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Abstract

A diastereoselective, gold-catalyzed cascading cycloisomerization of alkylidene cyclopropane 

bearing 1,5-enynes that terminates in a cyclo-addition of aldehydes has been developed. This 

diastereoselective reaction provides convergent access to novel polycyclic molecular structures (18 

examples), and tolerates a diverse scope of aldehydes. Mechanistic studies reveal that the catalytic 

cycle rests at a digold off-cycle intermediate, one of which was isolated.

Introduction

Transition metal catalyzed enyne cycloisomerizations proceeding via novel reaction 

pathways have enabled the construction of complex molecular scaffolds to be realized.1–7 

The effectiveness of electrophilic gold(I) complexes for activating unsaturated carbon-

carbon bonds8 is key to initiating and guiding the reactivity of these fragments. Coupling 

enyne cycloisomerization processes to the addition of heteronucleophiles, including 

alcohols9–11 and aldehydes,12–16 in enyne cycloisomerization reactions has created new 

transformations that multiply the molecular complexity of the products.

Alkylidene cyclopropanes (ACPs) are versatile and reactive building blocks in organic 

synthesis, and several groups have been instrumental in developing their unique reactivity 

profiles.17–22 A key property is the inherent ring strain in the ACP moiety (ca. 40 kcal/mol), 

relief of which can provide a thermodynamic driving force for otherwise unfavorable 

reactions. Our contributions to this area have explicitly sought strategic strain release 

protocols,23–25 and in one recent example, we realized a gold-catalyzed enantioselective 

cycloisomerization of ACP-containing 1,5-enynes to yield the bicyclo[4.2.0]octadiene core, 

(e.g. 2, Scheme 1).26 The proposed mechanism for this transformation begins with an ionic 

6-endo-dig cyclization of 1a, to yield a transient cyclopropyl methyl carbenium ion27–29 that 

ring expands to a putative auro allyl cation (A, Scheme 1). As shown, this species can also 

be described as a cationic vinyl carbene, which rationalizes the electrophilic centers in the 

structure. The reaction turns over with a net 1,2-hydrogen shift to yield the cycloisomer 2 
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and the electrophilic catalyst. Tests for a trappable A revealed the suitability of methanol to 

generate the 6-4 bicyclo methoxy 3.26 These results coupled with the precedent established 

by Helmchen (vide infra), suggested that A might also be trapped by aldehydes, to yield 

oxo-carbenium ions that are poised to annulate to novel terpene-like ring structure. The 

convergence of these approaches, coupled with their rigid features and parallels to the 

terpenoids, suggests a role in diversity-oriented synthesis.30,31

The most typical coupling reactivity of 1,n-enynes (n = 6,7) with carbonyl compounds are 

formal [2 + 2 + 2] cycloadditions to yield O-heterocycles.14,15 Helmchen and later 

Echavarren in particular have studied the gold(I) catalyzed reaction of aldehydes with 1,6-

enynes.12–14 DFT studies support addition of aldehydes to an electrophilic allyl carbene 

intermediate (e.g. Scheme 2, top).13 We hypothesized that auro-allyl cation A might be 

sufficiently electrophilic to also be trapped by an aldehyde to generate a versatile 

oxocarbenium ion poised to annulate a THP ring (Scheme 2, bottom). Herein we report the 

successful implementation of this notion in addition to mechanistic studies suggesting that 

multimetallic species once again influence catalyst speciation in the cycle.

To test our hypothesis, enyne 1a and propionaldehyde (5 equiv.) were treated with 10 mol% 

Ph3PAuNTf2
32 in CH2Cl2. Unfortunately, these conditions only provided the cycloisomer 2; 

lower reaction temperatures (0 and −30°C) did not change the outcome. Suspecting that the 

cause of this was an insufficiently nucleophilic aryl ring, we next tested 3,5–dimethoxy 

enyne 1b.

