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Abstract

It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for 

many imaging-based studies. Most existing works focus on fusing the atlases from high-quality 

MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the 

problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas 

from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main 

idea of our works is to extend the conventional groupwise registration by incorporating a novel 

super-resolution strategy. The contribution of the proposed super-resolution framework is two-

fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based 

sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through 

the random-forest-based regression model. In this way, the images obtained by the super-

resolution strategy can be fused together by applying the groupwise registration method to 

construct the required atlas. Our experiments have shown that the proposed framework can 

effectively solve the problem of atlas fusion from the low-quality brain MR images.
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1. Introduction

Medical resonance (MR) imaging has become a pivotally important tool in many brain-

related clinical applications and studies. Without introducing hazardous ionizing radiation, 

the technique allows researchers to observe in-vivo neural structures and functions in a non-

invasive way. Large-scale studies are thus enabled for (early) brain development (Thompson 

et al., 2000; Casey et al., 2000; Lenroot and Giedd, 2006), maturation (Sowell et al., 1999; 

Paus et al., 2001), and aging (Resnick et al., 2000; Raz et al., 2005). The technique has also 

provided a unique perspective to investigate disease anomalies (Frisoni et al., 2010; Polman 

et al., 2011) and to assess the effects of pharmacological interventions (Mulnard et al., 2000; 

Jack et al., 2004). In general, MR imaging has played a key role in the field of neuroscience 

as well as translational medicine. Challenged by the studies of larger scales, a lot of efforts 

have been devoted toward computer-assisted automatic analysis of brain MR images.

The brain atlas, which can often be fused from individual brain MR images, has attracted a 

lot of interest (Mazziotta et al., 1995; Joshi et al., 2004). Given a group of subjects, the atlas 

encodes the common morphological information within the group. To this end, researchers 

can compare the atlases of two individual groups (e.g., the diseased group and the normal 

control group) and then reveal the subtle difference that might be connected with the disease. 

Meanwhile, the atlas provides a common space where the inter-subject variation within a 

population can be measured quantitatively. For example, after being registered with the atlas, 

each subject owns a deformation field that is typically regarded as the pathway between the 

subject and the atlas. Since the deformation pathways of all images in the group are 

established upon the same common space defined by the atlas, comparing the estimated 

deformation fields of all images can capture the inter-subject variation within the group. 

Obviously, it is important to properly designate a high-quality atlas in advance for many 

similar studies.

However, it is yet rare and difficult to fuse the atlas from the low-quality diagnostic MR 

images (i.e., with high inter-slice thickness). Currently most aforementioned studies are 

focusing on high-quality and (nearly) isotropic imaging data, which has identical resolutions 

in all dimensions. The acquisitions are often conducted on designated MR scanners and may 

cost high. The resources required for high-quality imaging, however, are not always 

available. In developing countries such as China, most diagnostic MR images are still 

scanned with high inter-slice thickness, partially due to concerns on costs of radiation 

examinations and limited medical resources per capita. For the real clinical data with high 

inter-slice thickness, the challenge to fuse the brain atlas is yet unresolved. The lack of the 

atlas fusion method apparently undermines the efforts to incorporate the low-quality 

diagnostic imaging data into clinical researches.

In this work, we intend to apply learning-based super-resolution to real clinical low-quality 

brain MR images and then fuse the atlas in the groupwise manner (Joshi et al., 2004). Our 

super-resolution consists of two stages. First, since the subject images are heterogeneous 

with high inter-slice thickness, we adopt the non-local patch-based strategy and utilize 

sparsity learning to reconstruct the subject images in the isotropic space. Second, we turn to 

random forest and learn the regression model for image enhancement, such that the 
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reconstructed isotropic image (with relatively low quality) is mapped to be of higher quality 

(i.e., by suppressing incorrect local anatomical patterns). With all subject images processed 

through super-resolution, we apply groupwise registration and then fuse the atlas. 

Specifically, for the iteratively updated group mean image, we can apply the aforementioned 

forest regression model to enhance its quality. The enhanced group mean image provides 

better guidance in groupwise registration and leads to the atlas with higher-quality 

essentially.

The rest of this paper is organized as follows. In Section 2, we survey the recent 

development of the relevant works, especially atlas fusion and super-resolution. In Section 3, 

we provide details of the proposed framework, including the learning-based super-resolution 

technique and subsequent groupwise registration. In Section 4, we demonstrate the 

feasibility of our novel framework through experiments. Finally, we provide the discussions 

with conclusions in Section 5.

2. Related Works

2.1. Atlas Fusion

In the literature, it is popular to select a third-party standard atlas and then conduct group-

level statistical analysis. For example, MNI-152 is one of the most widely accepted atlases 

(Mazziotta et al., 1995). The fusion of the MNI-152 atlas clearly demonstrates two 

important steps when fusing the brain atlas: (1) 152 individual subjects are registered with a 

certain template; (2) all registered images are averaged to produce the desired atlas. The 

MNI-152 atlas was later adopted by International Consortium for Brain Mapping (ICBM) 

and became part of Statistical Parametric Mapping (SPM), in which it provides automatic 

parcellation of neural regions-of-interest (ROI) (Tzourio-Mazoyer et al., 2002). The 

parcellation facilitates numerous studies upon brain morphology and structural/functional 

connectivity.

