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Central ideas from thermal biology, including thermal performance curves

and tolerances, have been widely used to evaluate how changes in envi-

ronmental means and variances generate changes in fitness, selection and

microevolution in response to climate change. We summarize the opportu-

nities and challenges for extending this approach to understanding the

consequences of extreme climatic events. Using statistical tools from extreme

value theory, we show how distributions of thermal extremes vary with lati-

tude, time scale and climate change. Second, we review how performance

curves and tolerances have been used to predict the fitness and evolutionary

responses to climate change and climate gradients. Performance curves and

tolerances change with prior thermal history and with time scale, complicating

their use for predicting responses to thermal extremes. Third, we describe sev-

eral recent case studies showing how infrequent extreme events can have

outsized effects on the evolution of performance curves and heat tolerance.

A key issue is whether thermal extremes affect reproduction or survival, and

how these combine to determine overall fitness. We argue that a greater

focus on tails—in the distribution of environmental extremes, and in the

upper ends of performance curves—is needed to understand the consequences

of extreme events.

This article is part of the themed issue ‘Behavioural, ecological and

evolutionary responses to extreme climatic events’.
1. Introduction

In the US, debate has raged since the intense heat waves in the summer of 1988 over
whether a ‘signal’ of global warming has finally been detected against the background
‘noise’ of natural climatic variation. . . (Stephen Schneider, 1990 [1, p. 9])
Extreme climatic events—heat waves, droughts, floods—have attracted increasing

attention in recent decades, and their frequency and magnitude are increasing due

to ongoing climate changes [2]. As Schneider [1] suggests, determining the causes

of extreme events is hard [3]; determining the biological consequences of such

events is even harder. For example, the ecological and microevolutionary conse-

quences of increases in mean temperatures are now widely documented [4,5],

but patterns and consequences of extreme environmental events are more

poorly understood. Case studies in a handful of study systems have documented

evolutionary changes in size, morphology or tolerance in association with drought

or extreme high temperatures [5,6]. Conversely, a recent meta-analysis of pheno-

typic selection in field populations did not detect any association of heat waves

(maximum temperatures) or short-term drought (minimum precipitation) with

spatial and temporal variation in selection; selection was instead associated

with other aspects of climate (e.g. mean precipitation and minimum potential

evapotranspiration, PET) [7]. Are climatic extremes of special importance for selec-

tion and microevolution, compared with mean and variation in climate? The role

of extreme environmental events for extinction and diversification at macroevolu-

tionary time scales is well-established [6], but the importance of adaptive evolution
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in response to extreme climatic events on the scale of years to

centuries is largely unknown.

Models for adaptive evolution require information about

selection—how phenotypic (or genotypic) variation causes

variation in fitness [8,9]. In this framework, changes in environ-

mental conditions (including climate) alter the relationships

between phenotypic traits and fitness, and thereby change

the form, direction and magnitude of selection. Environmental

change may also alter phenotypic and genetic variation, which

can alter both the strength and evolutionary responses to

selection [10,11]. This framework has facilitated a wealth of

empirical studies quantifying phenotypic selection (and to a

lesser extent, genetic variation) in different environmental

conditions [12,13]. But a major limitation to applying this

framework to climate change and climate extremes is that

the causal connections among climate conditions, phenotypes

and fitness are rarely known. What is lacking is a quantitative

theory of phenotypic selection that would allow predictions of

how changes in environment generate changes in selection.

The field of thermal biology has provided a useful test case

for developing a quantitative framework for selection in the

context of climate change [14,15]. These studies focus on two

main types of phenotypic traits: thermal performance curves

(TPCs), which relate performance or fitness as a function of

body temperature; and thermal tolerances, which represent

body temperature thresholds at which survival (or perform-

ance) changes precipitously. By combining data on changes

in weather or climate with information on TPCs and tolerances,

we can predict the fitness and selective consequences of

environmental change. This approach has been used to quan-

tify the empirical relationships between temperature changes

and changes in mean fitness, phenotypic selection and evol-

utionary responses; and to predict how recent and future

climate changes will alter mean fitness, selection and evolution

[14–19]. Some of these studies highlight the potential impor-

tance of climatic extremes for selection and evolutionary

responses to climate change [16,18,19]. However, we suggest

that there are some important challenges in using TPCs and

tolerances to model responses to extreme conditions.

