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Abstract

Cystic fibrosis is characterized by an overly exuberant neutrophilic inflammatory

response to pathogens and other stimuli that starts very early in disease. The

overwhelming nature of this response is a primary cause of remodeling and destruction

of the airways, suggesting that anti-inflammatory therapies could be beneficial in CF.

However, finding therapies that can effectively reduce the inflammatory response

without compromising host defenses remains elusive. New approaches towards

mapping inflammatory targets promise to aid in developing novel therapeutic

strategies and improve outcomes in individuals with CF.
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1 | INTRODUCTION

Inflammation in cystic fibrosis (CF) is characterized by a marked and

persistent influx of neutrophils into the airways. Despite the

overwhelming nature of this inflammatory response, it remains

insufficient to eradicate infection, resulting in a vicious cycle of

infection, inflammation, and mucus hypersecretion/dehydration that

causes progressive remodeling and destruction of the airways. This

high degree of airway inflammation is responsible for much of the lung

disease in CF, with concentrations of inflammatory biomarkers

(particularly neutrophil elastase) the most predictive of disease

progression.1,2 Nevertheless, there are relatively few therapies

developed to directly address airway inflammation in CF. This lack

of treatment options reflects several challenges in developing effective

anti-inflammatory therapies, including difficulties in measuring airway

inflammation. This review will summarize the origins of airway

inflammation in CF, current options for treatment, and how develop-

ments in measuring biomarkers of airway inflammation may lead to a

new generation of anti-inflammatory treatments for CF.

1.1 | Origins of CF inflammation

A key finding of studies of early CF lung disease is that airway

inflammation begins at or very soon after birth. Neutrophils and

neutrophil elastase can be detected in bronchoalveolar lavage (BAL)

in patients diagnosed with CF by newborn screen as early as

3 months of age, and these inflammatory markers correlate with

future development of bronchiectasis and gas trapping on CT scan.1

This increase in inflammation does not appear to be solely a

response to infection, since less than half of infants with neutrophil

elastase detected in BAL fluid had an active pulmonary infection or

history suggesting infection. These observations suggest that

inflammation in CF airways is multifactorial (Fig. 1) and can occur

even in the absence of an infectious stimulus.

Localized hypoxia in the CF lung could explain the early

inflammation seen in the absence of obvious infection.3 The gene

mutated in CF, the cystic fibrosis transmembrane conductance

regulator (CFTR), encodes a cAMP dependent anion channel that

conducts chloride and bicarbonate and regulates the balance of

chloride secretion and sodium absorption in the airway.4 Loss of CFTR

channel activity produces a dehydrated airway surface environment

where the total mass of salt and volume of water are inadequate to

maintain mucus hydration, leading to defects in mucociliary clearance.

The resulting thickened mucus and mucus plugging in the small airway

create localized areas of hypoxia, which can trigger inflammatory

responses5 including release of cytokines such as IL-1 and activation of

the inflammatory cascade via binding to the IL-1 receptor.6 The

resultant increase in inflammation may then worsen hypoxia and
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contribute to a niche for anaerobic bacteria, thus further propagating

the inflammatory cycle.3

While infection may not be required to initiate inflammation in

CF, defects in immune responses to pathogens likely contribute to

the excessive inflammatory environment. A number of mechanisms

of immune dysregulation have been described in CF, including

aberrant responses in inflammatory cells such as neutrophils and

macrophages as well as altered signaling pathways in airway

epithelia. These aspects of immune dysregulation were reviewed

in detail in 2015 by Nichols and Chmiel in a previous volume of

“Barriers to Normalcy”7 and will be only briefly summarized here.

The mucus dehydration and impaired mucociliary clearance contrib-

ute to enhanced inflammatory responses, with failure to clear

pathogens out of the airway leading to prolonged stimulation of

inflammatory pathways.8,9 Furthermore, there is evidence that CFTR

may play a more direct role in regulation of inflammatory responses.

