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Abstract

Nucleotide excision repair and the ATR-mediated DNA damage checkpoint are two critical 

cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for 

cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz 

Sancar and colleagues developed an in vitro coupled repair-checkpoint system to analyze the basic 

steps of these DNA damage stress responses in a biochemically defined system. The minimum set 

of factors essential for repair-checkpoint coupling include damaged DNA, the excision repair 

factors (XPA, XPC, XPF-ERCC1, XPG, TFIIH, RPA), the 5′-3′ exonuclease EXO1, and the 

damage checkpoint proteins ATR-ATRIP and TopBP1. This coupled repair-checkpoint system was 

used to demonstrate that the ~30 nucleotide single-stranded DNA (ssDNA) gap generated by 

nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that 

activates ATR.

Graphical Abstract

Nucleotide excision repair and the ATR-mediated DNA damage checkpoint are two critical 

cellular responses to UV-induced genotoxic stress and are important for cancer prevention. This 

review summarizes the in vitro coupled repair-checkpoint system developed by Aziz Sancar and 

colleagues to analyze the basic steps of these two DNA damage stress responses in a 

biochemically defined reaction. They demonstrated that the ~30 nucleotide single-stranded DNA 

gap generated during the excision repair process by XPA, XPC, XPF-ERCC1, XPG, TFIIH, RPA 

is enlarged by the exonuclease EXO1 and bound by RPA to generate the signal that activates ATR-

ATRIP in the presence of TOPBP1.
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INTRODUCTION

The Sancar lab was a very exciting place to begin a postdoc at the start of the new 

millennium. It was six years after his lab had accomplished the heroic feat of reconstituting 

human nucleotide excision repair in vitro (1), and Aziz had come to the wise decision that 

the DNA excision repair field was “mature” and that his lab would embark upon the newly 

emerging field of DNA damage checkpoints. In fact, DNA damage checkpoints were pretty 

well understood in yeast by this time, in 2001 the Nobel Prize in Medicine was awarded to 

Leland Hartwell for introducing the concept: cell cycle arrest in response to DNA damage to 

ensure repair before cell division (2). However, the human checkpoint genes were just being 

identified, initial Human Genome Project results were published in 2001 (3), and we were 

eager to characterize the proteins encoded by these genes, with the long-term goal of 

reconstituting the human DNA damage checkpoint with purified proteins, and the even-

longer-term goal of coupling nucleotide excision repair and the DNA damage checkpoint in 
vitro. It is our hope that research to understand these two cellular responses to DNA damage 

at a molecular level will ultimately aid in cancer prevention, diagnosis, and treatment.

RECONSTITUTING THE ATR-MEDIATED DNA DAMAGE CHECKPOINT

DNA damage checkpoints are signal transduction pathways induced after DNA damage and 

are composed of proteins in the four conceptual categories of Sensors, Mediators, 

Transducers, and Effectors (4) (Figure 1). The DNA damage checkpoints are broadly 

defined by two types of damage that induce the response: bulky DNA adducts such as those 

generated by ultraviolet (UV) light and double strand breaks such as those introduced by 

ionizing radiation (IR). The DNA damage checkpoints are also defined by the two very large 

sensor kinases, Ataxia Telangiectasia Mutated (ATM) and ATM and Rad3-related (ATR), 

which are activated by the DNA damage caused by IR or UV, respectively. These kinases 

belong to the phosphatidylinositol 3-kinase-related kinase (PIKK) family of Ser/Thr-protein 

kinases which also include DNA-PKcs, SMG1, TRRAP, and mTOR. Upon activation, the 
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sensor kinases ATR and ATM phosphorylate and activate the downstream transducer 

kinases, Chk1 and Chk2, respectively. Considering the historical interest and expertise of the 

Sancar lab in analyzing DNA damage responses to UV light, we chose to focus on the 

ATR→Chk1 pathway, while recognizing that there is considerable crosstalk and overlap 

between these signal transduction pathways.