In this perspective we highlight the challenges of con-

necting climate extremes and thermal biology to understand

selection and evolutionary responses of ectotherms to climate

change. First, we discuss climate ‘extremes’ in the context of

variation in weather and climate. In this paper we define

extremes in terms of the upper end (or tail) of the distribution of

climatic variables, focusing on temporal variation in tempera-

ture and how it changes geographically [20]. We summarize

some key concepts and tools from the statistics of extreme

values, and apply these to environmental temperature data

along two climatic (latitudinal) gradients. One message is

that temporal distributions of temperatures are frequently

skewed and have ‘fat’ or ‘thin’ tails, and that these properties

vary with geographical region and with time scale. This has

important consequences for the nature of climate extremes

and their biological consequences. Second, we briefly summar-

ize the use of TPCs and thermal thresholds for quantifying the

effects of climate variation and extremes on mean fitness, selec-

tion and evolutionary responses. An important challenge is

that TPCs and thermal thresholds can vary with prior thermal

history and with the time scale at which they are measured,

making it difficult to integrate the effects of climate variation

and extremes across the life cycle to quantify fitness and selec-

tion. Third, we review several recent field and modelling
studies that document or predict evolutionary responses

in performance curves. We use extreme value analyses to

quantify how extreme thermal events contribute to the evol-

ution of thermal tolerance and performance curves in these

studies. The analyses illustrate how environmental extremes

and unpredictability can impact evolutionary responses to cli-

mate change, but their predictions depend strongly on key

assumptions about fitness consequences of higher tempera-

tures. We highlight several key areas that limit current

progress in understanding the role of climate extremes in

rapid adaptive evolution.
2. Variation in weather and climate
There is a well-developed statistical framework for analysing

variation in extreme values [21]. Denny and colleagues provide

an excellent introduction to this framework for biologists

[22,23]. Here we use environmental data on daily maximum

air temperatures at sites along latitudinal gradients to deter-

mine the distributions of extreme temperatures at each

site, and illustrate how tools from extreme value theory can

characterize extreme thermal events. Our presentation focuses

on how latitude and time scale alter the distribution and

frequency of extreme thermal events.

(a) Weather and climate extremes are not normal
Daily maximum temperatures are relevant to short-term ther-

mal stress in many ectotherms [24,25]. We quantify the

distribution of daily maximum temperatures using weather

stations in the Global Historical Climatology Network

(GHCN). We accessed the data using the R package rnoaa

[26]. We restricted our analysis to weather stations below

500 m in elevation, with data more recent than 2010, and

with at least 10 (and up to 60) years of nearly (more than

85%) complete data. Using data only since 1980 yielded

very similar results, so we report analyses of the full data

here. Because we are primarily interested in high tempera-

tures that may cause heat stress, we restricted our analyses

to summer months (June, July and August: all sites we con-

sider are in the northern hemisphere). We examine weather

stations along latitudinal transects in the centres of North

America (2100 8E) and Asia (77.5 8E) to explore continental

rather than coastal climate conditions.

The breadth, skewness and shape of the daily maximum

temperature distribution varies with latitude (figure 1).

Lower latitude distributions are relatively narrow and shift

little as latitude increases. The location of the 99th percentile

also tends to aggregate at lower latitudes. At higher latitudes,

distributions broaden and shift steadily to lower mean temp-

eratures with increasing latitude. Many distributions depart

from normality, increasingly so with climate change [27].

