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ABSTRACT

This paper reviews the research and development of the Envelope Peaks over Threshold (EPOT) 
method that has taken place since the previous STAB conference. The EPOT method is intended for 
the statistical extrapolation of ship motions and accelerations from time-domain numerical 
simulations, or possibly, from a model test. To model the relationship between probability and time, 
the large roll angle events must be independent, so Poisson flow can be used. The method uses the 
envelope of the signal to ensure the independence of large exceedances. The most significant 
development was application of the Generalized Pareto Distribution (GPD) for approximation of the 
tail, replacing the previously used Weibull distribution. This paper reviews the main aspects of 
modeling the GPD, including its mathematical justification, fitting the parameters of the distribution, 
and evaluating of the probability of exceedance and its confidence interval. 
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1. INTRODUDCTION

The rarity of dynamic stability failures in
realistic sea condition makes the problem of 
extrapolation inevitable. This can be illustrated 
in the following example. If we assume an 
hourly stability failure rate of 10-6 hr-1

(Kobylinski and Kastner, 2003), then we can 
expect to see (on average) one failure every 
1,000,000 hours. If we require 10 observations 
for a reliable statistical estimate; then we need 
to simulate 10,000,000 hours. Even if an 
advanced hydrodynamic code could run in a 
real time and a cluster with 1,000 processors is 
dedicated to the task, it would take 10,000 
hours per  condition (combination of seaway, 

speed and heading) to perform the assessment. 
The cost of the calculations prohibits direct 
simulation in this manner. 

Additionally stability failure is associated 
with large-amplitude motions and is expected 
to be nonlinear.  Indeed, capsize is related to 
the ultimate nonlinearity – transition to another 
equilibrium. In order to have enough fidelity to 
model this problem, the hydrodynamic code 
must be quite sophisticated (see a review by 
Reed, et al., 2014). The probability of 
capsizing the topic of a multi-year ONR 
research project titled “A Probabilistic 
Procedure for Evaluating the Dynamic Stability 
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and Capsizing of Naval Vessels” (Belenky, et
al., 2015). 

IMO document SLF 54/3/1 (Annex 1) 
defines intact stability failure as a state of 
inability of a ship to remain within design 
limits of roll (heel, list) angle combined with 
high rigid body accelerations. This includes 
also partial stability failure when a ship is 
subjected to a large roll angle or excessive 
accelerations, but does not capsizes. Following 
the same logic one could also include an 
excessive pitch angle. As this study focuses on 
partial stability failure, peak over threshold 
method (POT) was chosen (Pickands, 1975). 
Introducing a threshold allows considering the 
data that are more influenced by nonlinearity; 
this incorporates changing physics into the 
statistical estimates.  

To satisfy the requirement of independent 
peaks over threshold, the peaks of envelope 
were used instead of the peaks of the process 
itself (Campbell and Belenky, 2010). The 
review of this research effort is available from 
Belenky and Campbell (2012). That work 
included consideration of the relationship 
between probability and time, the probabilistic 
properties of peaks, application of envelope 
theory and the extreme value distribution. 

The relationship between time and 
probability is key to the proper treatment of the 
partial stability failures. It is modeled with 
Poisson flow and requires independence of the 
failures. In the case of capsizing, the 
enforcement of Poisson Flow is not required, 
since capsizing can only occur once per record 
(the possibility of several capsizings within one 
record can be safely ignored for practical cases).
Belenky and Campbell (2012) also review 
different ways of statistical characterization of 
the rate of events, the only parameter of the 
Poisson flow. 

Classical POT methods use the Generalized 
Pareto Distribution (GPD) to approximate the 
tail of the distribution above a threshold. 
However, under certain conditions the GPD 

may be right bounded, that is, there is some 
value above which the probability of 
exceedances is zero. This is not a problem for 
conventional statistical consideration, when we 
are interested in the quantiles of the (i.e. the 
probability is given and the level needs to be 
found). In ship stability generally the failure 
level is known and related to down flooding or 
cargo shifting angles and probability is to be 
found. The physical meaning of the right bound 
was not clear at that time (and still is not 
completely clear).  As a result, the Weibull 
distribution was used for modeling the tail.  