During the past 16 years we have purified the key human checkpoint proteins in the 

ATR→Chk1 pathway (Figure 2). ATR is a 300 kDa protein that forms a heterodimer with a 

85 kDa protein partner, ATRIP. Initial characterizations of ATR-ATRIP by the Sancar lab 

were performed with epitope-tagged recombinant proteins (5,6), but we later found that 

native ATR-ATRIP purified from HeLa cell extracts (7) was more active and consistent, thus 

we continued to use native protein purified from hundreds of liters of HeLa cells in 

subsequent reconstitution experiments (8–15). During the purification of ATR-ATRIP we 

carefully monitored the ATR-ATRIP-containing fractions for the presence of the other 

PIKKS, especially the highly abundant DNA-PKcs, since these kinases have similar 

sequence specificity (preferring S/TQ) and can phosphorylate the same substrates in vitro 
(16) which complicates data interpretation. Upon activation, ATR phosphorylates itself and 

other key checkpoint proteins. In our reconstituted system, we initially focused on ATR 

phosphorylation of Chk1 (7–14), but have also analyzed phosphorylation of other substrates 

including RPA, p53, and Rad17 (8,13,15) using both quantitative Western blotting with 

phosphospecific antibodies (7–15) and measuring the incorporation of radiolabeled 

phosphate (5,6,10) to analyze the amount of substrate phosphorylation. Chk1 is the ‘classic’ 

ATR substrate, however we analyzed ATR phosphorylation of RPA and p53 in our repair-

checkpoint coupling experiments because Chk1 is expressed at low levels and is not 

phosphorylated during G0/G1 (15,17,18), and therefore not a physiologically relevant 

substrate when studying the coupling of excision repair and ATR activation (discussed more 

below).

My initial project in the Sancar lab was to characterize the human homolog of the fission 

yeast damage sensor Rad17, which has homology to all five subunits of Replication Factor C 

(RFC). We found that hRad17 forms a stable complex with the four small subunits of RFC, 

replacing the large subunit (p140), and we named this checkpoint complex hRad17-RFC 

(19). RFC loads the polymerase processivity clamp, Proliferating Cell Nuclear Antigen, 

PCNA, onto DNA during replication. PCNA is a trimer of identical subunits which share 

homology with the checkpoint proteins Rad9, Rad1, and Hus1, which together form a trimer 

called the checkpoint 9-1-1 complex. We demonstrated by electron microscopy that the 

9-1-1 complex forms a ring-like structure similar to PCNA (20), and that the hRad17-RFC 

complex loads the 9-1-1 complex onto DNA (21). Although these proteins are genetically 

required for the ATR-mediated checkpoint in vivo, the loading reaction is inefficient in vitro, 

and we have not been successful incorporating these checkpoint proteins into our 

reconstituted checkpoint system. We suspect that a component may be missing in our 

system, and indeed, when the 9-1-1-interacting factor RHINO was reported, we re-visited 

the subject with little success (22). Through collaborations with other labs, we also found 

that the 9-1-1 complex interacts with and stimulates several enzymes in the Base Excision 

Repair pathway (23–25) as well as carbamoyl phosphate synthetase/aspartate 
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transcarbamoylase/dihydroorotase (CAD), a multienzymatic protein required for the de novo 

pyrimidine synthesis (26).

A huge advance in the checkpoint field was the 2006 discovery by the William Dunphy lab 

that DNA Topoisomerase 2-Binding Protein 1 (TopBP1) is an activator of ATR-ATRIP (27). 

We had actually purified and tested TopBP1 in our ATR kinase system before this report, but 

had not observed the activator effect due to manganese in our reaction buffer. Early reports 

had indicated that manganese was a requirement for the PIKK class of enzymes (28), and 

thus our ATR kinase system included manganese, but we found that the combination of 

magnesium and manganese inhibits TopBP1 activation of ATR-ATRIP. After eliminating 

manganese, we found TopBP1 to be a potent ATR-ATRIP activator and went on to 

characterize many properties of its ATR-activating activity including its binding and 

stimulation by damaged DNA (7,9) (Figure 3), its cooperative mechanism (8), and its 

binding and stimulation by RPA-coated ssDNA (11).

Long stretches of RPA-coated ssDNA strongly induce the ATR-mediated checkpoint. During 

S phase the long stretches of ssDNA result from the replication fork stalling and helicase 

uncoupling that occurs when polymerases encounter the damage (29). Through direct and 

indirect interactions, RPA recruits key checkpoint proteins to the ssDNA (Figure 4). Direct 

RPA interactions recruit ATR-ATRIP via ATRIP (30) and the TopBP1 activator via its N-

terminus (11). Chk1 is indirectly recruited through interactions with Claspin which interacts 

with Timeless-Tipin via a direct interaction between Tipin and RPA (31). We have found 

that p53 and hRad17 interactions with RPA-coated ssDNA also facilitate their 

phosphorylation by ATR (13). Interactions with RPA-coated ssDNA effectively concentrate 

or crowd the checkpoint proteins together such that ATR is in contact with substrates and 

TopBP1 activator. We have provided evidence for this crowding model both in vitro and in 
vivo by demonstrating ATR activation through tethering key checkpoint proteins to DNA 

using the Lac Repressor-Lac Operon system (12,14,22) as well as with light-induced 

crowding via cryptochrome photobodies (32).