Generalized extreme value (GEV) distributions can

describe temperature distributions that depart from normality

and have thick or bounded tails (see below), and have been

used to assess the incidence of extreme climatic events

[21,27]. GEV analyses are increasingly applied to daily maxi-

mum or minimum temperature data to quantify thermal

extremes in studies of climate change [28,29]. GEV distri-

butions are described by three parameters: location indicates

the position, scale indicates the breadth (figure 2a), and

shape indicates the heaviness of the tail. Shape parameter

values near zero correspond to a Gumbel (type I) distribution
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Figure 2. The parameters of the generalized extreme value (GEV) distribution describing maximum daily temperatures (8C) vary across latitude for transects in North
America and Asia. GEVs are characterized by three parameters: (a) location, which indicates position; scale, which indicates breadth; and (d ) shape, which indicates
the thickness of the tail. The (b) 99% quantiles and (c) GEV locations decline steadily with latitude, whereas the (e) scale parameter increases. ( f ) The GEV shape
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characterized by a light tail; shape parameter values greater

than zero correspond to a Frechet (type II) distribution

characterized by a heavy tail; and shape parameter values

less than zero correspond to a Weibull (type III) distribution

characterized by a bounded tail (figure 2d).

We use GEV distributions to characterize distributions of

maximum daily temperature across the latitudinal gradient.

We fit GEV distributions using maximum likelihood and

the gev.fit function in the ismev R package [26]. We fit station-

ary distributions, but note that non-stationary fits can be used

to account for shifts in the distribution due to climate change

[27]. Both the 99th distribution percentiles and GEV location

are relatively constant across latitude up to approximately

408N, before declining steadily toward the poles (figure 2b,c).

The breadth (scale parameter) increases steadily toward

the poles (figure 2e). The GEV shape parameter varies, but

shows little pattern, across intermediate latitudes (figure 2f ).

The temperature distributions, particularly in Asia, tend to

have a heavier tail at both low and high latitudes. These results

about daily maximum temperatures suggest that average

maximum temperatures are similar across a wide latitudinal

band (up to 30–408 latitude), and variation in maximum temp-

erature increases consistently with latitude. By contrast,

thermal extremes (tails) are strongly bounded over a wide

range of intermediate latitudes (approx. 20–608), with fatter

tails at some low and high latitude sites (figure 2f ).
(b) Environmental variability depends on time scale
The time scale of temperature data influences the distribution

and the incidence of climatic extremes [30,31]. Because different

organismal processes respond to environmental variation at

different time scales [32,33] (see below), this has important

consequences for the biological consequences of climate

extremes. For example, the stressful impacts of heat waves are

often determined by repeated exposures to high daily maximum

temperatures rather than to overall mean temperatures. In

addition, the biological effects of single versus repeated

exposures to extreme temperatures can be qualitatively different

[33–38]. To explore this issue, we average daily maximum temp-

eratures for two North American sites across weeks (moving

average), months and years. As the temperature data are aggre-

gated at longer time scales, distributions necessarily narrow, but

the thinning of the tails is more pronounced than the narrow-

ing breadth (figure 3a). In addition, the effect of time scale is

more pronounced in the thermally variable higher latitude site

(458N) relative to the lower latitude site (248N).

Appropriately characterizing the tails of the temperature

distribution is central to understanding how often organisms

will experience extreme events. We use the generalized Pareto

distribution to characterize the tails of the distribution. We fit

the distribution using maximum likelihood with the fpot

function from the R package evd [26]. We examine the maxi-

mum temperature expected to be experienced over a given

duration of time (return period). Averaging over time

decreases the magnitude of maximum temperatures experi-

enced, particularly for the lower elevation, less thermally

variable site (figure 3a). For both daily and weekly data,

the magnitude of temperature extremes increases with the

duration of the return period, with the slope shallowing.

Extremes are rare on average but can occur repeatedly.