Normally distributed wave elevation was 
the subject of study in Belenky and Campbell 
(2012).  This was a logical first test for these 
techniques. The study concluded that the 
distribution of large absolute values of peaks 
can be approximated by Rayleigh law. The 
Rayleigh distribution is a particular case of 
Weibull distribution when the shape parameter 
equals two. Thus, deviation of this parameter 
from two may be suitable for representing 
nonlinearity in a dynamical system.  

To investigate the performance of a POT 
scheme based on the Weibull distribution, a 
model representing ship motions with realistic 
stability variation was used (Weems and 
Wundrow, 2013; Weems and Belenky, 2015). 
It was found that Weibull distribution does not 
have enough flexibility to approximate the tail 
of large-amplitude ship motions and the 
consideration of the GPD was started again. 

Application of the GPD with EPOT 
produced very reasonable results (Smith and 
Zuzick, 2015). The techniques used to fit GPD, 
estimate the probability of exceedance of a 
given level and evaluate its uncertainty are 
described in Campbell, et al. (2014, 2014a) and 
Pipiras, et al. (2015) and briefly reviewed in 
the rest of this paper. 
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2. MATHEMATICAL BACKGROUND

2.1 Distribution of Order Statistics 

In order to understand why statistical 
extrapolation is possible when the underlying 
distribution is unknown, we begin with order 
statistics.

Consider a set of n independent realizations 
of random variable z. Assume that the 
distribution is given in a form of a cumulative 
distribution function (CDF) and probability 
density function (PDF). Sorting the observed 
values from the largest to smallest we have:  

nizsorty ii ,...1)( (1)

Indeed, for a randomly selected values y and z:

)()(;)()( zCDFyCDFzpdfypdf  (2) 

Consider a value that happens to be k-th in 
the list (1 k n). It is a random number, 
because, if one generates another set of 
realizations of variable z, and sorts them, 
another value will be the k-th. This random 
number is referred as k-th order statistic. Like 
any other random variable, yk has its own 
distribution. This distribution is (see, e.g. 
David and Nagaraja, 2003): 

knk yCDFyCDF
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2.2 Generalized Extreme Value (GEV) 
Distribution

Consideration of distribution of the largest 
value (k=1) when the number of observations n
grows, leads to a limit, known as Generalized 
Extreme Value (GEV) distribution (see e.g. 
Coles, 2001): 
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 is a shape parameter,  is scale parameter 
( );  is a shift parameter, Equation (4) is 
non-zero for: 

0
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and is zero otherwise. If the shape parameter 
=0:

x

xxpdf
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exp1)(
(6)

for any values of x.

It is important that the limit (4-6) does not 
depend on the distribution z. That means that 
all the extreme values have the same 
distribution if one considers a sample of 
sufficient volume. This is the essence of the 
extreme value theorem, sometimes referred to 
as the Fisher-Tippet-Gnedenko theorem (see, 
e.g. Coles, 2001).

Direct application of the extreme value
theorem for probabilistic assessment of 
dynamic stability can be found in MacTaggart, 
(2000), MacTaggart and deKat (2000). 
However, several issues remained unresolved; 
including the question how large the sample 
should be (in terms of record length and 
number of records) to claim limiting properties 
of GEV. 

2.3 Generalized Pareto Distribution (GPD) 

The large sample volume needed for direct 
application of the GEV is partially driven by 
the fact that only a single value (the largest one 
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from the time window) is used to find the 
parameters of distribution. The desire to use 
more data leads to the idea of peaks over 
threshold methods.

Take  as a threshold and find the 
distribution of the data exceeding this threshold, 
i.e. consider conditional probability. The
Generalized Pareto distribution is derived from
the GEV with the threshold condition applied.
The basic logic of this derivation is available in
Coles (2001). The GPD is expressed as

0,

;exp1

0,

,0,

;11

)(

11

xif

x

x

orxif

x

xf  (7) 

where  is the shape parameter,  is the scale 
parameter ( ) and  is the threshold, above 
which, the GPD is believed to be applicable.  

Equation (7) expresses the second extreme 
value theorem, referred as Pickands-Balkema-
de Haan theorem. It states that the tail of 
independent random variables can be 
approximated with the GPD. 

