. The algorithm
proceeds as follows. Given a set of random starting positions {Rn(t0)}1≤n≤N ,
select a particle that is inside the ROI and closest to the origin. That is, select
Rm = min{Rn} < l0. The first step is to compute the first time τ at which
the selected particle leaves the ROI (i.e., Rm(t0 + τ) = l0). Once τ has been
computed, set t′ = t0 + τ . The cavitation event cannot have occurred before
time t′ because we are certain that Rm(t) < l0 for all t0 < t < t′. Therefore,
the position of the other particles between time t0 and time t′ is irrelevant, we
need only generate the random position for each of the remaining particles at
time t′. Once all positions have been updated, select a new Rm = min{Rn(t′)}.
We know that the cavitation event has occurred if Rm ≥ l0. If Rm < l0, then

1This problem is equivalent to the diffusion of a particle in ND dimensions (the product
of number of particles and dimensionality of space). Since ND � 2, this Brownian motion
is not recurrent, so we might naively expect the system to be well-mixed in ND-dimensional
phase space, and the rate of first passage would be the attempt rate times the probability of
being in the target state.
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set t0 = t′ and repeat the above procedure.
At each step, the jump times τ can be sampled from the exact distribution

f(τ |r0), obtained from the fundamental solution to the diffusion equation with
a reflecting boundary at r = 0 and an absorbing boundary at r = l0. The
random positions can be sampled from the distribution p(r|r0, τ), satisfying
the diffusion equation with reflecting boundaries at r = 0 and r = 1. An
efficient way of sampling from p is to use a rejection method, similar to the
one described in [26]. For the jump time sampled from f , we found that the
rejection method could not easily be adapted to our situation. Instead, we
sample the jump time using a root finding algorithm. Additional details are
provided in Supplementary Material. The simulation algorithm is maximally
fast in the sense that only the (average) slowest particle determines the next
event time, allowing us to efficiently access densities around φL0 ∼ 13. We find
this is sufficiently high to validate our asymptotic approximations.

To obtain a complete picture of cavitation in the rare event limits, we develop
an asymptotic approximation for the MFPT, T̄ . The approximation is derived
for 1D cavitation, and based on simulations, we observe that in the limit L→∞
with a fixed particle density, the approximation is also surprisingly accurate for
2D cavitation. We first state the main results (Eqs. 46-37) and then summarize
their derivation.

For fixed N , the first term in the asymptotic approximation for 0 < ε � 1
of the MFPT, averaged over a uniformly distributed initial position for each of
the N particles, is given by

T̄ ∼ 2NAN
(CN ε)N−2

+O(1), N ≥ 3 (1)

where

AN =
Γ(N2 )

2π
N
2 (N − 2)

. (2)

The constant CN is the Newtonian capacitance of a hypercube in RN ; as ex-
plained below, it determines the far field behavior of certain solutions to Laplace’s
equation [32]. An explicit formula for the Newtonian capacitance of a cube for
N > 2 is unknown. However, a good approximation for N = 3 is C3 ≈ 1.3214
[19]. The ε� 1 approximation (solid line) is compared to simulations (symbols)
in Fig. 2. For N = 3, we find good agreement between simulation and the inde-
pendently derived estimate for C3 from [19]. From physical arguments detailed
at the end of this letter, we have determined an expansion of the Newtonian
capacitance for large N given by

CN ∼
√

2N

πe

(
1 +

3 logN

2N
+
α2

N
+O(N−2)

)
. (3)

The unknown constant in the above expansion is independent of all parame-
ters. Using the exact simulation algorithm, we obtain the numerical estimate,
α2 ≈ −1.67. Our MFPT calculation thus provides an approximation for the
capacitance CN , which otherwise remains challenging to compute [19].
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Figure 2: The MFPT (in nondimensional units) as a function of L0/L = 1− ε.
The small ε approximation (solid lines) is compared to simulations (symbols),
using C3 = 1.3214, C4 = 1.44, and C5 = 1.55.