Repeat thermal stress events can prevent recovery in between

the events and otherwise amplify thermal stress [39]. The
interval between heat events is described well as a Poisson

distribution [27]. As the magnitude of the extremes increases

(higher quantile of the temperature distribution), the peak of

the distribution shifts to longer intervals and the thickness of

the tail (longer intervals between extremes) increases

(figure 3c). The flat distribution of rare heat events makes it

difficult to anticipate biological responses.
3. Responses of ectotherms to variable weather
and climate

(a) Performance, tolerance and thermal thresholds
Most aspects of organismal performance—e.g. rates of loco-

motion, feeding, growth, reproduction and survival—depend

on the organism’s body temperature; this relationship is

called a thermal performance curve [14,40]. Performance

curves frequently have a characteristic shape in which per-

formance initially increases with increasing temperature,

reaches maximal performance at some intermediate (optimal)

temperature, then declines rapidly with further increases in

temperature (figure 4). The basic shape reflects responses to

both average and stressful temperatures: the effects of tempera-

ture on enzymatic rate process, and on enzyme activation and

stability at high temperatures [42]. Comparative and exper-

imental studies in a variety of systems demonstrate adaptive

variation in both optimal temperature (Topt) and in thermal

breadth (Tbr): optimal temperatures are greater in systems

where mean environmental temperatures are higher (and less

variable); and thermal breadths are wider in systems where

environmental variation is greater [14,43]. The upper thermal

limit (Tu) for performance can be defined as the temperature

at which performance reaches (or approaches) zero, and is

sometimes used as a measure of thermal limits (see below).

Most empirical studies of performance curves focus on quanti-

fying Topt, Tbr and lower thermal limits, rather than upper

limits; estimates of thermal limits frequently involve extra-

polation beyond the data [19], resulting in large statistical

uncertainties in our estimates of Tu. As we discuss below,

this has important consequences for our understanding of

responses to climate extremes.

Tolerance curves can be considered a special case of

performance curves in which the measure of performance is sur-

vival [44]. Tolerance curves (at least on a linear scale) are

typically less skewed (i.e. more symmetric) and platykurtotic

(i.e. flat-topped) when compared to other performance curves:

survival is high and relatively constant over a range of tempera-

tures, but declines rapidly at lower and higher temperatures. The

high temperature at which survival reaches or approaches zero,

Tu, is an important measure of heat tolerance. A complementary

approach to characterizing heat tolerance is to measure the criti-

cal thermal maximal temperature (CTmax): the threshold

temperature at which an organism ‘fails’ some relevant assay

of performance (e.g. body posture or righting response, locomo-

tory activity, neuromuscular control, survival). Both static

(constant) and dynamic (ramping) temperature experiments

can be used to estimate CTmax, resulting in an extensive literature

on the topic [25,45–47]. Recent comparative studies indicate that,

unlike metrics of lower thermal limits, mean CTmax does not

decrease with increasing latitude in most ectotherms [24,25].

High CTmax may reflect the need to tolerate rare heat events

[48], but historical patterns of colonization, selection favouring
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‘hotter is better’ and warming associated with solar radiation

likely also maintain high CTmax [25].

TPCs and threshold temperatures provide a useful frame-

work for quantifying and predicting the effects of body

temperature and thermal variation for ectotherms, but have

several important limitations. First, the effects of (current)

temperature on performance or tolerance may depend on

previous thermal history, as a result of stress and acclimation

responses. Many studies have demonstrated that higher

developmental temperatures or acute heat shocks can alter

CTmax and other metrics of heat tolerance [38,49]; and

exposure to increased maximum temperatures during devel-

opment can also change optimal temperatures, upper thermal

limits and maximum temperatures in some organisms

[14,41,50]. Second, temperature may interact with other
environmental factors to alter performance curves. For

example, food availability and nutritional quality change

optimal temperatures, upper thermal limits and maximal

performance in fish and insects [51,52].

A third, less appreciated limitation is that performance

curves and thresholds often reflect particular time scales.