For example, neutrophils isolated from patients with CF tend to

undergo necrotic rather than apoptotic responses, releasing

additional pro-inflammatory molecules such as High Mobility Group

Box 1 (HMGB1) protein and metalloproteases.10,11 There is also

evidence that CFTR is involved in the acidification of phagosomes

and bacterial killing in both neutrophils and macrophages.12,13

Similarly, CF macrophages and monocytes also demonstrate defec-

tive immune response.14

Studies of animal models suggest that defects in innate immunity

contribute to the excessive inflammatory responses in CF. CF pigs

have decreased bacterial clearance and increased inflammation

relative to unaffected litter mates after exposure to bacterial

pathogens.15 CFTR knockout ferrets16 also show abnormal bacterial

clearance and enhanced inflammatory responses.17 The mechanisms

that underlie these defects are not fully defined, though there is

evidence that defective bacterial clearance in the CF pig reflects

altered airway acidification, likely related to loss of CFTR mediated

bicarbonate secretion that alters the efficacy of antimicrobial

peptides.18

Despite this evidence, the role of altered inflammatory responses

directly related to CFTR deficiency (as opposed to secondary effects

from defective mucociliary clearance) remains controversial. Systemic

infection remains uncommon in CF despite high airway bacterial

loads,19 raising some questions about the clinical relevance of

abnormalities observed in isolated CF inflammatory cells. Studies in

animal models must also be interpreted with caution, since no animal

model faithfully recapitulates all aspects of human disease. For

example, the altered airway pH observed in pigs may not be present in

humanCF,20 and airway acidification similar inmagnitude to that of the

CF pigs has been observed in asthma,21,22 a disease that is not

commonly associated with airway infection.21,22

1.2 | Anti-inflammatory therapies in CF

Although the factors that contribute to inflammation in CF are not fully

defined, the relevance of inflammation as a therapeutic target is

unquestioned.23 Nevertheless, despite intensive effort, limited thera-

pies are available. Prednisone is perhaps the most canonical anti-

inflammatory, and alternate day therapy with prednisone has been

shown to increase forced vital capacity (FVC) in treated CF patients

compared to placebo.24 However, chronic use of systemic steroids is

contraindicated due to their adverse effects including growth

retardation, osteoporosis, cataracts, hyperglycemia and risk of

opportunistic infection. High dose ibuprofen is a more targeted anti-

inflammatory that has been shown to slow the rate of decline of FEV1

in two separate double blind, placebo controlled studies,25,26 and this

clinical benefit has been associated with a decrease in neutrophil

migration to the lung.27 Although trials with ibuprofen did not show a

significant increase in adverse events between treatment and placebo

groups, the perceived risk of gastrointestinal bleeding and renal

toxicity coupledwith the need to obtain serum levels tominimize these

risks has inhibited widespread use of this drug.

The most widely used therapy in CF with anti-inflammatory

properties is azithromycin. Interest in azithromycin as a CF therapeutic

stemmed from its benefit in diffuse panbronchiolitis,28 a disease with

many similarities to CF, and was thought to possibly relate to its

antimicrobial activity against Pseudomonas aeruginosa growing in

biofilms.29 Indeed, the initial large study of chronic, low dose

azithromycin in CF was targeted towards patients with persistent

Pseudomonas infection. This study demonstrated that chronic azi-

thromycin treatment led to improvement in FEV1, a decrease in

exacerbations requiring antibiotic therapy, as well as improved quality

of life (QOL) scores.30,31 However, the clinical benefits occurred

despite minimal impact on Pseudomonas bacterial density, suggesting

that a different mechanism of action was responsible. Azithromycin

has a number of anti-inflammatory effects, including reduction in

neutrophil oxidative burst and increases neutrophil apoptosis.32,33 In

lung macrophages azithromycin also appears to inhibit apoptosis,

stimulate phagocytosis of bacteria and cellular debris, as well as skew

macrophage cytokine expression toward an anti-inflammatory phe-

notype.34 Other anti-inflammatory effects of azithromycin include

decreased mucin production with a resultant decrease in mucus

viscosity, maintenance of tight junctions between epithelial cells and

improvement of the integrity of the epithelial cell layer under

inflammatory conditions.33 These immunomodulatory effects may

FIGURE 1 Factors that contribute to the excessive inflammatory
response in CF
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underlie the benefits of azithromycin more than its anti-Pseudomonal