Though simple and convenient, it is not necessarily proper to select the atlas manually for 

the atlas-based analysis. The anatomical variation across human brains is typically high, 

implying that a single and external atlas cannot fully account for individual subjects (Toga 

and Thompson, 2001). The (pairwise) registration between the subject(s) and the atlas can 

also introduce systemic bias into subsequent statistical analysis. For example, it is known 

that the Alzheimer’s Disease (AD) can cause brain tissue atrophy. When examining the 

impact of AD upon brain morphology, a large-scale group of both patients and normal 

controls is usually recruited for scanning the anatomical structures. If the atlas was 

corresponding to normal control, then it would be relatively easier to register the normal 

control images with the atlas than to register the patient images. In this way, the overall 

quality of the registered patient data would become less reliable, resulting in the imbalanced 

signal-to-noise ratios of the patients and the normal controls.

To attain increased signal-to-noise ratio and unbiased statistical analysis, the atlas is better to 

be fused from all subject images in the data-driven way. Groupwise registration has provided 

such an alternative solution for atlas fusion other than the conventional methods (Joshi et al., 

2004). In groupwise registration, all images can deform freely until they become close 
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enough with each other. Then, the mean of all deformed images is often regarded as the atlas 

of the subjects. The technique of groupwise registration has attracted a lot of research 

interest, since it is capable of avoiding the manual selection of the atlas as well as the bias.

The task of groupwise registration can be accomplished by learning the intrinsic distribution 

of the group of images and adapting state-of-the-art pairwise registration technique. In the 

group mean method (Joshi et al., 2004), for example, the group mean image is firstly built 

and acts as the template, to which all subject images are registered in the pairwise way. 

Then, the group mean image is updated by averaging all subject images after they are 

deformed following their tentative deformation fields estimated previously. The registration-
averaging scheme is iteratively performed until convergence. That is, the final group mean 

image is produced as the atlas, while all subject images are well aligned with the mean 

image. To be robust with potential outlier subjects, the Riemannian manifold is introduced to 

embed all subject images (Fletcher et al., 2009). The manifold helps reveal the geometric 

median of the group, such that possible outliers can be easily suppressed for contributing to 

estimate the Fréchet mean of the group.

The quality of the images, which participate into groupwise registration, is apparently 

important regarding brain atlas fusion. For the group mean method particularly, the mean 

image in the initial stage of the groupwise registration is very blur since the subject images 

are not well aligned yet. The blur mean image can substantially undermine the efforts to 

register individual subjects with it. That is, the optimization of groupwise registration may 

be challenged when registering a high-quality subject image with the blur group mean image 

precisely even from the beginning. There are several solutions in the literature to address the 

image quality issue.

• Rather than averaging intensities in the group mean method, the Bayesian-based 

approach estimates the atlas by iteratively deforming an initial guess to the center 

of the group (Ma et al., 2008). In this way, the final atlas is sharp but at the 

expense of the bias for choosing an individual subject as the starting point. More 

recently, the sharp mean image is fused by assigning different weights to the 

subjects, in accordance to their predicted distances/similarities to the final atlas 

(Wu et al., 2011).

• All subject images can be embedded into the manifold that is often described by 

the tree (Hamm et al., 2010) or the graph (Jia et al., 2010). Each subject image 

can identify other subjects from the manifold, which are closer to the mean 

position of the group. By using those identified subjects for guidance and 

registering with them in the pairwise way, all subjects can approach to the atlas 

of the group iteratively. Note that no blur mean image is required for the above 

procedure.

• It is feasible to minimize the variation across individual subject images by 

optimizing their deformation fields directly and simultaneously. The variation 

can be measured in different ways (Learned-Miller, 2006; Wu et al., 2015). For 

example, we used the Jensen-Shannon divergence to capture the inhomogeneity 

across all subjects, while each subject’s voxel was signified by multiple attributes 
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rather than the single intensity only (Wang et al., 2010). All images can converge 

to the mean of the group gradually by refining their deformation fields and 

minimizing the overall divergence computed upon the entire group.

2.2. Super-resolutions

The goal of super resolution is to overcome the low quality of the given images due to the 

limitation of the acquisition. The reconstructed high-resolution output is expected to provide 

more detailed that is critical to subsequent applications (Park et al., 2003). The super-

resolution is widely applied to areas including medical imaging, satellite imaging, and video 

(Yang et al., 2010).

Recently, there are many attempts in the literature to implement the super-resolution 

methods on the MR images, the resolutions of which are usually insufficient for detailed 

neuroanatomical analysis. Particularly, the acquired 3D MR images are anisotropic, which 

have high-thickness in the slice-selection direction as previously mentioned. One way to 

tackle this problem is to fuse multiple scans of the same subjects to improve the details in 

the image. A possible solution in this field is to obtain high-resolution MR image by 

combining multiple orthogonal scans of the same subject (Tamez-Pena et al., 2001; 

Greenspan et al., 2002). For example, Bai et al. (2004) adopt the maximum a-posteriori 
(MAP) strategy to combine the two orthogonal MR brain images into one high-resolution 

result. However, the methods mentioned above cannot be applied here, since the input 

images in our works are high-thickness in the slice-selection direction, and lack the data 

from other views.