Some aspects of performance, such as rates of locomotion,

feeding, growth, metabolism, oviposition and survival can be

measured over short time scales (minutes to hours), whereas

rates of growth, development, survival or fitness over a life-

stage or the lifespan of individuals involve longer time scales

(days to months or even years) [32,33,53]. As an example, the

TPCs for larval growth rates in Manduca sexta measured over

short (24 h) or long (duration of larval growth period, 15–50

days) time scales differ in optimal temperature, thermal
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breadth and upper thermal limits: temperatures that maximize

growth at short time scales are deleterious or lethal at longer

time scales (figure 4) [41]. Similarly, thermal thresholds of

larval M. sexta are much higher at shorter than at longer time

scales: the mean upper thermal limit for survival (through

the larval period) is 35–368C, whereas mean CTmax and

upper lethal limits are 44–468C [34].

Measurements of CTmax are also confounded by the tem-

poral and thermal conditions in which they are measured.

Many recent studies use a ramping protocol in which individ-

uals are acclimated to a starting temperature, then the

temperature is increased (ramped) at some linear rate; CTmax

is then defined as the temperature at which failure is observed.

Studies with Drosophila show that changes in starting tempera-

ture and ramping rate can systematically alter mean estimates

of CTmax by more than 58C [46]. The CTmax that an organism

can tolerate declines with the duration of thermal stress [54].

Both statistical and biological reasons underlie these methodo-

logical effects, highlighting the need to develop ‘ecologically

relevant’ thermal tolerance metrics [45,47].

The effects of time scale become particularly important

when using estimates of performance curves and thresholds

to quantify mean and variation in performance in fluctuating

thermal environments. In principle, information about the per-

formance curve, P(T ), and changes in temperature over time t,
T(t), can be used to predict mean performance in fluctuating

environments over some time period of interest. This simple

model has been widely applied in thermal biology, includ-

ing for predictions about responses to climate change (see

below). But recent tests of this model question whether per-

formance curves are constructed in a manner appropriate

for assessing responses to diurnally fluctuating temperatures.

For example, TPCs based on experiments using constant temp-

eratures throughout development yielded poor predictions

about mean development rates during diurnal fluctuating con-

ditions in marsh frogs [55]. Similarly in M. sexta, neither short-

term (24 h) nor long-term (larval duration) TPCs for growth

rates based on constant temperatures gave accurate predictions

for mean growth in diurnally fluctuating temperature con-

ditions [41]. Predictions were particularly inaccurate for

higher mean temperatures with large diurnal fluctuations—

precisely the situation in which thermal extremes may be

relevant. These predictions fail because this simple model

ignores time-dependent effects: the effects of prior thermal
history on current performance that result from stress, acclim-

ation and similar processes [32,53]. These results call into

question the common practice of using TPCs measured at

constant temperatures to predict responses of ectotherms to

diurnal fluctuations and climate change.

(b) Predicting the fitness consequences of climate
change and climate extremes

The past decade has seen a burst of modelling studies that use

TPCs (primarily for insect fitness) to predict responses of

ectotherms to recent and future climate change [16–19].

These studies reveal the need to filter climate change responses

through the lens of organismal physiology. Even small temp-

erature increases may cause declines in the fitness of tropical

ectotherms, which have evolved narrow thermal breadth and

optimal temperature that are already near mean environmen-

tal temperatures in relatively constant environments [16].

Ectotherms at mid- and higher latitudes, with broad thermal

breadth and optimal temperatures well above mean environ-

mental temperatures, will be positively (or at least less

negatively) impacted by future climate warming. Responses

to environmental variation and extremes may cause deviations

from these predictions.

The TPCs may inadequately capture responses to envi-

ronmental variation. First, the TPCs for fitness (e.g. intrinsic

rate of increase, r) used in these studies were estimated from

data at constant temperatures over the entire lifespan. Because

such long-term curves have lower optimal temperatures and

upper thermal limits than shorter-term curves (figure 4) and

omit acclimation, applying these curves to short-term (diur-

nally fluctuating) thermal variation will overestimate the

negative consequences of high daily maximal temperatures

[41]. Second, depending on the functional form chosen to rep-

resent the TPC, fitness at high temperatures declines to zero but

is never negative [16]. Models that allow fitness to decline

below zero predict that environmental variation may drive

mid-latitude rather than tropical insects to suffer the greatest

negative fitness consequences of climate warming [19].