activity, and a largemulti-center study demonstrated clinical benefit of

chronic azithromycin in patients who did not have Pseudomonas

infection.35

Given the extensive number of pathways identified as playing

roles in CF airway inflammation, it may seem surprising that other anti-

inflammatory therapies have not yet been developed. However, an

effective anti-inflammatory for CF must manage a careful balancing

act, providing sufficient potency to reduce inflammation induced lung

damage without interfering with the ability to resolve infection. This

balance can be difficult to achieve, as revealed by the Phase II clinical

trial of BIIL 284 BS, a promising antagonist of the leukotriene B4

receptor known to play a significant role in CF airway inflammation.

This trial was stopped early due to an increase in pulmonary adverse

events in those receiving the active drug compared to placebo.36

Further studies showed that treatment of CF mice with BIIL 284 BS

interfered with their ability to resolve Pseudomonas aeruginosa

respiratory infection.37 These results showcase the difficulty of

balancing a reduction in inflammationwhile not significantly increasing

the bacterial burden with the use of anti-inflammatory therapies and

emphasize the need for pre-clinical testing of novel therapeutics.23

1.3 | Barriers to anti-inflammatory development:
Measuring airway inflammation

The dearth of effective anti-inflammatory therapies represents an

ongoing barrier to normalcy in CF and suggests a need to identify

new therapeutic targets. Testing of anti-inflammatory therapies and

other treatments in CF has become increasingly challenging, as

overall improvements in lung function and health make observing

changes in traditional endpoints such as lung function or pulmonary

exacerbations more difficult to assess without large and expensive

trials.38 However, accurately measuring airway inflammation directly

as a marker of therapeutic activity can be difficult. Indeed, most of

the major trials of anti-inflammatory therapies described above24–

26,36 did not include an airway inflammation biomarker, with the

exception of the azithromycin trial that demonstrated statistically

significant though modest changes in neutrophil elastase.30 Although

treatment related reductions in airway inflammation biomarkers were

often shown in smaller studies,27,39 better biomarkers of airway

inflammation are clearly needed to identify potential therapeutic

targets and serve as surrogate markers of efficacy for clinical trials.

This need is particularly great in young children to try and limit

inflammation before the onset of lung damage. The challenges in

developing better biomarkers reflect limitations in the primary

methods to obtain airway samples: sputum collection, bronchoal-

veolar lavage, and assessments of exhaled breath (Fig. 2 and Table 1).

1.3.1 | Sputum

Historically, assessments of airway inflammation in CF (and other

diseases) have been primarily based on analysis of biomarkers in

sputum, in part reflecting the long experience and existence of

standardized protocols for this airway sample. Given the intense

airway inflammation that characterizes CF, it is no surprise that a

multitude of inflammatory biomarkers are elevated in CF sputum, as

summarized in several excellent reviews.2,40 Among these biomarkers,

sputum neutrophil elastase has emerged as one of the most predictive,

with concentrations of sputum NE most highly correlated with lung

function decline in large studies.2,41,42

However, the utility of sputum is limited somewhat by the need for

specialized procedures to process samples that typically must be

performed immediately after collection.43Spontaneously expecto-

rated sputum likely arises from more affected regions of the lung,

and concentrations of inflammatory markers can be influenced by

regional variability in lung disease39 Furthermore, in general only older

patients with more advanced disease can regularly expectorate

sputum spontaneously. While sputum induction using hypertonic

saline can be utilized to obtain samples from patients who do not

spontaneously expectorate, many younger children have difficulty

expectorating sputum even after induction.44,45 Thus, sputum has a

limited role in assessing—and by extension treating—airway inflamma-

tion in the youngest children.