On the other hand, the example-based super-resolution intends to learn the relationship 

between the low-resolution and the corresponding high-resolution images. The learning can 

often be conducted by using the patch-based strategy (Freeman et al., 2000, 2002). The 

trained model is then applied to the input image, such that numerous low-resolution patches 

are extracted for the determination of the corresponding high-resolution patches. The 

learning-based strategy can greatly improve the performance of the super-resolution process, 

and resolve the limitations in the multi-image-based strategies. In this paper, we incorporate 

the random regression forest (Breiman, 2001) to enhance the quality of the images, which is 

suitable for our needs due to its robustness and effectiveness.

3. Method

As stated in Section 1, the main goal of this paper is to fuse the brain atlas from the 

diagnostic MR images with high inter-slice thickness by following the groupwise manner. 

To address the issues of low-resolution input subject images, the novel strategy of learning-

based super-resolution is proposed here to aid the atlas-fusion process, which aims to 

convert each high-thickness subject image to the low-thickness high-quality isotropic image 

prior to the process of groupwise registration. The overall pipeline of the proposed 

framework is presented in Figure 1, which consists of the super-resolution strategy and the 

groupwise registration method.

To develop the super-resolution method we follow the two-stage strategy listed as follows:
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1. We reconstruct the isotropic image data for each subject by the patch-based 

sparsity learning. For a certain 2D patch in the subject image, we seek for its 

sparse representation with respect to the collection of 2D patches from a set of 

high-quality training images. The sparse representation then propagates to the 3D 

isotropic image space, as the corresponding 3D patch of the subject can also be 

represented by the 3D patches of the training images.

2. The regression model is learned for the mapping between the corresponding 

patches in the reconstructed isotropic image, whose quality is relatively low, and 

its high-quality ground-truth. Given a new subject and its reconstructed isotropic 

image, the regression model can compute the high-quality enhanced image for 

the subject in the patch-by-patch way.

It is worth noting that we develop the two-stage strategy, in order to ensure the stability of 

the framework to produce the expected high-resolution images from the input low-resolution 

ones. If we directly extracted the features from the images with high inter-slice thickness, 

the obtained information might be too limited to predict the missing parts of the high-

resolution outputs in the one-shot fashion. By decomposing the challenging task into two 

stages, however, the difficulty is reduced for each stage. Therefore, we incorporate the patch-

based sparsity learning strategy to firstly construct the low-thickness images, from which the 

final high-resolution images are later estimated. The detailed flowchart including the two 

stages in the super-resolution strategy is illustrated in Figure 2.

After super-resolution, all subjects are converted to be isotropic and high-quality, while their 

inter-slice thickness is reduced. Then, we are able to apply groupwise registration upon the 

processed subject images. Specifically, we adopt the sharp mean method (Wu et al., 2011) 

for the estimation of individual deformation fields of all subjects. The fused mean image of 

the group is regarded as the atlas for all subjects in the final.

3.1. Sparsity Learning for Isotropic Reconstruction

Since the subject images are heterogeneous in terms of their various and high inter-slice 

thickness, the first step is to reconstruct the isotropic image (e.g., with the voxel spacing of 1 

× 1 × 1mm3) for each subject under consideration. Specifically, we employ a set of high-

quality isotropic 3D MR images as the training data, and then turn to patch-based sparsity 

learning to solve the problem. Given a certain voxel x in the input subject image S, a 

rectangular patch  can be extracted as the signature for x. Note that  is a 2D-only 

patch, due to the high inter-slice thickness of S. Similarly, for the voxel y in the i-th training 

image (Ti), we can define its 2D patch as , as well as  that represents the coupled 3D 

cubic patch centered at y ∈ Ti. Compared with the 2D patch , the 3D cubic patch 

incorporates appearance information from multiple slices in the isotropic training image Ti, 

which essentially contributes to reconstruct the missing slices around x ∈ S.

We utilize sparsity learning to compute the 3D cubic patch  around the subject voxel x, 

based on  and the coupled training data. The technique of sparsity learning has recently 

demonstrated its powerful capability in computer vision and medical image analysis (Wright 
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et al., 2010). In our early works, we used sparsity learning to establish voxel-wise 

anatomical correspondences, which essentially lead to high-performance image 

segmentation (Wu et al., 2015) and registration (Wang et al., 2015a). Specifically, we can 

solve for the sparse representation of  regarding the collection of the 2D training patches 

by

(1)

The scalar parameter α in the above regulates the sparsity constraint upon the coefficients 

{ciy}, such that only a limited number of the training patches are selected for the linear 

representation of . The non-local strategy is also applied – only the training patches, 

whose center voxels are within the neighborhood x, can potentially contribute to represent 

.