For fixed 0 < ε < 1, an asymptotic expansion for N � 1 is given by

T̄ ∼ κ1D

N2εN−2
, N � 1, (4)

where κ1D ≈ 2.2 depends only on α2 (via Eq. 19). The N � 1 MFPT approxi-
mation is compared to simulations in Fig. 3.
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Figure 3: The large N MFPT approximation (solid lines) compared to simula-
tions (symbols).

Finally, we consider the case the radius of the ROI L0 is fixed and L → ∞
with a fixed number of particles per unit length ϕ = N/(2L). Let N0 be the
average number of particles in the ROI. The L→∞ MFPT approximation (in
dimensional units) is

T∞ ∼
κ1DL

2
0e
N0

N2
0D

, N0 � 1. (5)
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The MFPT is shown in Fig. 4 as functions of N0, for different values of L.
The approximation (37) matches closely with the L/L0 = 33.3 simulations for
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Figure 4: The MFPT vs N0, the average number of particles in the ROI. The
symbols indicate 103 averaged simulations; the 1D simulations are shown as cir-
cles and the 2D simulations are shown as diamonds. Also shown is the L→∞
approximation (dashed curve) for both 1D and 2D. Note that time is nondimen-
sional using the L2

0/D timescale.

N0 > 10. Hence, the effect of a small domain size compared to the ROI is
to increase the MFPT, making the cavitation event more rare. This provides
a quantitative measure of when the domain size L no longer influences the
cavitation event, which is relevant when, for example, considering cavitation on
a relatively long strand of DNA compared to a shorter plasmid. Microtubule
filaments also vary in length.

Simulations of 2D cavitation are also shown in Fig. 4 as diamond symbols.
Although the asymptotic approximation (37) is derived for 1D, we find that it is
a remarkably good fit to the simulation data after changing a single parameter:
the prefactor κ2D ≈ 0.7. We therefore infer that cavitation is roughly three
times faster in 2D than in 1D. Heuristically, this speed-up occurs because the
mean time for a random walker to escape a spherical region decreases with
dimensionality.

The asymptotic approximations (46)-(37) for 1D cavitation are derived as
follows. Because all of the N walkers are independent, the problem can be
reformulated as the first passage time of a single random walker in a N di-
mensional domain. Define the domain Ω ≡ (0, 1)N , and let Ωε ≡ (1 − ε, 1)N

be the small target domain. The random process R(t) ∈ Ω \ Ωε represents
the original process with R(t) = (R1(t), · · · , RN (t)). Define the MFPT as
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T ≡ 〈inf{t > 0 : min1≤n≤N Rn(t) = l0}〉; it satisfies

N∑
n=1

∂2T

∂r2
n

= −1, r ∈ Ω, (6)

∂ηT (r) = 0, r ∈ ∂Ω, (7)
T (r) = 0, r ∈ ∂Ωε. (8)

An approximate solution to (6) can be obtained using the method of matched
asymptotics [33, 10, 30, 9, 20]. We split the solution into two parts: an inner and
outer solution. The inner solution satisfies the absorbing boundary condition
on ∂Ωε and ignores the reflecting boundary. The outer solution satisfies the
reflecting boundary on ∂Ω and is singular as r→ (1, · · · , 1). The two solutions
are then matched to obtain a uniformly accurate approximation using the Van–
Dyke matching principle [23].

Define the inner coordinates z = r−rb
ε , and let z = ‖z‖. The inner solution

satisfies
∆zw = 0, w(z ∈ ∂ZN ) = 0, (9)

where ZN is the unit hypercube. The exact solution to the inner problem for
arbitrary N is unknown. However, from electrostatics [21], for large z, the inner
solution has the two term expansion,

w ∼ BN (ε)
[
(z/CN )

2−N − 1
]
, N ≥ 3. (10)

where BN is a constant determined by matching to the outer solution. The
constant CN , called the Newtonian capacitance, is a boundary dependent term
discussed below.

