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Abstract

Many systems are naturally represented by a multilayer network in which edges exist in multiple 

layers that encode different, but potentially related, types of interactions, and it is important to 

understand limitations on the detectability of community structure in these networks. Using 

random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) 

stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the 

effect of layer aggregation on detectability for several aggregation methods, including summation 

of the layers’ adjacency matrices for which we show the detectability limit vanishes as (L−1/2) 

with increasing number of layers, L. Importantly, we find a similar scaling behavior when the 

summation is thresholded at an optimal value, providing insight into the common—but not well 

understood—practice of thresholding pairwise-interaction data to obtain sparse network 

representations.

The analysis of complex networks [1] has far-reaching applications ranging from social 

systems [2] to the brain [3]. Often, a natural representation is that of a multilayer network 

(see reviews [4, 5]), whereby network layers encode different classes of interactions, such as 

categorical social ties [6], types of critical infrastructure [7], or a network at different 

instances in time [8]. In principle, the multilayer framework offers a more comprehensive 

representation of a data set or system, as compared to an aggregation of network layers that 

produces a simplified model but does so at the cost of information loss. For example, 

neglecting the layered structure can lead to severe and unintended consequences regarding 

structure [9] and dynamics [10–12], which can fundamentally differ between single-layer 

and multilayer networks [13, 14].

However, layer aggregation also implements an information processing that can yield 

beneficial results. Network layers are often correlated with one another and can encode 

redundant information [15]. In some cases a multilayer representation is an over-modeling, 

which can negatively impact the computational and memory requirements for storage and 
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analysis. In such situations, it is beneficial to seek a more concise representation in which 

certain layers are aggregated [16, 17]. Identifying sets of repetitive layers amounts to a 

clustering problem, and it is closely related to the topic of clustering networks in an 

ensemble of networks [17, 18]. Much remains to be studied regarding when layer 

aggregation is appropriate and how it should be implemented.

We study here the effect of layer aggregation on community structure in multilayer networks 

in which each layer is drawn from a common stochastic block model (SBM). SBMs are a 

paradigmatic model [19] for complex structure in networks and are particularly useful for 

studying limitations on detectability—that is, if the community structure is too weak, it 

cannot be found upon inspection of the network [20–25]. Recently, the detectability limit has 

been explored for networks with degree heterogeneity [26] and hierarchical structure [27, 

28], for temporal networks [29], and for the detection of communities using multi-resolution 

methods [30]. Despite growing interest in multilayer SBMs [31–35] (which we note, focus 

on multiplex networks in which nodes are identical in every layer and edges are restricted to 

connecting nodes in the same layer [4, 5]), the effect of layer aggregation on detectability 

limitations has yet to be explored outside the infinite layer limit [35].

To this end, we study detectability limitations for multilayer SBMs with layers following 

from identical SBM parameters and find that the method of aggregation significantly 

influences detectability. When the aggregate network corresponds to the summation of the 

adjacency matrices encoding the network layers, aggregation always improves detectability. 

In particular, the detectability limit vanishes with increasing number of layers, L, and decays 

as (L−1/2). Because the summation of L adjacency matrices can often yield a weighted and 

dense network—which increases the complexity of community detection [36]—we also 

study binary adjacency matrices obtained by thresholding this summation at some value L̃. 
We find that the detectability limit is very sensitive to the choice of L̃; however, we also find 

that there exist thresholds (e.g., mean edge probability for homogeneous communities) that 

are optimal in that the detectability limit also decays as (L−1/2). These results provide 

insight into the use of thresholding pairwise-interaction data so as to produce sparse 

networks—a practice that is commonplace but for which the effects are not well understood.

We begin by describing the multilayer SBM. We consider N nodes divided into K 
communities, and we denote by ci ∈ {1, …, K} the community index for each node i ∈ {1, 

…, N}. The multiplex network is defined by L layers encoded by a set of adjacency 

matrices, {A(l)}, where  if (i, j) is an edge in layer l and  otherwise. The 

probability of edge (i, j) in layer l is given by Πcicj ∈ [0, 1], where Π is a K × K matrix.