The coefficient of ciy not only indicates the contribution of the training patch p̃iy to represent 

the subject patch , but also encodes their mutual similarity (Wright et al., 2010). We 

further presume that the similarity based on 2D rectangular patches can be propagated to 3D 

cubic patches. Therefore, the 3D cubic patch  in the subject image, which is isotropic and 

centered at x ∈ S, can be estimated from all 3D training patches by

(2)

The sparsity-learning-based reconstruction scheme can be performed upon all voxels in the 

low-quality subject image. For each voxel x, a corresponding 3D patch  is computed to 

fill in the nearby cubic area of x in the isotropic image space. To address the overlapping 

between two cubic patches corresponding to x and its certain neighbor, we impose a sigmoid 

decay to modulate the computed 3D patch. In general,  owns the highest confidence at 

the location of x, while its contribution to the isotropic image space is gradually reduced 

with an increasing offset from x. The contribution drops to zero when reaching the boundary 

of . In the final, the entire 3D isotropic brain MR image can be reconstructed by 

incorporating the computed 3D cubic patches corresponding to all voxels in the low-quality 

subject image and after proper spatial normalization.

3.2. Regression Forest for Image Enhancement

The quality of the reconstructed isotropic image for each subject might be limited. As the 

reconstruction is accomplished by (adaptively) averaging multiple patches of the training 
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images, the reconstructed subject image may suffer from relatively low sharpness and 

altered neuroanatomical patterns. Therefore, the subsequent atlas fusion can be undermined 

if we apply groupwise registration to the reconstructed subject images directly. As a remedy, 

we propose to further enhance the quality of the reconstructed images through supervised 

learning. That is, we adopt the patch-based regression forest technique to establish the 

mapping between the low-quality 3D patches in the reconstructed images and their high-

quality ground-truth. The regressor, which is inspired by Dong et al. (2016), can eliminate 

artifacts within the reconstructed images and improve their quality. In general, with the 

learned regression model, we can enhance all reconstructed subject images in the patch-by-

patch manner.

Structured Regression Forest—Recently, regression forest has achieved promising 

results in medical image analysis due to its efficiency and robustness (Shao et al., 2015; 

Huynh et al., 2016). The regression forest technique essentially learns the model for the 

complicated mapping between the input and the output variables. On one hand, the input 

denotes the 3D cubic patch in the reconstructed image and its abundant features. On the 

other hand, the output (or the regression target) is the corresponding patch (i.e., sharing the 

same center voxel with the input patch) in the enhanced image. Note that the input and the 

output patches are not necessarily of the same size. The output patch is actually smaller than 

the input patch in our implementation, as information in the input patch is expected to be 

condensed for better quality of the output patch.

The regression forest F consists of b decision trees {T1, T2, …, Tb}. Based on the uniform 

bagging strategy (Breiman, 2001), each tree is trained by using only a subset of features and 

samples that are randomly selected. In the training stage, the decision trees grow by 

recursively splitting the randomly selected input training samples into the left and the right 

children nodes, based on the bootstrapping of the training samples of the patches in the 

reconstructed images and their extracted features (Breiman, 2001). To split the training 

samples at each node, we choose a certain feature and then apply the optimal threshold to it. 

The feature, as well as the threshold, is determined by exhaustive search within the pool of 

the random selected features. Note that the process of feature extraction is illustrated later in 

this section. The best splitting is therefore associated with the maximal reduction of the 

variation of the training samples. The node splitting stops when reaching the maximal depth 

of the decision tree or the minimal number of training samples in the leaf node. The 

regression predictor for each tree Ti is therefore written as g(f(Q, B), Ti), where f(Q, B) is 

the feature vector, Q is the input patch, and B is the source that the feature vector is extracted 

from.

In the testing stage, for each patch Q′ extracted from the test image I′, we obtain its 

enhancement estimate by applying the regressor F. For each trained tree Ti, Q′ is first 

pushed into its root node. Guided by the stored splitting functions, the patch arrives at a 

certain leaf node. The corresponding estimation result is obtained as g(f(Q′, B), Ti), 

therefore the overall prediction for the trained forest F can be estimated by averaging the 

obtained results from all the trees, which is given as:
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(3)

Furthermore, we adopt the structured strategy to learn the regression forest model (Dollár 

and Zitnick, 2013). That is, our regression target (or output) is a 3 × 3 × 3mm3 patch, instead 

of a single voxel as in the conventional methods. The variation of the training samples (or 

the splitting of each node) is thus determined from the corresponding target patches. Note 

that the structured learning strategy can help preserve detailed anatomical structures, since 

all voxels in a certain target patch are enhanced jointly and simultaneously.

Instead of measuring the distance/variation of the target patches in the high-dimensional 

Euclidean space, we switch to the low-dimensional Eigen-space. To this end, we apply 

principal component analysis (PCA) and represent all target patches with the five major 

eigenvectors only. The variation of the target patches can thus be computed efficiently. 

Based on the variation, the optimal feature as well as the threshold can be determined for 

each node, such that the training samples are split into its two children nodes.