Results and Discussion

To our delight, the combination of 1b, propionaldehyde (5 equiv.) and Ph3PAuNTf2 (10 mol

%) at RT, provided a single diastereomer of 4 as the major product, along with a lesser 

quantity of 5 (3:1, Table 1, entry 1). We envision a competition for intermediate B as shown 

in Scheme 3.33 Complete selectivity for 4 (>99:1) could, however, be achieved at 0 °C with 

10 equivalents of aldehyde.34

These latter optimized conditions were used to evaluate the scope with respect to the 

aldehyde partner. As shown in Table 1, a variety of aliphatic aldehydes were successfully 

incorporated, including aldehydes with linear and branched chains, as well as unsaturated 

moieties. With bulkier aldehydes, including pivaldehyde and isobutyraldehyde, 

cycloisomerization became increasingly competitive and required an additional lowering of 

the temperature to −35 °C. In each case the products were isolated in good to excellent 

yields and as a single diastereomer. NMR analysis along with an X-ray structure of an 

aromatic aldehyde derivative (vide infra) led to the indicated diastereomer.

In contrast, aromatic aldehydes were found to not add to B as efficiently (1:1 mixture of 4:5) 

under the conditions in Table 1, though cooling to −35 °C returned high chemo- and 

diastereoselectivities. In each case selectivities for the trapped product were >95% (Table 2). 

Meta and para substituted arenes bearing electron-withdrawing groups showed excellent 

reactivity. However, electron rich aldehydes, including p-anisaldehyde, 3,4,5-trimethoxy 

benzaldehyde, and p-(dimethylamino)benzaldehyde, only returned cycloisomerized product.
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The meta-methoxy enyne 1c was also tested, and under the optimized conditions for each 

class of aldehydes a single regio- and diastereomer of the polycycle was formed (6a and 6b, 

Equation 1). The requirement of at least a single activating group on the nucleophilic arene 

suggests that this addition may be product determining (c.f. 1a). A similar reaction with a m-

tolyl group was not successfully trapped and only provided the cycloisomerization product.

(1)

To confirm the relative stereochemistry of the products an X-ray structure of crystalline 4k 
was obtained. The relative stereochemistry suggested the indicated orientation of the 

oxocarbenium ion on attacking the arene (C, Figure 1). The single isomer of product 

obtained from the remaining aldehydes were assigned by analogy to 4k and in the cases of 

4a and 4j, were confirmed by comparative 1D-NOE experiments (see SI).

Our methodological studies sparked a number of mechanistic questions about additions to 

the putative auro-allyl cation, B (Scheme 3). A competition experiment between 

benzaldehyde and p-CF3-benzaldehyde (5 equiv. each) with enyne 1b and Ph3PAuNTf2 (10 

mol%) revealed that the more electron rich aldehyde was slightly favored (2:1 4i:4j). 
Competing p-anisaldehyde (which is not viable in Table 3) and p-CF3-benzaldehyde, 

however only provides the p-CF3-benzaldehyde trapped product 4j. These data combined 

with the need for an electron-rich arene (Equation 1) show that electron rich aldehydes can 

better trap the auro-allyl cation but the resulting oxo-carbenium ion is proportionately less 

electrophilic, and for very electron rich aldehydes (p-OMe, etc), effectively incapable of 

competing with the 1,2-shift. If the addition to B is reversible, then the product determining 

step is the Friedel-Crafts annulation.

An analysis of the competing manifolds for the formation of 4 versus 5 in Scheme 3 

suggested that the partitioning of B might be sensitive to protic additives as we reasoned that 

the net 1,2-H shift might be the result of an allylic proton loss followed by 

protodemetallation. To test this notion, the relatively strong, CH2Cl2 soluble, acid [Ph2NH2]

[BF4] (pKaH2O ~1)35 was added to gauge its influence on selectivity. As shown in entries 2 

and 3 of Table 3, increasing equivalents of acid enhanced the trapping efficiency (up to 

10:1), while N-methyldiphenylamine (entries 4 and 5) shifted the selectivity towards 

cycloisomerization. Inhibiting proton loss from B thus enhances the formation of 4 and 

suggests that the competing 1,2-shift does indeed initiate with a proton loss.
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(2)