1.3.2 | Bronchoalveolar lavage fluid

For patients who cannot expectorate sputum, flexible bronchoscopy

with BAL is considered the gold standard for airway biomarker

assessment.40 Aswith sputum, numerous inflammatory biomarkers are

elevated in BAL fluid in children with CF including neutrophil counts,

neutrophil elastase, pro-inflammatory cytokines such as interleukin-8,

and others.46–51 Several of these inflammatory biomarkers correlate

with other aspects of disease severity including infection,52 radiologic

findings,51,53,54 and infant lung function testing.46,49 Like sputum,

neutrophil elastase represents one of the most informative markers in

BAL fluid, with elevated concentrations in infancy predictive of future

bronchiectasis.1,55–57

Use of BAL fluid as a source of airway inflammation biomarkers is

constrained by several limitations, including the time, expertise, and

expense needed for the procedure.58 Furthermore, bronchoscopy

requires sedation, which carries both short term risks and increasing

concerns about long term adverse outcomes.59 Due to these

limitations, BAL has seen a limited role in clinical trials, though longer

term observational studies that include BAL biomarkers such as AREST

CF have provided significant insights into early disease.51,60,61

FIGURE 2 Ease of collection and ease of biomarker
measurement (including processing steps) are generally inversely
related
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1.3.3 | Exhaled breath

Many of the limitations of sputum and BAL can be overcome through

use of exhaled breath, which contains both volatile and non-volatile

compounds that could serve as inflammatory biomarkers. Exhaled

biomarkers are often collected as exhaled breath condensate (EBC), and

since collection only requires the subject to exhale through a chilled

tube, EBC can be obtained simply and non-invasively even in young

children.62,63 Indeed, a number of airway inflammatory biomarkers that

are informative in sputum or BAL fluid are also elevated in EBC from

subjects with CF, including inflammatory cytokines,63–66 8-isopros-

tane,64,67 nitrates,64,68 leukotrienes,69 and purines,49,70 with measures

of EBC leukotrienes and purines shown to track changes related to CF

exacerbations.69,70 EBC pH has also been shown to be decreased in

subjects with CF and change with treatment of an exacerbation.71–73

With specializedmethods, EBCcanevenbecollected from theyoungest

children during infant pulmonary function testing (iPFTs).74–76

The ease of EBC collection is belied by difficulty in analysis, with

EBC being described as “easy on patients” but “hard on scientists.”77

Airway secretions in EBC arise from microaerosols generated during

respiration, which represent a very low and highly variable fraction of

the fluid volume of the condensate and may under-sample obstructed

airways.78,79 Therefore, extremely sensitive methods are typically

needed to assess the low concentrations of most traditional

biomarkers found in EBC, which ideally should also include a means

to control for variable dilution.78,80 Our own approach has been to

utilize mass spectrometry to measure relevant biomarkers as well as

urea as a dilution marker,81–83 though there are other valid

methods.30,32 Failure to adequately address these challenges impacts

the reproducibility and validity of EBC biomarkers and may limit their

utility as effective measures of airway inflammation.84

Some of the limitations of EBC can be addressed by a focus on

volatile biomarkers, which are not dependent on microaerosol

generation for incorporation in exhaled breath. Several studies had

shown that volatile organic carbon (VOC) profiles are altered in

individuals with CF and could serve as inflammatory biomarkers.85,86

One of the potentially exciting application of VOC profiling in CF is

the development of electronic “nose” systems that could provide

information on airway inflammation at the point of care.87,88

However, current methods require sophisticated mathematical

modeling to identify complex patterns in the detected VOCs, and

the reproducibility of these signatures and their relationships to

specific aspects of airway inflammation have not been established.

1.3.4 | Non airway samples

The high levels of inflammation in the airways of individuals with CF

translate into increases in systemic inflammatory biomarkers that

could be assessed in serum or plasma, which are relatively easily

obtained and analyze. Indeed, a large number of blood inflammatory

markers are elevated relative in CF, including C-reactive protein,89–92

immunoglobulin G,90,93,94 cytokines,91 tumor necrosis factor,95 and

transforming growth factor β,96 many of which are altered with

pulmonary exacerbation.91,92,96,97 However, the potential contribu-

tion of non-pulmonary inflammation reduces the specificity of these

biomarker for lung disease and limits applicability. There have also

been small trials investigating the use of biomarkers in both saliva and

urine as a surrogate for lung inflammation.98,99

1.3.5 | Imaging

A number of small studies have been done using fluorodeoxyglucose

(FDG) PET to quantify lung inflammation and follow response to

treatment of CF exacerbations. FDG is concentrated in activated

neutrophils which are recruited to sites of inflammation. The degree of

inflammation can be estimated by the degree of FDG emission. A study

following the kinetics of FDG movement to the lung showed that

increased influx into the lung correlated with a more rapid decline in

FEV1over time.100Other studies have used FDGPETmonitor changes

in inflammation during antibiotic treatment of CF exacerbation.