3. FITTING THE GPD

3.1 Preparing Independent Data 

Ship motions are characterized by strong 
dependence of the data points on each other, 
especially in following and stern quartering 
seas when a spectrum is narrow and 
autocorrelation function takes a long time to 
decay. However, the peaks of the piecewise 
linear envelope (see Figure 1) represent 
independent data points. The difference 
between piecewise linear and theoretical 

envelope is considered by Belenky and 
Campbell (2012). However, this technique may 
not work for the cases of parametric roll, where 
mutual dependence is much stronger. The 
method of collecting independent data for the 
case of parametric roll is described in Kim, et
al. ( 2014). 

Figure 1: Piecewise linear envelope and its 
peak

3.2 Estimating Shape and Scale Parameters 

To facilitate the choice of the threshold at a 
later step, fitting the shape and scale 
parameters are carried out for a series of 
prescribed thresholds. The maximum 
likelihood estimator (MLE) method is a 
standard way of estimating the parameters for 
the GPD. The idea of MLE method is quite 
intuitive: to find such values of parameters that 
are “most likely” to fit the data. 

What is “most likely”? The data points that 
have been observed are the facts. At the same 
time they are instances of a random variable. 
Because these particular values were observed, 
they are more likely to occur than others. That 
means that the probability of observing these 
particular values reaches maximum when the 
correct parameters are used for distribution. 
The parameters are found by maximizing the 
value of the likelihood function. In practice this 
is made easier by taking the natural logarithm 
of the likelihood function (Equation 8 below). 
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Where n is the number of data points above a 
threshold , zi are the sample data points above 
a threshold (sometimes referred to as 
excesses). 

3.3 Distribution the GPD Parameters 

Since the shape and scale parameters are 
estimated from the envelope peak data (which 
are random numbers), the estimated parameters 
are also random numbers. Their distribution 
can be approximated with a bivariate normal 
distribution (Smith, 1987). 

VV
EE

V
E

V
E

VV
fN

)ˆ)(ˆ(2

)ˆ()ˆ(
)1(2

1exp

12
1)ˆ,ˆ(

22

2

2

 (9) 

Here ˆ and ˆ  are estimates of  and , E is
used for expected (or mean) value, V is the 
variance and  is the correlation coefficient 
between  and . The parameter estimates 
produced by maximizing equation (8) are the 
mean values, while the covariance matrix MC is 
found using the method outlined below.  

VVV
VVV

MC  (10) 

The delta method allows one to find the 
estimates of mean and variance of the output, if 
estimates of the input are known and the 
function that turns input into output can be 
linearized, such as by a Taylor series. Because 
of this the delta method is an approximation. 

Appling the delta method to maximization of 
equation (8) yields the Fisher information 
matrix MF that is an inverse of the covariance 
matrix (10) (Boos and Stefanski, 2013): 
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The derivatives in (11) are expressed as 
follows:
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The covariance matrix is finally found as:  

1
FC MM (15)

Equations (10) through (14) completely define 
the bivariate normal distribution (9), as shown 
in Figure 2. 
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Figure 2: Joint distribution of GDP parameters 

It is important to note that the scale 
parameter is by definition a positive quantity, 
while the bivariate normal distribution formally 
supports negative values for the scale 
parameter. To avoid negativity of  as an 
artifact of approximation (9), Pipiras, et al. 
(2015) proposed using the ˆlnl̂  instead of 

 This leads to a new distribution: 
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Difference between distribution (16) and 
bivariate normal (9) is not very large (Pipiras, 
et al., 2015). 

3.4 Choice of the Threshold 

Choosing a correct threshold is a critical to 
ensuring the applicability of the GPD. If the 
threshold is too low, the fitted GPD is not an 
approximation of the tail, because the 
conditions of the second extreme value 

theorem have not been met. If the threshold is 
too high, “eligible” data have been wasted and 
the result will more scatter or uncertainty than 
necessary.

The second extreme value theorem states 
that the GPD can be used for approximation of 
the tail of any distribution if the threshold is 
high enough. That means that above certain 
threshold the GPD approximation must be 
invariant to the threshold (Coles, 2001). The 
simplest way is to observe stabilization of the 
shape parameter, see Figure 3. 