COUPLING NUCLEOTIDE EXCISION REPAIR AND THE ATR-MEDIATED DNA 

DAMAGE CHECKPOINT

It had already been demonstrated in some human cell lines that UV-induced ATR activation 

is dependent on nucleotide excision repair when the cells are in G0 (17,33–35), but two 

advances in 2010 convinced us that our ultimate goal of coupling nucleotide excision repair 

and the DNA damage checkpoint with purified proteins would be attainable: we 

reconstituted ATR activation with RPA-coated ssDNA in vitro (11) and the Muzi-Falconi lab 

reported that the UV-induced ATR checkpoint is activated in G0 when EXO1 converts 

nucleotide excision repair intermediates into long ssDNA gaps in vivo (36,37). After repair 

of UV damage, EXO1 competes with repair synthesis resulting in a small fraction of the ~30 

nucleotide excision repair gaps being resected to generate long stretches of ssDNA. We first 

performed a ‘proof of principle’ experiment to demonstrate in vitro support for this model. 

As shown in Figure 5, in in vitro kinase reactions containing purified ATR-ATRIP, TopBP1, 
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and RPA, we observed RPA phosphorylation only in the presence of ssDNA or when gapped 

DNA was resected by EXO1 (Figure 5).

Although we had now demonstrated EXO1-dependent ATR activation with model DNA 

substrates, it took us much longer to optimize the reaction conditions and to generate 

sufficient quality DNA and excision repair factors to achieve our goal of nucleotide excision 

repair-dependent ATR activation (15). We determined that DNA damaged with the UV-

mimetic N-Acetoxy-2-acetylaminofluorene (AAF) worked better in the reconstitution 

experiments than DNA damaged with UV. AAF induces bulky AAF-guanine adducts in 

DNA which are among the best substrates for nucleotide excision repair, whereas the main 

lesions generated by UV, cyclobutane thymine dimers, are not efficiently excised in in vitro 
reactions (38). We also determined that the amount of DNA damage per plasmid required 

optimization, with ~3 AAFs per plasmid (~1/kb) producing the best results. Less AAF 

damage in the plasmid DNA resulted in less gaps and more AAF damage resulted in more 

gaps yet blocked EXO1 resection, both conditions resulting in a lower ssDNA to dsDNA 

ratio which decreased the signal-to-noise ratio.

EXO1 is a very efficient 5′ to 3′ exonuclease on both gapped and nicked DNA. Therefore, 

any nicks in the DNA generated nonspecifically by any one component resulted in the 

reaction not being dependent on the other components. DNA nicks introduced in the initial 

plasmid preparation, introduced during the AAF damage process, or introduced by nuclease 

contaminants in the repair or checkpoint factors were a problem. This required us to prepare 

very pure excision repair factors: XPA, XPC-HR23B, XPF-ERCC1, XPG, TFIIH, and RPA 

(Figure 6).

Once we obtained good quality DNA and proteins, we were finally able to complete the 

reconstitution experiments. In vitro coupling of nucleotide excision repair and the ATR-

mediated DNA damage checkpoint is shown in Figure 7 (Figure 7). ATR activation, as 

measured by RPA2 phosphorylation, is dependent on the presence of the six excision repair 

factors (RF), TopBP1, EXO1, and AAF-damaged DNA. We also demonstrated repair-

checkpoint coupling as measured by p53 phosphorylation in this study (15).

CONCLUSION

A model summarizing repair-checkpoint coupling is shown in Figure 8 (Figure 8). When 

DNA is damaged by UV or a UV-mimetic agent, the core excision repair factors (XPA, 

XPC-HR23B, XPF-ERCC1, XPG, TFIIH, and RPA) excise the damage, and the resulting 

~30 nucleotide gap is either filled in by polymerases or the gap is enlarged by EXO1. The 

resulting long stretch of ssDNA is coated with RPA which recruits ATR-ATRIP, TopBP1, 

and substrates including p53. This repair-checkpoint coupling work brings together over 25 

years of research in the Sancar lab, and as Aziz so elegantly described in his Nobel 