Patients underwent FDG PET on days 1 and 14 of treatment and

degree of inflammation was determined using standard uptake values

(SUV). This group found that over the course of 14 days of IV therapy

the max SUV decreased.101 Regular use of FDG PET CT is limited by

radiation exposure, however, as low dose CT protocols improve this

may become a useful technique to follow lung inflammation.

1.4 | Novel strategies

Despite all we have learned about the inflammatory pathways involved

in CF lung disease, numerous challenges remain in translating these

TABLE 1 Comparison of airway samples for biomarker measurement

Advantages Disadvantages Region sampled Inflammatory biomarkers

Sputum Well established
Non-invasive

Requires immediate processing
Difficult in young children

Most affected large airways Cell counts
Cytokines/proteins
Metabolites

BAL Can be used in all
subjects

Higher risk (anesthesia)
Expensive

Targeted smaller airways Cell counts
Cytokines/proteins
Metabolites

EBC Simple to collect
Non-invasive

Very low and variable biomarker
concentrations

Small airways (may under-sample
plugged airways)

Cytokines/proteins
Metabolites
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findings into effective anti-inflammatories. Many signaling pathways

are not easily amenable to pharmacological inhibition, often requiring

biologic antibody based treatments that while effective can be

expensive and difficult to administer.102 Other pathways may be too

vital to host defenses to serve as a viable therapeutic targets, as

suggested by the outcomes of the BIIL 284 BS study.36 Therefore,

there remains an urgent need to identify new pathways that could

serve as viable targets for anti-inflammatory development. The ideal

pathway would have defined characteristics, including an involvement

in early disease, a readily measurable biomarker of activity, and

availability of a relatively simple pharmaceutical treatment. Perhaps

most importantly, blockade of this pathway should reduce inflamma-

tion without interfering with the ability to resolve infection (Table 2).

Use of ‘omics strategies, particularly metabolomics, is well suited

towards identifying pathways that meet these criteria. The changes in

metabolite patterns associated with disease reflect cellular enzymatic

activities, which are attractive as therapeutic targets since they can

often be inhibited by small molecule therapeutics.103 Furthermore, the

identified metabolites can serve as biomarkers of pathway activity and

drug effects, many of which can be readily measured using standard

methods even in non-invasive sample such as EBC.81,82,104 The

potential metabolomics has been demonstrated in several studies that

find CF specific metabolite patterns in sputum,105 BALF,106–108

blood,109,110 and even EBC.111,112

Metabolomics studies canbeparticularly informativewhen interpreted

in conjunctionwithother ‘omicsevaluations. Forexample, oneof the largest

genewide association studies to date in CF identified associations between

disease severity and expression of the gene APIP,113 which encodes an

enzyme involved in the methionine salvage pathway, and metabolites

associated with this pathway, including polyamines and free adenine, are

associated with neutrophilic inflammation in CF.107,108,114 Similarly, the

lysophosphatidic acid receptor LPAR6has been linked toCF lungdisease in

genomic studies,115 while the lysophospholipid substrates of this receptor

are elevated in CF bronchitis.107,116 While such studies demonstrate the

promise of metabolomics to identify biomarkers and therapeutic targets,

further study is needed before the potential of these identified pathways is

truly known.

2 | CONCLUSIONS

The intense inflammation present in the airways of individuals with CF

is one of the most significant causes of progressive lung disease. Until

we have a cure for CF, development of effective anti-inflammatories

needs to be a priority for the CF research community. New approaches

using metabolomics and other strategies to map the inflammatory

targets in CF hold promise in development of new therapies.
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