A third, related issue is that different fitness components

contribute in different, nonlinear ways to total fitness, so that

computing mean fitness is not straightforward when there is

environmental variation at time scales shorter than a gener-

ation. For example, within a generation, the arithmetic
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mean of reproductive rates (given survival) is appropriate for

estimating overall reproduction, whereas the geometric mean

of survival rates is more appropriate for estimating overall

survival. As a result, the arithmetic mean of r may be a

poor indicator of fitness responses to short-term thermal vari-

ation; and modelling the separate effects of temperature on

each fitness component may be needed [19]. As we discuss

below, whether thermal stress causes reductions in repro-

duction or increases in mortality has important impacts on

the evolutionary responses to thermal extremes.

These limitations are particularly important when con-

sidering responses to climatic extremes. Cumulative thermal

effects and threshold temperature effects in response to thermal

extremes decrease the accuracy of predictions of climate change

responses based on mean temperatures [56]. Using TPCs to

accurately predict responses to thermal extremes will require

better characterizing performance above thermal optima and

limits; quantifying the effects of time scale and time-dependent

effects; and assessing how extremes will reduce performance

beyond levels predicted by arithmetic means.

(c) Microevolutionary responses to climate extremes:
data and models

As summarized by Grant et al. [6], both laboratory (and meso-

cosm) evolution studies and artificial selection experiments

have been widely used to document evolutionary responses

to increased mean temperature and high temperatures. These

studies demonstrate evolution responses in mean fitness, opti-

mal temperature and heat tolerance, but the results are of

limited relevance to evolutionary responses of natural climatic

extremes [6]. For example, artificial selection experiments typi-

cally maintain a constant selection intensity (e.g. upper 5%

of the distribution) on heat tolerance each generation, result-

ing in a linearly increasing cumulative selection differential

over time [57]. Laboratory and mesocosm evolution studies

typically use a step change to a new, constant mean tempera-

ture over time. But as described above (figures 1–3), natural

climatic extremes occur infrequently and unpredictably; and

theoretical models show that stochastic variation in selection

reduces the evolutionary responses of populations to sus-

tained, directional environmental change [10,11,58,59]. More

realistic experimental designs will be needed to evaluate the

evolutionary responses to extreme climatic events, and to

identify their genetic bases [6]. In addition, extreme and low

quality environmental conditions can sometimes reduce gen-

etic variation and evolutionary potential of ecologically

important traits [48,60,61].

Historical and long-term studies can provide invaluable

information about phenotypic and evolutionary responses

to recent climate change. Such studies have documented

shifts in body size, coloration, phenology, life history and

other traits [6]. A recent historical study of TPCs illustrates

the potential importance of changes in extreme temperatures

[62]. Common-garden experiments with populations of Colias
butterflies (C. eriphyle from Colorado and C. eurytheme from

California) were used to determine mean TPCs for short-

term larval feeding at two time points: 1972 [63] and 2012

[62]. The upper thermal limits of the performance of each

species increased by 3–68C during this 40 year period. Data

from GHCN weather stations (USC00055722 in Montrose,

CO and USW00023271 in Sacramento, CA) were used to
quantify air temperature distributions at each site in the

decade prior to each time point. Mean environmental temp-

eratures during the active growing season did not change

substantially (less than 18C) over the time period at either

site; however, the frequency of high temperatures (more

than 288C) more than doubled at each site during this

period. In contrast, there was little change in the frequency

of low temperatures.

To estimate changes in GEV distributions during this 40-

year period, we used daily maximum temperatures across

summer months (June through September) from each site.