Figure 3 Choice of threshold by stabilization of 
the shape parameter 

Campbell, et al. (2014) describes study of 
five different methods of setting the threshold:  

1. Stabilization of shape parameter
2. Stabilization of modified scale parameter
3. Stabilization of mean residual life estimate
4. Ad-hoc method based on minimum

absolute difference between the shape
parameter and its median above the
threshold

5. Ad-hoc method based on minimum
squared difference in the shape from its
mean above the threshold

The first three methods are taken from 
Coles (2001) and they were mostly intended 
for “manual” calculation with “a human in a 
loop”. The methods 4 and 5 are similar to the 
methods proposed in Reiss and Thomas (2007) 
for automatic choice of the threshold. The 
referred study (Campbell, et al., 2014) has 
shown that automation of the method 1 through 
3 makes the threshold lower than the visual 
choice. For the example shown in Figure 3, 
these methods put the threshold somewhere 
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around 13~14 degrees, while the visual choice 
is somewhere above 17 degrees. 

At the same time methods 4 and 5 have 
returned the threshold that is more close to the 
“visual” choice. The method 4 is quickly 
reviewed below. It is based on minimizing the 
following function: 

1
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Nki
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f
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The value of b was taken as 0.5; NTr is the 
number of the thresholds considered. A plot of 
(16) is shown in Figure 4. A global minimum
(ignoring that the function goes to zero at the
right) occurs just below =17.4 deg, which is
close to one of the visual choices made at
Figure 3.

Figure 4 Choice of the Threshold based on the 
Global Minimum of the Equation (16)  

4. EXTRAPOLATION AND
UNCERTAINTY OF THE
PROBABILITY OF EXCEEDANCE

4.1 Extrapolated Estimate 

Using the GPD to extrapolate the 
probability of exceedance yields the 
conditional probability that the level of interest 
c has been exceeded if the threshold  has been 
exceeded: 

c
if

c
ifc

P
ˆˆ0

ˆˆ
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1

 (19) 

c is the limit that constitutes the stability failure. 
The probability that  has been exceeded can 
be estimated statistically, since it has been 
exceeded often enough so that we have enough 
data to build the distribution of peaks above it. 

Now let’s consider the problem of the right 
bound. As can be seen from equation (19), the 
probability of exceedance is equal zero for 
negative shape parameters and ˆ/ˆc .
This has several implications. 

First, the extrapolated estimate is a random 
number. The joint distribution of the shape and 
scale parameters is approximated using 
distribution (16). That also means that the 
mean values of the shape and scale parameters 
are the most probable values at the same time 
(because normal distribution has a maximum at 
its mean value). Thus, one could expect that the 
most probable values used for formulae (19) 
returns the most probable value of extrapolated 
estimate. 

So if the formula (19) returns zero, it is the 
most probable answer, but not the only one 
possible. In fact, the formula (19) must be 
accompanied with confidence interval that may 
be seen as a “range of answers”. 

4.2 Mean and Distribution of the 
Extrapolated Estimate 

In contrast to the most probable value of the 
extrapolated estimate, the mean value is never 
zero for a finite volume of data. Consider 
formula (19) as a deterministic function of 
random arguments: 

ˆ,ˆˆ gP (20)
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Its mean value can be found as using well 
known formula for the mean value of 
deterministic function of random arguments: 

0

),(),()ˆ( ddfgPE LN  (21) 

Using (21) the PDF of the extrapolated 
estimate is derived as: 

dc
x
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Figure 5 depicts the PDF of the extrapolated 
estimate 

Figure 5: PDF of the Extrapolate Estimate 
(Campbell, et al., 2014). 

More details are available from Campbell et 
al. (2014). The formula (22) also can be written 
using the bivariate normal distribution (9).  

4.3 Confidence Interval of the Extrapolated 
Estimate

Quantiles of distribution (22) can be used to 
evaluate the confidence interval of the 
extrapolated estimate. The profile log 
likelihood PLL method (Coles, 2001) adapted 
for the extrapolated estimate is another way to 
find the confidence interval (Campbell, et al.,
2014). The log likelihood estimator (8) is 
expressed in terms of the extrapolated estimate 
P̂  (19): 
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and maximized by the shape parameter: 
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and the extrapolated estimate: 
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The difference between them, referred as 
deviance statistic D and is assumed to have 2

distribution:

)ˆ()ˆ()ˆ( xmmx PlPlPD (26)

The confidence interval includes the space 
where:

)1,(5.0)( 2 dofPQpD  (27) 

P  is the confidence probability and Q 2 is the 
quantile function of the 2 distribution. The 
boundaries are found as the limits of Px that 
satisfy the condition (27), see Figure 6. 