The detectability of community structure relates to the ability to recover the nodes’ 

community labels {ci}. To connect with previous research [21, 23–25], we focus on the case 

of K = 2 communities of equal size with edge probabilities Π11 = Π22 = pin and Π12 = Π21 = 

pout. Below, we will simultaneously refer to these respective probabilities as pin,out. We 

assume pin ≥ pout to study “assortative” communities in which there is a prevalence of edges 

between nodes in the same community [37].
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It has been shown for the large network N → ∞ limit that there exists a detectability limit 

characterized [23, 24] by the solution curve (Δ*, ρ) to

(1)

where Δ = pin − pout is the difference in probability and ρ = (pin + pout)/2 is the mean edge 

probability. For given ρ, the communities are detectable only when the presence of 

community structure is sufficiently strong, i.e., Δ > Δ*. Equation (1) describes a phase 

transition that has been obtained via complementary analyses—Bayesian inference [23] and 

random matrix theory [24]—and represents a critical point that is independent of the 

community detection method (see [23] and footnote 11 in [24]). We further note that Eq. (1) 

was derived for sparse networks [i.e., constant ρN so that ρ = (N−1)]. Here, we must 

consider the full range of densities, ρ ∈ [0, 1], to allow for aggregated networks that are 

potentially dense [i.e., ρ = (1) as N → ∞].

In this Letter, we study the behavior of Δ* for two methods of aggregating layers. We define 

the summation network corresponding to the weighted adjacency matrix Ā = Σl A(l) as well 

as a family of thresholded networks with unweighted adjacency matrices {Â(L̃)} that are 

obtained by applying a threshold L̃ ∈ {1, …, L} to the entries of Ā. Specifically, we define 

 if Āij ≥ L̃ and  otherwise. Of particular interest are the limiting cases L̃ = L 
and L̃ = 1, which respectively correspond to applying logical AND and OR operations to the 

original multiplex data { } for fixed (i, j). We refer to these thresholded networks as the 

AND and OR networks, respectively.

We study the detectability limit for the layer-aggregated networks using random matrix 

theory [38, 39]. This approach is particularly suited for detectability analysis since 

community labels {ci} can be identified using spectral partitioning and phase transitions [24, 

27, 28] in detectability correspond to the disappearance of gaps between isolated eigenvalues 

(whose corresponding eigenvectors reflect community structure) and bulk eigenvalues 

[which arise due to stochasticity and whose N → ∞ limiting distribution is given by a 

spectral density P(λ)]. We develop theory based on the modularity matrix B̄
ij = Āij − ρL 

[40]. Note that we do not use the configuration model as the null model. Instead, since all 

nodes are identical under the SBM, the appropriate null model is Erdős-Rényi with repeated 

edges allowed in which the expected number of edges between any pair of nodes is ρL.

We first study Δ* for the summation network. We analyze the distribution of real eigenvalues 

{λi} of B̄ (in descending order) using methodology developed in [24, 38]; we extend this 

work to networks that are multiplex and possibly dense. We outline our results here and 

provide further details in the Supplemental Material. We begin by describing the statistical 

properties of entries {Āij}, which are independent random variables following a binomial 

distribution P(Āij = a) = f(a; L, Πcicj), where
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(2)

has mean Lp and variance Lp(1 − p). Provided that there is sufficiently large variance in the 

edge probabilities (i.e., NLρ (1 − ρ) ≫ 1), we find that the limiting N → ∞ distribution of 

bulk eigenvalues for B̄ is given by a semi-circle distribution,

(3)

for |λ| < λ2 and P (λ) = 0 otherwise, where

(4)

is the upper bound on the support of this spectral density and is the limiting N → ∞ value 

of the second-largest eigenvalue. The largest eigenvalue of B̄ in the N → ∞ limit is an 

isolated eigenvalue

(5)

As we shall show, Δ* → 0 as N increases, and therefore the Δ2/4 terms in Eq. (4) and (29) 

are negligible near the detectability limit (i.e., Δ ≈ Δ*). The eigenvector v corresponding to 

λ1 gives the spectral bipartition—the inferred community label of node i is determined by 

the sign of vi—and provided that the largest eigenvalue corresponds to this isolated 

eigenvalue, λ1, the eigenvector entries {vi} are correlated with the community labels {ci}. 

To obtain the detectability limit, we set λ1 = λ2, neglect the Δ2/4 terms and simplify, 

yielding a modified detectability equation

(6)

Note that Eq. (6) recovers Eq. (1) when L = 1 and ρ → 0 [i.e., for sparse networks, ρ (1 − ρ) 

≈ ρ]. Defining  and , we find for fixed ρ and increasing N and/or 

L that  and Δ* → 0, decaying as .
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We now study Δ* for the thresholded networks, which correspond to single-layer SBMs in 

which the community labels {cj} are identical to those of the multilayer SBM, but there are 

new effective block edge probabilities

(7)

where F(a; L, p) is the cumulative distribution function for the binomial distribution f(a; L, 

p). The effective probabilities for the AND and OR networks are  and 

, respectively. For the two-community SBM, the effective probabilities 

are , and . The 

modularity matrices for the thresholded networks become . We identify the 

detectability limit by substituting Δ ̂(L̃) ↦ Δ and ρ̂(L̃) ↦ ρ into Eq. (6) (with L = 1) and 

numerically finding a solution (Δ*, ρ) using a root-finding algorithm. Note that the 

detectability equation holds for the effective probabilities, , and 

not the single-layer probabilities, .