Information on the catalyst’s resting state was obtained by in situ monitoring using 31P 

NMR spectroscopy (−35 °C). These spectra revealed the presence of a single catalyst 

species, with two distinct singlets in a 1:1 ratio (33 and 38 ppm). Evidence supporting the 

assignment of this species to a geminally diaurated vinyl intermediate36 was obtained from 

stoichiometric reactions of 1b with Ph3PAuNTf2 (2 equiv), 4-Br-benzaldehyde (10 equiv.), 

and a polymer-bound 2,6-di-tert-butylpyridine, which yielded a product with the same two 

distinct peaks as observed in the in situ 31P NMR experiments. A combination of HRMS 

and NMR spectroscopy suggested di-gold vinyl complex 7, which we and others have 

previously shown to be prevalent in gold-vinyl36–43 and aryl44–46 reactivity (Equation 2). 

Isolated 7 was always contaminated by traces of protodemetallated product 4k and 

(Ph3P)2Au+. Several gold complexes and bases (to arrest protodemetallation) were screened, 

however the purity of the isolated 7 (upon removal of excess aldehyde) could not be 

improved above ~90% (see SI for details).

The proposed mechanism for this transformation is shown in Scheme 4. Au activation of 

alkyne 1b triggers a 6-endo-dig cyclization to 9, which ring expands to form the more stable 

auro-allyl cation 10 (equivalent to B). Distal attack of the aldehyde generates oxocarbenium 

intermediate 11, which cyclizes facilitated by the electron-rich methoxy groups. Re-

aromatization affords gold-vinyl intermediate 12, which may be directly protodemetallated 

to form 4 or trapped by [Au]+ to yield the digold resting state 8. Previous investigations in 

collaboration with the Widenhoefer group40 have shown that digold intermediates are 

usually off-cycle and that trapping of monogold vinyls by [Au]+ is fast and can be 

competitive with protodemetallation.43

Conclusions

In summary, we have developed a regio- and diastereoselective gold(I)-catalyzed addition of 

aldehydes to 1,5-enynes that sequences a series of C–C and C–O bond forming reactions to 

convergently create novel terpene-like polycyclic scaffolds. The scope with respect to 

aldehydes is significant, and once again digold structures dominate the speciation of 

reactions generating a vinyl gold intermediate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ORTEP representation of the solid state molecular structure of 4k; ellipsoids drawn at 50% 

probability, only one enantiomer of the asymmetric unit, and majority of the hydrogen atoms 

omitted for clarity.
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Scheme 1. 
Proposed reaction pathway for the (a) cycloisomerization, (b) carbocation-trapping control 

experiment, and (c) proposed reaction with aldehydes with our 1,5-enyne
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Scheme 2. 
Helmchen’s aldehyde trapping of a proposed gold carbene intermediate (top) and proposed 

aldehyde trapping reaction of vinyl gold carbene A (bottom)
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Scheme 3. 
Acid/base-dependent competition from intermediate B.
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Scheme 4. 
Proposed catalytic cycle. [Au]+=Ph3PAu+; counterion [NTf2

−] omitted for clarity.
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Table 1

Gold(I)-catalyzed cyclo-coupling of 3 and aliphatic aldehydes.a,b

a
See SI for typical reaction procedure.

b
Yields of chromatographically purified.
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c
−35 °C.
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Table 2

Substrate scope with aromatic aldehydes.a,b

a
See SI for typical reaction procedure.

b
Yields of chromatographically purified.
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c
Reaction time extended to 20 h.
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Table 3

Reaction optimization to favor the aldehyde trapped product 4.

entry additive + equiv. temp pdt ratio (4:5)

1 None rt 3:1

2 [Ph2NH2][BF4], 1 equiv. rt 4:1

3 [Ph2NH2][BF4], 5 equiv. rt 10:1

4 Ph2NMe, 1 equiv. rt 1:2

5 Ph2NMe, 5 equiv. rt 1:10
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