Note that the PCA-based representation is only used for computing the variation of the target 

patches. In each (leaf) node of the regression forest, all original training samples and their 

corresponding target patches that belong to the specific node are stored. The median (instead 

of the mean) of the target patches will be used as the output of the node in the testing stage. 

Similarly, the median output of the entire forest, instead of the mean from individual trees, 

will be used as the enhanced patch for ensemble learning.

Feature Extraction—In this paper, there are two feature information extracted from the 

patches, one is the center location of the patch, the other is the intensity information of the 

patch obtained by applying the 3D Haar-like operators. Note that the Haar-like features can 

be defined in various ways (Wang et al., 2015b). Here the Haar-like operators do not 

correspond to a complete wavelet band. To compute the Haar-like features for the voxel x 
with its corresponding patch Q, we randomly determine two cubic areas (namely R1 and R2) 

within the patch region R. Then, the Haar-like features can be calculated as 1) the mean 

intensity in R1, or 2) the difference of the mean intensities of R1 and R2. The equation to 

compute the Haar-like features fHaar is written as follows:

(4)

where ρ is used to determine the selection of one or two cubic regions. Also note that the 

sizes of R1 and R2 are chosen from an arbitrary range of {1, 3, 5}. All those parameter 

settings to compute the Haar-like features are randomly decided in the training stage, and the 

extracted patches from the input images in the testing stage will follow the same settings 

when applying the trained forest model.
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Cascaded Learning—To further improve the performance of super-resolution, we follow 

the auto-context strategy (Tu and Bai, 2010) that intends to cascade several forest regressors 

together, and implement image enhancement iteratively. The pipeline is summarized as 

follows:

1. In the first iteration, the regressor is trained by following the structured 

regression forest strategy described above, which uses only the reconstructed 

isotropic images as input.

2. When the regressor is trained, it is applied to not only the input testing images, 

but also the training images to obtain their corresponding estimates.

3. In the other iterations, it also considers the tentatively enhanced image that is 

output by the preceding regressor. Simply put, the estimates of the training 

images from the previous iteration also participate in the process of forest 

training.

4. Each training patch has its Haar-like features obtained from the two sources, 

which are concatenated together for training the regressor. Note that the priority 

of feature information from the two sources are treated equally, that the feature 

numbers from them are identical.

5. Iterate from Step 2 until the iteration number set for the works reach.

To this end, the enhanced image can be passed through individual regressors in the pipeline 

for gradual refinement. The output of the last regressor is regarded as the output of the entire 

pipeline in the final.

3.3. Groupwise Registration for Atlas Fusion

After all subject images are processed through super-resolution in their native spaces, we 

apply groupwise registration to fuse the atlas. The groupwise registration starts with affine 

alignment of all images, followed by the sharp-mean-based deformable registration (Wu et 

al., 2011). In every iteration of the sharp-mean-based groupwise registration, the group mean 

image is produced by dynamically weighting the contributions from all tentatively deformed 

subjects for high sharpness. Moreover, we apply the aforementioned regression forest (c.f. 

Section 3.2) to further enhance the quality of the group mean image. The enhanced group 

mean image then provides guidance, as each subject optimizes its deformation pathway 

toward the group mean by pairwise registration (i.e., diffeomorphic Demons (Vercauteren et 

al., 2009)). When completing all iterations of the groupwise registration, we compute the 

final group mean image and regard it as the atlas of all subjects.

• The sharp group mean estimator intends to acquire the mean image of high 

sharpness by the adaptive weighting strategy. In every iteration, the weights are 

adaptive across not only the individual subject images but also all spatial 

locations in the image space. The high weight indicates that the subject under 

consideration is similar with the atlas at the specific location, and vice-versa. 

Since all subject images are mostly aligned with the mean image in the final 

stage of the groupwise registration, the weights become almost equal for 
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individual subjects/locations as the unbiased groupwise registration approaches 

to the end.

• We further apply the regression model to enhance the quality of the group mean 

image in every iteration of the groupwise registration. The (tentative) mean 

image, which guides the registration of individual subjects, is generated by 

adaptively averaging multiple subject images. Though the process to generate the 

mean image is different from that to reconstruct the isotropic subject images, 

both of them may suffer from similar artifacts/patterns caused by intensity 

averaging. To this end, we argue that the pre-trained regression forest can help 

improve the quality of the (tentative) mean image in every iteration.

4. Experimental Results

In this section we evaluate the proposed framework by conducting experiments on both the 

simulated and the real diagnostic data. By following the pipeline described in Figure 2, we 

commence by up-scaling the resolution of the input images, and then improving the image 

quality by applying the regression forest technique. The estimates after the super-resolution 

strategy are then fused together by the groupwise registration method to construct the 

required atlas. Note that both datasets have been pre-processed by following the standard 

protocol (Wang et al., 2015a). Stated succinctly, we applied the N4ITK (Tustison et al., 

2010) for bias correction, and then used ITK1-based histogram-matching program to the 

dataset under study. It is worth noting that we apply the same parameter settings for the pre-

processing works on two datasets.