In Figs. 1(a)–(b), we show Δ* versus the mean edge probability ρ for the different 

aggregation methods: (i) a single layer (red dot-dashed curves), which is identical in panels 

(a) and (b); (ii) the summation network (blue dashed curves), for which the curve in (b) 

corresponds to the curve in panel (a) rescaled by a factor of 1/2; and (iii) thresholded 

networks (solid curves), which shift left-to-right with increasing L̃. This is evident by 

comparing Δ* for the AND (L̃ = L, gold circles) and OR (L̃ = 1, cyan squares) networks. We 

find when ρ is large that the AND (OR) network has a relatively small (large) detectability 

limit; in contrast, when ρ is small the AND (OR) network has a relatively large (small) 

detectability limit. In other words, aggregating layers using the AND (OR) operation is 

beneficial for dense (sparse) networks.

It is interesting to ask if there are choices of ρ and L̃ for which the detectability limit 

vanishes as (L−1/2) with increasing L—that is, a behavior similar to that of the summation 

network. To this end, we study the threshold L̃ = ⌈ρL⌉, which we numerically observe to be 

the best L̃ for most values of ρ. This choice is also convenient as it only requires knowledge 

of the mean edge probability, ρ, which is easy to obtain in practice. In Fig. 1(c), we plot Δ* 

versus ρ for L = 4 and L̃ = ⌈ ρL⌉ (orange triangles), which lies along the solution curves for 

L̃ ∈ {1, …, L} (solid curves). In Fig. 1(d), we plot Δ* for threshold L̃ = ⌈ ρL⌉ with L = 4 

(orange triangles) and L = 64 (green crosses). These curves align due to the rescaling of the 

vertical axis by . In fact, we find in the large L limit that these solutions Δ* collapse 

onto a single curve ( , ρ) that solves
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(8)

which we plot by the black line in Fig. 1(d). To obtain Eq. (8), we use the central limit 

theorem [41] to approximate , 

where  is the value of the cumulative distribution 

function of the normal distribution with mean μ and variance σ2 evaluated at p. In particular, 

we approximate  and ρ̂(⌈ρL⌉) ≈ ρ̂(asym) = 1/2. 

Equation (8) is recovered after substituting Δ̂(asym) ↦ Δ and ρ̂(asym) ↦ ρ into Eq. (6) with 

L = 1 and using the first-order expansion . Importantly, Eq. (8) 

implies that Δ* decays as  for thresholded networks with L̃ = ⌈ ρL⌉.

In Fig. 2, we illustrate the limiting L → ∞ behavior for thresholded networks with L̃ = ⌈ 

ρL⌉. In panels (a)–(b), we plot  (blue triangles) and  (red circles) versus ρ for Δ 

= 0.1 with (a) L = 4 and (b) L = 64. We also plot the effective probabilities  (solid 

curves) and  (dashed curves) for the AND (gold curves) and OR (cyan curves) networks. 

In panel (b), we additionally plot the limiting effective probabilities  (blue solid 

curve) and  (red dashed curve). Comparing panel (b) to (a), one can observe that as L 

increases, the piecewise-continuous solutions  separate and align with the respective 

asymptotic solutions .

In Figs. 2(c)–(f), we illustrate adjacency matrices Â(⌈ρL⌉) of thresholded networks with ρ = 

0.3 and Δ = 0.1 for various L. We note that the community structure is undetectable for L = 1 

since Δ* = 0.1095, whereas it is detectable (and visually apparent) for L = 128. Comparing 

(c)–(f) illustrates the L → ∞ limiting behavior of Â(⌈ρL⌉). Specifically, application of 

Hoeffding’s inequality [42] (and using that pin,out − ρ = ±Δ/2) yields 

and , which implies that  and  with increasing L so 

that , where δnm is the Kronecker delta function.