Up to an unknown constant T̃ , the outer solution is

Tout ∼ −GN (r, rb) + T̃ , (11)

where the Green’s function GN satisfies,

N∑
n=1

∂2GN
∂r2
n

= 1− δ(r− r′), r ∈ Ω, (12)

∂ηGN (r, r′) = 0, r ∈ ∂Ω, (13)∫
Ω

GN (r, r′)dr = 0. (14)

By integrating (11) over Ω using (36), we find that T̃ is the MFPT averaged
over a uniformly distributed set of initial positions, i.e., T̃ = T̄ . Again from
electrostatics [21], in the limit rn → 1 with r′n = 1 and ‖r − r′‖ = εz, the
Green’s function scales like

GN ∼ 2NAN (εz)2−N +O(1), N ≥ 3, (15)
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where AN is given by (45).
Matching the inner and outer solutions we find that the z dependent terms

match provided that BN (ε) = −2NAN ε
2−N for N ≥ 3. The remaining unknown

term T̄ yields the approximation (46).
In order to access the rare event limit where both N � 1 and ε � 1, we

must find how the Newtonian capacitance CN scales with N . This problem has
no known exact solution for N > 2 [19].

If the cuboid boundary ∂Ωε were replaced by a spheroid with the same
hypervolume, then the Newtonian capacitance is known for general N ,

CN ≈
2√
π

Γ

(
1 +

N

2

)1/N

∼
√

2N

πe
. (16)

We therefore propose a general expansion of CN (for the present case of cuboid
boundary) having the same form as the large-N expansion of (16),

CN ∼
√

2N

πe

(
1 +

α1 logN

N
+
α2

N
+O(N−2)

)
. (17)

Note that (16) and (17) have the same leading-order term.
To elucidate how the unknown constants α1,2 affect the large N MFPT

approximation, we use Stirling’s formula, leading to

2NAN

CN−2
N

∼ κ1D

Nβ
, N � 1, (18)

where
β = α1 + 1/2, κ1D =

2√
πeα2+1

. (19)

In dimensional units, the MFPT approximation is

T ∼ L2κ1D

NβD

(
1− L0

L

)2−N

. (20)

We determine the value of α1 by exploiting a physical constraint as follows. As
L → ∞ with the density of particles ϕ = N/(2L) held constant, the MFPT
must converge to a finite value. Substituting L = N/(2ϕ) and N0 = 2L0ϕ into
(20) yields

T ∼ N2−βκ1D

4ϕ2D

(
1− N0

N

)2−N

. (21)

Since limN→∞
(
1− N0

N

)2−N
= eN0 , we must have that β = 2 (and therefore

α1 = 3/2) in order for (44) to converge to a finite, nonzero value in the limit
(L,N)→∞. We also find that β = 2 is supported by numerical simulations (see
Supplementary Material). The limiting result is the approximation Eq. (37).

While the approximation matches well with simulations in 2D, a more sys-
tematic asymptotic analysis for the 2D case should be feasible. For small ε and
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finite L, the leading order in (46) holds in 2D. A notable feature of our 1D case
is that there are no terms in the expansion between the leading order term and
the O(1) term, making our 1D approximation converge particularly fast. This
feature is lacking in 2D, where there are other terms singular in ε, therefore we
expect this approximation to converge more slowly. In 2D for large L at con-
stant density, a different scaling between N and L prevents the approximation
in (44) from converging, necessitating an alternative strategy that will be the
subject of future research.