4.1. Simulated Data

We generate the simulated data from the NIREP NA0 dataset for quantitative validation of 

the proposed framework. There are 16 subjects in the NIREP NA0 dataset. For each subject, 

its high-quality T1-weighted MR acquisition carries expert labeling of 32 anatomical ROIs 

that are listed in Table 1. All subject images were re-sampled to the isotropic spacing of 1 × 

1 × 1mm3 and aligned to the MNI-152 space by affine registration in pre-processing. Then, 

we re-sampled the subject images to the spacing of 1 × 1 × 8mm3, which were used as the 

mimics of the diagnostic MR images with high inter-slice thickness.

Isotropic Reconstruction—The simulated subject images are firstly processed through 

the sparsity-learning-based isotropic reconstruction in our framework. We have adopted the 

leave-one-out validation scheme. That is, after selecting a certain subject (with the spacing 

of 1 × 1 × 8mm3) as the test, we use the rest 15 images (with the spacing of 1 × 1 × 1mm3) 

for training. We set the radius of the non-local search neighborhood as 4 empirically. The 

size of the 2D patch is 5 × 5mm2 in all experiments.

In Figure 3, we show the high-thickness input of a certain subject in the first column. The 

reconstructed isotropic image is provided in the second column accordingly. The quality of 

the reconstructed subject image apparently becomes much better than the input (especially 

1http://www.itk.org
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in the sagittal and the coronal views), as the missing slices are mostly compensated during 

the isotropic reconstruction. However, there are artifacts in the reconstructed image (e.g., 

highlighted by the red arrows), which will be handled in the subsequent enhancement stage.

Regression-Based Enhancement—The regression forest is built for enhancing the 

quality of the reconstructed subject image. Given a certain subject, we use the other 15 pairs 

of the reconstructed images and their ground-truth for training the regression model. Note 

that the experiments for those 16 images follow the same parameter settings. There are 20 

trees trained in the forest model. The maximum depth of each tree is 19. The minimum 

sample number for the leaf node is 5. The input sample patch size for the regression forest is 

15 × 15 × 15mm3. The number of randomly selected Haar features for the extracted patches 

is 1000 when splitting a certain node in the tree. The output patch size, as mentioned in 

Section 3.2, is 3 × 3 × 3mm3. In particular, we have cascaded two regressors into the unified 

regression pipeline in our implementation for computational efficiency. When more 

iterations are applied, the performance converges gradually, which can also be observed in 

other literature (Zhang et al., 2016a,b, 2014).

The example of the enhanced subject is shown in the third and the fourth columns, of Figure 

3. It is observable that many artifacts and incorrect patterns in the reconstructed subject 

image are eliminated, while the enhanced image becomes more similar to the ground-truth 

with less noise. Moreover, we can compute the peak signal-to-noise ratio (PSNR) for each 

subject regarding its ground-truth. In general, PSNR, which is widely used in computer 

vision, quantifies the similarity between the (enhanced) subject image and the ground-truth. 

The overall PSNR for all 16 subjects is 24.28 ± 0.38 after isotropic reconstruction. The 

measure then increases to 24.81 ± 0.38 after the regression-based enhancement. The p-value 

in the paired t-test is very low (3.3 × 10−13), indicating that the regression-based 

enhancement has achieved statistically significant improvement over the quality of the 

subject images.

We also conducted the quantitative evaluation of estimates in different stages of the 

proposed framework by measuring structural similarity (SSIM) (Wang et al., 2004), which is 

widely applied to compare images at the same scene in different resolutions. Table 2 

presents the comparison between the results with the high-resolution ground-truth for all 16 

subjects. The second column presents the performance when simply up-scaling the input 

low-resolution images by using the trilinear interpolation method, the third column shows 

when isotropic reconstruction is implemented, and the fourth column is for the random-

forest-based enhancement. It can be observed that the performance in each stage is gradually 

increased, and reaches the peak when all the components in the super-resolution strategy 

have been implemented. It is also worth noting that the p-values in the two-tailed paired t-
tests between any two stages are below 0.05, indicating the statistical significant 

improvement of the proposed framework when adopting the two components of the super-

resolution strategy.

We also conduct the experiment of sensitivity study on different inferior-superior resolutions 

of the input test images, to demonstrate the robustness of super-resolution strategy. The first 

row in Figure 4 shows the input images with the simulated inferior-superior spacing of 2mm, 
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4mm and 8mm, respectively, and the second row shows their corresponding results after 

implementing the super-resolution strategy. It can be observed that the differences between 

the reconstructed images are quite trivial, which shows that the proposed framework can be 

very robust regarding various inferior-superior resolutions of the input images.