We conclude by studying the dominant eigenvector v of the appropriate modularity matrix, 

which undergoes a phase transition at Δ*: {vi} and the community labels {ci} are 

uncorrelated for Δ < Δ*, whereas they are correlated for Δ > Δ*. Using methodology 

developed in [38], we find that the entries {vi} within a community are Gaussian distributed 

with mean
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(9)

which we use as an order parameter to observe the phase transition. In Fig. 3, we depict 

observed (symbols) and predicted values given by Eq. (9) (curves) of |〈vi〉| for a single layer 

(×-symbols), the summation network (+-symbols) and thresholded networks (open symbols). 

We focus on a range of Δ that contains Δ* for most aggregation methods. Note for the 

thresholded networks that there is no simple ordering to Δ*, which can be deduced by 

examining Fig. 1(a) for ρ ∈ {0.02, 0.6}. Finally, we note that finite-size effects amplify 

disagreement between observed and predicted values near the phase transitions.

In this Letter, we studied the limitations on community detection for multilayer networks 

with layers drawn from a common SBM. As an illustrative model, we analyzed the effect of 

layer aggregation on the detectability limit Δ* for two equal-sized communities. When layers 

are aggregated by summation, we analytically showed detectability is always enhanced and 

Δ* vanishes as (L−1/2). When layers are aggregated by thresholding this summation, Δ* 

depends sensitively on the choice of threshold, L̃. For L̃ = ⌈ ρL⌉, we analytically found Δ* to 

also vanish as (L−1/2). We note that our analysis also describes layer aggregation by taking 

the mean, L−1 Σl A(l), since the multiplication of a matrix by a constant (e.g., L−1) simply 

scales all eigenvalues by that constant. Thus, our results are in excellent agreement with 

previous work [35] that proved spectral clustering via the mean adjacency matrix to be a 

consistent estimator for the community labels.

Finally, it is commonplace to threshold pairwise-interaction data to construct network 

representations that are sparse and unweighted and can be studied at a lower computational 

cost. Our research provides insight into this common—yet not well understood—practice. It 

is important to extend our work to more-complicated settings. We believe fruitful directions 

should include allowing the SBMs of layers to be correlated [25] (that is, rather than 

identical) as well as allowing layers to be organized into “strata” [17], so that layers within a 

stratum follow a similar SBM but the SBMs can greatly differ between strata. We are 

currently extending our analysis to hierarchical SBMs using methodology developed in [27].
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FIG. 1. (Color online) Layer aggregation enhances the detectability of community structure
(a)–(b) We plot the detectability limit Δ* versus mean edge probability ρ for a single 

network layer (red dot-dashed curves), the aggregate network obtained by summation (blue 

dashed curves), and aggregate networks obtained by thresholding this summation at L̃ ∈ {1, 

2, 3, 4} (solid curves). Gold circles and cyan squares highlight L̃ = L and L̃ = 1, which we 

refer to as AND and OR networks, respectively. Results are shown for N = 104 nodes with 

(a) L = 4 and (b) L = 16 layers. (c) For L = 4, we show Δ* versus ρ for the optimal threshold 

L̃ = ⌈ρL⌉ (orange triangles), which lies on the solution curves for L̃ ∈ {1, …, L} (solid 

curves). (d) We show Δ* for L̃ = ⌈ρL⌉ with L ∈ {4, 16}. These piecewise-continuous 

solutions collapse onto the asymptotic solution  (black curve) as L increases. In 

panels (c)–(d), we additionally plot Δ* for the summation network (blue dashed curves).
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FIG. 2. (Color online) Effective edge probabilities for layer aggregation at an optimal threshold
(a)–(b) The summation and thresholding at L̃ = ⌈ρL⌉ of L adjacency matrices yields a new 

SBM with effective edge probabilities  (blue triangles) and  (red circles). 

Results are for Δ = 0.1 (i.e., pin,out = ρ ± 0.05) with (a) L = 4 and (b) L = 64 layers. We also 

show effective probabilities for the AND (gold curves) and OR (cyan curves) networks. 

(Solid and dashed curves give  and , respectively.) Note for the larger L value in (b) 

that  and  have separated and aligned with the asymptotic probabilities 

(blue solid curve) and  (red dashed curve), respectively. (c)–(f) Adjacency matrices of 

thresholded networks with ρ = 0.3, Δ = 0.1, L̃ = ⌈ ρL⌉ and various L.

Taylor et al. Page 10

Phys Rev Lett. Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. (Color online) Phase transition at Δ* for the dominant eigenvector v of the modularity 
matrix
We show observed (symbols) and predicted values given by Eq. (9) (curves) for the mean 

eigenvector entry |〈vi〉| within a community for N = 104 and L = 4.
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