Biography (39), this work is “the ultimate in reductionist biochemical research that aims to 

explain complex cellular phenomenon in a minimalist in vitro system.” It is our hope that by 

breaking down and rebuilding these repair and checkpoint reactions that we may gain 

sufficient understanding of the molecular mechanisms of these reactions to inform better 
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development of tools for diagnosis, prevention, and treatment of cancer and other human 

disease.
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Abbreviations

UV ultraviolet

ssDNA single-stranded DNA

IR ionizing radiation

PIKK phosphoinositol 3-kinase-related kinase

ATM Ataxia Telangiectasia-Mutated

ATR ATM and Rad3-related

PCNA Proliferating Cell Nuclear Antigen

TIM Timeless

TIPIN Timeless interacting protein

CAD carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase

TopBP1 Topoisomerase 2-Binding Protein 1

AAF N-Acetoxy-2-acetylaminofluorene

UM unmodified

RF repair factors
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Figure 1. 
The DNA damage checkpoint pathways. The pathways consist of damage sensors, 

mediators, signal transducers, and effectors. DNA damage by UV and UV-mimetic agents 

activates the ATR→Chk1 pathway. Ionizing Radiation (IR) induces double-strand breaks 

which activates the ATM→Chk2 pathway. Modified from (4).

Lindsey-Boltz Page 10

Photochem Photobiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Purified Checkpoint Factors
Different subunits in the complexes are indicated with arrows. The checkpoint factors were 

purified as described: ATR-ATRIP (7), Chk1 (9), p53 (8), Rad17-RFC (19), 9-1-1-RHINO 

complex (22), TopBP1 (7), Claspin (40), Timless-Tipin (41), RPA (11).
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Figure 3. TopBP1-dependent stimulation of ATR kinase activity by AAF-damaged DNA
Kinase assays were performed as pictured on the right with ATR–ATRIP, His-Chk1-kd, 

GST-TopBP1-His, and with 0.62–5 nM unmodified (UM) or AAF-damaged (AAF) pUC19 

plasmid DNA. The left shows immunoblotting of the reactions for phosphorylated Chk1 (P-

Chk1, which is phosphorylated at S345) (Upper) and total Chk1 (Lower). The average levels 

of Chk1 phosphorylation from four independent experiments are quantitated in the graph 

below. Reproduced with permission from (7).
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Figure 4. Model of ATR kinase activation by RPA-coated ssDNA
RPA directly interacts with ATRIP, the N-terminus of TopBP1, Tipin (Tip), Rad17, Rad9, 

and p53. The consequence of all of these interactions on long stretches of ssDNA is to 

localize ATR kinase with its TopBP1 activator and substrates. The arrow indicates 

phosphorylation of the checkpoint signal transduction kinase, Chk1, by ATR. In addition to 

Chk1, ATR phosphorylates nearly all of the other proteins depicted, but these 

phosphorylation events are not shown for simplicity.
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Figure 5. Model System for Repair-Checkpoint Coupling
ATR kinase reactions were carried out as depicted on the right with ATR-ATRIP, TopBP1, 

RPA, and EXO1 as indicated. Single-stranded DNA (ssDNA), plasmid DNA (dsDNA), or 

gapped DNA was added to the reaction as indicated. The left shows immunoblotting of the 

reactions for phosphorylated RPA2 (P-RPA2, which is phosphorylated at S33) (Upper) and 

total RPA with antibodies against RPA1 (Lower). Reproduced with permission from (15).
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Figure 6. Purified Nucleotide Excision Repair Factors
Different subunits in the complexes are indicated with arrows. The checkpoint factors were 

purified as described (42).
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Figure 7. Reconstituted Repair-Checkpoint Coupling
Kinase reactions, as diagrammed on the right, contained ATR-ATRIP, TopBP1, RPA, EXO1, 

and different concentrations of unmodified (UM) or AAF DNA from excision reactions with 

or without repair factors (RF) as indicated. Reactions were analyzed by immunoblotting for 

phospho-RPA2 and RPA1 for loading. The graph below shows the relative levels of 

phosphorylated RPA2 from three identical repeats. Reproduced with permission from (15).
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Figure 8. Model of Repair-Checkpoint Coupling
When DNA is damaged by UV, the core excision repair factors excise a ~30 nucleotide 

oligomer containing the damage. The resulting gap is either filled in by polymerases or the 

gap is enlarged by EXO1. The resulting ssDNA is coated with RPA which recruits ATR-

ATRIP, TopBP1, and substrates including p53. Modified from (15).

Lindsey-Boltz Page 17

Photochem Photobiol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	INTRODUCTION
	RECONSTITUTING THE ATR-MEDIATED DNA DAMAGE CHECKPOINT
	COUPLING NUCLEOTIDE EXCISION REPAIR AND THE ATR-MEDIATED DNA DAMAGE CHECKPOINT
	CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