Groupwise Registration—The enhanced subject images are further registered in the 

groupwise manner, which is critical to the quality of the final atlas. Based on the expert 

labeling of the subjects, we can quantitatively measure the quality of the groupwise 

registration by the Dice ratio. That is, given two images and their anatomically 

corresponding ROIs A and B, the Dice ratio is calculated as . The operator | · | here 

computes the size of the ROI. As all subject images are aligned after groupwise registration, 

we can warp their ROI labeling to the atlas space. Then, we parcellate the atlas by applying 

majority voting to all warped subject labels. For each ROI and each subject, the Dice ratio is 

thus computed in accordance to the atlas and its labeling. The detailed Dice ratios are 

reported in Figure 5. In particular, the overall Dice ratio for all simulated images (with the 

spacing of 1 × 1 × 8mm3 and after super-resolution) is 0.749 ± 0.035. The score is lower 

than applying the groupwise registration to the ground-truth data directly (0.790 ± 0.036, for 

the spacing of 1 × 1 × 1mm3), as the high inter-slice thickness has severely damaged the 

quality of the diagnostic images even after sophisticated super-resolution. However, we also 

compare with the groupwise registration upon the images with the spacing of 2 × 2 × 2mm3. 

The Dice ratio is 0.732 ± 0.040, indicating that the combination of our framework and the 

simulated images lead to more accurate registration results. Note that we also conduct the 

experiments using SSIM measurements to better demonstrate the validity of the registration 

process. The overall SSIM for all simulated images is 0.9544 ± 0.002, while as for all 

ground-truth data it is 0.9357 ± 0.003. Note that the SSIM for the simulated images is even 

higher than the ground-truth. We attribute this phenomenon to the smoothing effect caused 

by the regression component in the super-resolution strategy. That is, while artifacts are 

eliminated by the regression forest, the anatomical structure in every subject image can 

inevitably be smoothed, which results in an increase to the SSIM measure in the final.

The finally fused atlases, which are corresponding to the ground-truth data (with the spacing 

of 1 × 1 × 1mm3) and the simulated diagnostic images (with the spacing of 1 × 1 × 8mm3), 

are shown in the top and the bottom rows of Figure 6, respectively. Visually there is no 

major difference between the two atlases, though slightly more abundant anatomical details 

are available in the ground-truth atlas (e.g., in the occipital lobe). In particular, since both 

atlases are parcellated by the majority voting of all warped subjects, we can compute the 

Dice ratios for corresponding ROIs between the two atlases. The overall Dice ratio for all 

ROIs is 0.896 ± 0.023, and the SSIM value between the two generated atlases is 0.9278, 

which is high enough to demonstrate the anatomical similarity between the two atlases. In 

general, the proposed framework can fuse the atlas from the (simulated) low-quality 

diagnostic brain MR images. Meanwhile, the quality of the atlas is mostly comparable to 

that fused from the high-quality images.
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4.2. Real Diagnostic Data

A set of 49 healthy subjects is used for fusing the atlas from real diagnostic data. Among 

them, 16 T1-weighted images are scanned with the spacing of 0.7495 × 0.7495 × 6mm3, 

while the spacing of the other 33 images is 0.8496 × 0.8496 × 7.2mm3. We applied intra-

slice resampling to all subjects and ensure the spacing of each 2D slice to become 1 × 

1mm2, as the desired spacing of the atlas is set to 1 × 1 × 1mm3. All subject images are 

skull-stripped by an expert.

The super-resolution of the subjects is based on the NIREP NA0 dataset, which is used for 

training. Specifically, in the isotropic reconstruction stage, all training images are affinely 

registered with the subject under consideration first, while the spacing of the warped training 

images is kept to be 1 × 1 × 1mm3. The isotropic subject image can thus be reconstructed in 

their own image space, by following the procedure described in Section 3.1. Next, all 

reconstructed images are affinely registered to the MNI-152 space, where the regression-

based image enhancement is conducted. In particular, the regressor(s) acquired in the 

experiment of the simulated data (c.f. Section 4.1) can be applied directly for the sake of 

enhancing the reconstructed subject image. Figure 7 presents the estimated results of the real 

data in different stages of the proposed framework, and the final atlas of all subjects is 

shown in Figure 8.

5. Conclusion and Discussion

In this work, we intend to fuse the brain atlas from diagnostic MR images, which has mostly 

been unresolved before. Since the inter-slice thickness of the input MR images is high, it is 

necessary to perform super-resolution and convert them to be high-quality and isotropic. 

Therefore, we design the two-stage super-resolution strategy. Each subject is firstly 
converted to be isotropic following the sparsity-learning-based reconstruction. Then, the 

reconstructed image is further enhanced by the regression forest, which aims to eliminate 

artifacts in individual patches. After super-resolution, the subject images are registered in the 

groupwise manner, such that the atlas of all subjects is fused in the final.

Our experiments generally confirm that the proposed framework is effective to solve the 

problem of atlas fusion regarding the high-thickness diagnostic brain MR images. However, 

there are several limitations in our current implementation that need future attendance. For 

example, the isotropic reconstruction is achieved by the non-local patch-based sparsity 

learning, which often consumes a lot of time (e.g., 6 hours for a typical brain volume in the 

simulated data, single thread, Intel Xeon E7 CPU). The process can become much faster by 

performing coupled dictionary learning to the collections of the 2D/3D training patches in 

advance. Moreover, it might not be optimal to separate the proposed super-resolution into 

two stages arbitrarily. To this end, we will investigate the future possibility of integrating the 

reconstruction and the enhancement into a unified model, such that the 2D rectangular 

patch(s) can predict the high-quality 3D cubic patch directly.