Returning to the specific question of cell-cell contact at T cell interfaces,
large diffusing molecules such as CD45 disfavor proximity between receptors
and ligands on apposing cells. These molecules have diffusion coefficients of
D ≈ 0.1µm2/s [27] and density such that on average there areN0 = 30 molecules
in the 100-nanometer ROI [2]. The approximation (37), using the prefactor
κ2D = 0.7 from the numerical fit to simulations, yields an estimate of T ≈
109 seconds. In contrast, the MFPT for a single particle to escape a circular
domain is T = L2

0/(4D) = 0.025 seconds. Since T cell receptor triggering
occurs within seconds [14], the above calculation predicts that receptor-ligand
binding must involve a mechanism faster than passive diffusion. We therefore
suggest the alternative hypothesis that an active force drives receptor-ligand
proximity [2]. To obtain an empty ROI spontaneously in less than five seconds,
we would require N0 ≤ 7, corresponding to a four-fold dilution, which could be
experimentally accessible. The biological system is complicated by interactions
of large molecules within and between molecular species, lipid heterogeneity,
and transient immobilization, all of which could be exploited to dynamically
tune the rate of ligand binding and will be studied by expanding the present
framework.

1 Acknowledgments
JN was supported by a NSF-funded postdoctoral fellowship (NSF DMS-1100281,
DMS-1462992). JA was supported by a NSF CAREER award (DMS-1454739).

A Simulation algorithm
The exact simulation algorithm makes use of two solutions to the 1D diffusion
equation. Let pa,r(x, x0, t) be solutions to

∂p

∂t
=
∂2p

∂x2
, 0 < x, x0 < xa,r (22)

∂p

∂x
= 0, x = 0 (23)

p(x, x0, 0) = δ(x− x0), (24)

with two different right boundary conditions. Let pa be the solution with an
absorbing BC at xa = l0 = 1−ε. This solution is used to derive f , the jump time
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distribution. Let pr be the solution with a reflecting BC at xr = 1. This solution
is used to generate the random position of each particle given a jump time. In
both cases, the solution is represented as an infinite series. Two different series
representations are derived for each solution: one that converges quickly for
short times and one for long times.

Let
an =

π

l0
(n− 1/2), bn = nπ. (25)

For large times, we have

pa(x, x0, t) =
2

l0

∞∑
n=1

cos(anx) cos(anx0)e−a
2
nt, (26)

and

pr(x | x0, t) = 1 + 2

∞∑
n=1

cos(bnx) cos(bnx0)e−b
2
nt. (27)

For short times we have

pa(x, x0, t) =
1√
4πt

∞∑
n=0

(−1)n
(
e−

(2l0n+(x+x0))2

4t − e−
(2l0(n+1)−(x+x0))2

4t

+e−
(2l0n+|x−x0|)

2

4t − e−
(2l0(n+1)−|x−x0|)

2

4t

)
(28)

and

pr(x, x0, t) =
1√
4πt

∞∑
n=0

(
e−

(2n+(x+x0))2

4t + e−
(2(n+1)−(x+x0))2

4t

+e−
(2n+|x−x0|)

2

4t + e−
(2(n+1)−|x−x0|)

2

4t

)
(29)

For short times, the first passage time density is

f(t | x0) = − ∂

∂x
pa(l0, x0, t)

=
4π

(4πt)3/2

∞∑
n=0

(−1)n
{

(l0(2n+ 1) + x0)e−
(l0(2n+1)+x0)2

4t

+(l0(2n+ 1)− x0)e−
(l0(2n+1)−x0)2

4t

} (30)

with the cumulative distribution,

F (t | x0) = 1 +

∞∑
n=0

(−1)n
{

erf(
l0(2n+ 1) + x0√

4t
) + erf(

l0(2n+ 1)− x0√
4t

)

}
(31)
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For long times, the first passage time density and cumulative distribution are

f(t | x0) = − 2

l0

∞∑
n=1

(−1)nan cos(anx0)e−a
2
nt, (32)

F (t | x0) = 1 +
2

l0

∞∑
n=1

(−1)n cos(anx0)
e−a

2
nt

an
. (33)

The jump time is sampled using a standard root finding algorithm. Given a
uniform random variable U , the jump time is the unique solution to

F (t | x0)− U = 0. (34)

The distribution pr can be sampled using a rejection method as follows. A
majoring function C(x) must be chosen such that C(x) > p(x | x0, t) for all
x ∈ (0, 1). A tentative value X is sampled from the distribution

P (x) =
C(x)∫ 1

0
C(x)dx

. (35)

A second random variable is drawn according to Y = C(X)U , where U is a unit
uniform random variable. If Y > pr(X | x0, t), then the sample X is rejected.
The procedure is repeated until a sample is accepted.