The GEVs shifted to higher temperatures and narrowed in

both Colorado (means+ s.e. of maximum-likelihood fits;

1961–1971: location ¼ 26.92+0.14 and scale ¼ 4.73+0.10;

2001–2011: location ¼ 28.14+0.14 and scale ¼ 4.71+0.10)

and California (1961–1971: location ¼ 30.64+0.14 and

scale ¼ 4.87+0.10; 2001–2011: location ¼ 31.58+0.13 and

scale ¼ 4.60+0.09). Small increases in the thickness of the

tail suggest increases in the incidence of thermal extremes

in both Colorado (1961–1971: shape ¼ 20.51+0.01; 2001–

2011: shape¼ 20.47+0.01) and California (1961–1971:

shape ¼ 20.36+0.01; 2001–2011: shape ¼ 20.35+0.01).

Only the increase in location in Colorado and the decrease in

breadth in California are significant. More notable is the

increase in the proportion of heat events. The percentage of

years reaching maximum temperatures exceeding the

1961–1971 95th percentile increased from 2.9% to 9.7% in

Colorado and from 4.8% to 6.5% in California (exceedance

rate from generalized Pareto distribution). This highlights the

utility of GEVs in characterizing shifts in the incidence of

extreme events relevant to selection on thermal tolerance.

These findings suggest that the increasing frequency of high

temperatures during the past 40 years has led to increased upper

thermal limits in these populations. Interestingly, the evolution-

ary shifts in the performance curves were quite different in

the two populations: in C. eriphyle from Colorado, the optimal

temperature but not thermal breadth increased; whereas in

C. eurytheme from California, thermal breadth but not optimal

temperature increased. These different responses may stem

from the growth season remaining restricted to summer in

Colorado but expanding in recent decades in California.

As discussed above (and see [14]), the evolutionary conse-

quences of thermal extremes depend on whether thermal

stress causes variation in survival (e.g. viability selection) or

in reproduction (e.g. mating success or fecundity selection).

In varying thermal environments, viability selection favours

the evolution of thermal generalists [44], whereas fecundity

selection favours the evolution of thermal specialists [64].

Several recent studies have combined these two effects and

integrated performance curves, thermal tolerances and

simple evolutionary models to explore how climate variation

and extremes affect selection and evolutionary responses

for ectotherms [65–67]. We will briefly describe two of

these models to illustrate how analyses of extreme events

can inform the results of these models.

Denny and Dowd [67] developed a model for the evolution

of thermal tolerance (lethal temperature Tlethal, the body temp-

erature as which an individual dies), assuming a polygenic

(10 additive loci) basis for genetic variation in Tlethal. They

assume a simple trade-off in which higher Tlethal is associated

with a cost to reproduction at lower (non-lethal) temperatures.

They implement this model for a large intertidal limpet (Lottia
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gigantea) that can sometimes experience deleteriously high

body temperatures during low, midday tides. They combined

a biophysical model that predicts the body temperature of lim-

pets with fine-grained (10 min) data on thermal conditions in

the intertidal zone at one site in central California. Using a

bootstrapping approach to generate stochastic simulations of

long-term environmental data [23], their evolutionary models

predict that infrequent, extreme thermal events have important

impacts on the evolution of thermal tolerance. For example,

random, stressful events with mean return times of 2–8 years

contributed strongly to the evolution of increased heat toler-

ance because of the larger impacts of short-term mortality on

total fitness and selection.

Following Kingsolver and Buckley [65], Buckley and Huey

[66] combined additive (TPC for reproduction) and multiplica-

tive (thermal threshold for survival) components of fitness in a

discrete-generation, quantitative genetic model. Using environ-

mental temperature data along latitudinal clines in Australia,

they apply the model to the evolution of thermal performance

and tolerance in Drosophila [66]. Even rare thermal extremes

substantially influenced the evolution of TPCs, particularly

when the extremes caused mortality or persistent physiological

injury, or when organisms were unable to use behaviour to

buffer exposure to extremes. The latitudinal gradient in thermal

extremes is much shallower than that of mean temperatures in

Australia; the model correctly predicted the evolution of a shal-

low cline in thermal tolerance in Drosophila. Their analyses

illustrate how the evolution of tolerance, and of the upper

limits of TPCs, is driven more by infrequent extremes than by

environmental means or variances [66]. Extending the model

to include beneficial acclimatization and cumulative damage

revealed that substantial mortality or other reductions in fitness

differences among individuals lessen the evolutionary impacts

of thermal extremes [33].