The proposed framework can also be challenged by many different types of pathological 

cases, including atrophy, lesions, and tumors. The reason is that the learning-based super-

resolution relies on the training data with similar appearances. For the elderly subjects, the 
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proposed framework, although reduced in its performance, can still be applied with expected 

results, since the shape variations caused by the patients’ sympton can still be tolerated in 

the process. Figure 9 presents the exemplar results obtained in different stages of the 

framework, which carries atrophy caused by the Alzheimer’s disease. For pathologies that 

incur a lot of image appearance variation (e.g., lesions and tumors), it is hard to always 

guarantee the availability of the proper training data and then to reconstruct the high-

resolution image by the proposed framework. For example, when reconstructing the 3D 

patch of a tumor through sparsity learning in our framework, it is required that tumors can 

be found from the non-local search neighborhoods of the training images. The requirement, 

however, could not be always satisfied. In the future works we also intend to resolve the 

robustness issues for the pathological cases.
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Figure 1. 
The overall pipeline of the proposed framework consists of super-resolution (designated by 

red arrows) and groupwise registration (by blue arrows).
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Figure 2. 
The super-resolution consists of two stages. In the first stage of isotropic reconstruction (red 

to blue), an intra-slice 2D patch leads to the estimation of the 3D patch in the isotropic 

image space. In the second stage of regression-based enhancement (blue to green), the 

regressors enhances the 3D patch in the reconstructed image and predicts the corresponding 

patch of higher quality. Examples of the real data-flow are shown in the bottom. Note that 

the thickness of the initial subject images is high (i.e., ≥ 6mm), while the isotropic resolution 

is typically 1 × 1 × 1mm3.
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Figure 3. 
An exemplar subject of the simulated data at different stages of the learning-based super-

resolution.
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Figure 4. 
The sensitivity study of super-resolution for images with different inferior-superior spacings.
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Figure 5. 
The overall Dice ratios and the standard deviations of the groupwise registration upon the 

simulated data: red - for the down-sampled spacing of 2 × 2 × 2mm3; magenta - for the 

ground-truth spacing of 1 × 1 × 1mm3; blue - for the diagnostic spacing of 1 × 1 × 8mm3. 

The ROI indices are corresponding to their names in Table 1.
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Figure 6. 
The atlases fused from the ground-truth images and the simulated diagnostic images.
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Figure 7. 
An exemplar subject of real data at different stages of the learning-based super-resolution.

Zhang et al. Page 24

Pattern Recognit. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
The atlas fused from 49 diagnostic MR images with high and heterogeneous inter-slice 

thickness.

Zhang et al. Page 25

Pattern Recognit. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
An exemplar elder subject (with atrophy caused by the Alzheimer’s disease) at different 

stages of the learning-based super-resolution.
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Table 1

List of the ROIs in the NIREP NA0 Dataset.

Index ROI Index ROI

1 L Occipital Lobe 2 R Occipital Lobe

3 L Cingulate Gyrus 4 R Cingulate Gyrus

5 L Insula Gyrus 6 R Insula Gyrus

7 L Temporal Gyrus 8 R Temporal Gyrus

9 L Superior Temporal Gyrus 10 R Superior Temporal Gyrus

11 L Infero Temporal Region 12 R Infero Temporal Region

13 L Parahippocampal Gyrus 14 R Parahippocampal Gyrus

15 L Frontal Lobe 16 R Frontal Lobe

17 L Superior Frontal Gyrus 18 R Superior Frontal Gyrus

19 L Middle Frontal Gyrus 20 R Middle Frontal Gyrus

21 L Inferior Gyrus 22 R Inferior Gyrus

23 L Orbital Frontal Gyrus 24 R Orbital Frontal Gyrus

25 L Precentral Gyrus 26 R Precentral Gyrus

27 L Superior Parietal Lobule 28 R Superior Parietal Lobule

29 L Inferior Parietal Lobule 30 R Inferior Parietal Lobule

31 L Postcentral Gyrus 32 R Postcentral Gyrus
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Table 2

SSIM study of the proposed super-resolution strategy in different stages.

Subj. Original Aft. Isotropic Recon. Aft. Regression

1 76.20% 82.69% 84.60%

2 75.14% 82.52% 85.06%

3 77.77% 83.27% 85.77%

4 74.58% 82.08% 84.20%

5 75.06% 83.30% 85.25%

6 80.44% 83.11% 86.17%

7 73.90% 82.83% 84.28%

8 77.27% 82.92% 85.21%

9 74.78% 82.63% 84.60%

10 78.36% 83.68% 86.07%

11 76.63% 83.86% 86.46%

12 74.24% 81.95% 83.97%

13 78.38% 84.38% 86.81%

14 75.20% 84.10% 85.43%

15 76.49% 83.64% 85.62%

16 75.88% 83.18% 85.05%

Overall 76.27 ± 1.80% 83.16 ± 0.69% 85.33 ± 0.84%
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