For the long time expansion (27) we selectX to be a uniform random variable
in (0, 1) and set

Y =

(
1 + e−π

2t

1− e−π2t

)
U. (36)

For the short time expansion (29) we select X to be a normal random variable
with mean x0 and variance

√
2t. Note that care must be taken to ensure that

0 < X < 1. In this case,

Y = e−(X−x0)2/(4t) U√
πt
. (37)

A.1 2D simulations
For 2D cavitation, the outer boundary is a square of side length 2L. This
geometry allows us to reuse the jump propagator from the 1D algorithm to
update positions. The x and y coordinate of each particle are updated from
separate samples of the 1D propagator pr as described in the previous section.
The jump times are generated from the 2D distribution of first passage times
to the boundary of a circle.

The 2D first passage time problem is

∂

∂t
p(r, t | r0) =

1

r

∂

∂r

(
r
∂p

∂r

)
, (38)

p(r, 0 | r0) =
δ(r − r0)

2πr0
, (39)

p(l0, t | r0) = 0. (40)
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The solution can be written as an expansion in Bessel functions. The solution
is

p(r, t | r0) =
2

l0

∞∑
j=1

J0(rβn)J0(r0βn)

J1(l0βn)2
e−β

2
nt, (41)

where αn are the roots of J0(αn) = 0, and βn = αn/l0. The jump time density
function is

f(t | r0) = − ∂

∂r
p(l, t | r0) =

2

l0

∞∑
j=1

βnJ0(r0βn)

J1(l0βn)
e−β

2
nt, (42)

and the cumulative distribution is

F (t | r0) = 1− 2

l0

∞∑
j=1

J0(r0βn)

βnJ1(l0βn)
e−β

2
nt. (43)

We use a root finding method to sample the jump time.

B Parameter estimation
We use maximum likelihood to estimate parameter values in the large N expan-
sion of the Newtonian capacitance of a hypercube. We exploit the one to one
correspondance between α1 and β and between α2 and κ. The parameters β
and κ are estimated using realizations of the first passage time. The likelihood
function is computed by assuming that the first passage time is an exponentially
distributed random variable with mean

T̄ ∼ κ

NβεN−2
. (44)

This assumption is valid asymptotically as N →∞ when the first passage time
is a rare event. The likelihood function for β and κ from n iid samples {τk},
k = 1, · · · , n is given by

P ({τk} | β, κ) = exp

[
−n
(
Tn
T̄β,κ

+ log T̄β,κ

)]
, (45)

where

Tn =
1

n

n∑
k=1

τk. (46)

Two data sets were generated for N = 20, 25, 30, · · · , 115, 120 with ε = 10−5/N

and ε = 10−6/N . A value of Tn was generated for each parameter set using
104 samples of the first passage time from the exact simulation algorithm. We
numerically computed the maximum of the product of the likelihood functions
from all parameter values. The likelihood functions were computed on a 500×
500 grid for 1.5 < β < 2.5 and 1.5 < κ < 3. The resulting maximizers were
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Figure 5: The MFPT approximation compared to Monte Carlo simulation esti-
mates. Each symbol shows the sample mean of 104 simulations.

β ≈ 2.00 and κ ≈ 2.19. As shown in Fig. 5, T̄ and Tn are in good agreement with
these parameter values. The corresponding parameter values in the capacitance
expansion are α1 ≈ 3/2 and α2 ≈ −1.67. The capacitance approximation is
shown in Fig. 6 compared to numerical estimates. From the expansion, we
expect the error (given by the absolute difference divided by

√
N) to scale like

1/N2 as N →∞. We find good agreement between the error and 15/N2.
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Figure 6: The Newtonian capacitance of a hypercube.
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