To further characterize latitudinal gradients in thermal

extremes in this system, we use GEV distributions of
environmental temperatures along continental and coastal

sites in Australia (see [66] for a description of the environ-

mental data used). With movement toward the equator

within Australia, GEV location shifts to warmer temperatures

(figure 5). The GEV tails steadily thin in continental sites, but

show less of a gradient and are more variable in coastal sites.

The annual rate of exceedance increases steadily for continental

sites, but remains relatively flat for coastal sites. The shallow

gradients in the thickness of the tails of the distribution and

exceedance rate revealed by GEVs are consistent with extremes

influencing the evolution of thermal tolerance in Australia.

These selected historical and modelling studies illu-

strate how infrequent, extreme thermal events can drive

the evolution of both thermal tolerance and TPCs in

ectotherms. Our analyses demonstrate how statistical ana-

lyses of extreme events using the GEV framework can aid

our understanding of such events and their biological

consequences.
4. Suggestions for future directions
Thermal biology, including performance curves and toler-

ances, has provided a productive, trait-based framework for

quantifying the effects of climate variation and climate

change on fitness and evolution for ectotherms. In this per-

spective we have highlighted several important challenges

in extending this framework to understand climate extremes,

suggesting several avenues for future research.

First, a greater focus on the tails is needed. Extremes

involve the upper end of the distribution of environmental

conditions, and characterizing these tails requires different stat-

istical tools from those used to quantify means and variances.

We have illustrated how the GEV analyses can quantify the

frequency and temporal patterns of extreme events and

inform their biological consequences, and urge that these
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tools be applied more widely by biologists interested in climate

change [18,22]. Similarly, the shapes of performance curves

above optimal temperatures are poorly characterized, and biol-

ogists often make convenient but arbitrary assumptions about

curve shape near and above the upper limits. As a result,

our inferences and predictions about responses to extreme

temperatures may be weak or misleading. Characterizing the

upper tails of performance curves will require changes in

the design of experiments used to measure these curves.

Because extreme events are temporally structured

(figure 3), the time-dependence of biological responses is also

important. The effects of time scale on both TPCs and toler-

ances are rarely considered, but they can have major impacts

on mean performance and fitness in variable environments

that include extreme conditions. In addition, because TPCs

and tolerances are often measured at different time scales,

integrating information from upper performance limits to

lethal temperatures is problematic [33]. More explicit descrip-

tion of both performance and tolerances as rates at specific

time scales is needed in both empirical and modelling studies.

Similarly, the effects of prior thermal history on performance

and tolerance are widely documented, but rarely incorporated

into models of climate change response.

Third, extreme thermal events may impact different com-

ponents of fitness, and thus have major consequences for

evolutionary responses. Extreme events may have both additive

and multiplicative effects on overall fitness, so that quantifying

the separate effects of performance and tolerance on survival,

mating success and reproduction may be needed, instead of
aggregate fitness metrics such as r. Integrating the effects of

variation in generation time on overall fitness will also be

important [19].

Finally, most models for evolutionary responses to cli-

mate change, including those summarized here, assume

constant population size and constant phenotypic and gen-

etic variation of performance and tolerance. Both of these

factors are important, but assuming constant population

sizes is particularly unrealistic in the current context: because

most extreme events are stressful, they may generate large

declines in mean absolute fitness and in population size,

and strongly limit adaptive evolutionary responses [10]. Inte-

grating ecological and evolutionary responses into models for

population extinction and the evolution of thermal perform-

ance and tolerance will be a major challenge for thermal

biologists and evolutionary ecologists alike.
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