Figure 6. Profile Log Likelihood Method for 
Confidence Interval (Campbell, et al. 2014)

Pipiras, et al. (2015) systematically studied 
and compared different methods of calculating 
the confidence interval for the extrapolated 
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estimate. The following methods were 
considered:
1. Delta method
2. "Normal" method ( distribution 9)
3. "Lognormal" method (distribution 22)
4. "Boundary" method
5. Standard bootstrap method
6. Profile likelihood method (as briefly

described above)

In addition to those six methods, three more 
techniques, termed indirect techniques, 
investigated were based on quantiles rather 
than extrapolated estimate for exceedance 
probability. Any of the methods mentioned 
above can be used to construct a confidence 
interval for the return level (the level to be 
exceeded with given probability p):

1pxp (28) 

The general scheme of calculations of the 
confidence interval through quantiles / return 
level is shown in Figure 7. The three methods 
adapted to the indirect approach using quantiles 
were:
7. Indirect "Lognormal" method
8. Indirect "Boundary" method
9. Indirect Profile likelihood method

Figure 7 On Calculation of Confidence Interval 
using quantiles (Pipiras, et al., 2015) 

A comparison study was performed on 
simulated data sampled from a GPD 
distribution. The performance was judged 
based on the percentage of cases where the 
confidence interval contained the true value 

(coverage). An accurate method should have 
the coverage close to the given confidence 
probability (P =0.95). There were two series of 
calculations with 100 and 50 samples each. 

The indirect profile likelihood method was 
shown to have the best performance, see 
Pipiras, et al. (2015).  The delta method does 
not perform well for probability estimates and 
should not be used. The "normal", "log-
normal", and indirect “log-normal” methods 
are slightly anticonservative (coverage < 95%) 
with the log-normal method preferred among 
the tree. The boundary method and indirect 
boundary methods are slightly conservative 
(coverage > 95%). The bootstrap and profile 
likelihood methods performed poorly for 
negative and near-zero shape parameters.  

4.4 Convergence Study 

Campbell, et al. (2014) describes 
convergence study for the EPOT method, using 
of the datasets from Smith et al. (2014) and 
Smith and Zuzick (2015). The results are 
shown in Figure 8. 

The convergence test uses a moving 
average for 100 extrapolation data sets; the 
moving average is performed for the most 
probable value, mean value, and the upper 
boundary of the confidence interval calculated 
with the “log-normal” method. The most 
probable value is a better estimator when the 
sample volume is large, while the mean shows 
better (and more conservative) performance for 
smaller sample volumes. More details are 
available from Campbell, et al., (2014). 

Figure 8 Convergence Test Using Moving 
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Averages to Approximate Extrapolated 
Estimates (Campbell, et al., 2014) 

4.5 On the Validation of EPOT 

A comprehensive validation study of the 
EPOT method is reported by Smith and Zuzick 
(2015). Motions of the ONR Tumblehome 
topsides (Bishop et al., 2005) configuration 
were simulated with a 3-DOF volume-based 
simulation (Weems and Wundrow, 2013; 
Weems and Belenky, 2015) for hundreds of 
thousands of hours to produce “true” values on 
rare exceedances. Than small subsets (100 hrs 
each) was used by EPOT extrapolation. Smith 
and Zuzick (2015) used log-normal and 
boundary methods in carrying out their 
validation procedure for six relative wave 
headings considering roll, pitch, lateral and 
vertical accelerations. Using the same data set, 
Pipiras, et al. (2015) reported results for heave 
and pitch only for 30 and 45 degrees of heading, 
but used methods 2 through 9 for the 
confidence interval. 

Total number of conditions reported by 
Smith and Zuzick (2015) was 23. The minimal 
acceptable coverage was set to 90%. With log-
normal confidence interval six conditions failed, 
while all the conditions are passed using the 
boundary method. These results could be 
expected as the log-normal method is slightly 
anti-conservative and the boundary method is 
slightly conservative, as mentioned above. 
Smith and Zuzick (2015) noted that all the 
conditions show acceptable results for 
restricted range of headings – aft of the beam 
seas. Similar conclusions were reached by 
Pipiras, et al. (2015). 

5. CURRENT STATUS AND FUTURE
WORK

The EPOT method has evolved
significantly in the three years since the 
previous STAB conference. The main idea 
remains the same, however: extrapolate peaks 

over a threshold and use the envelope to ensure 
independence. The idea of threshold was 
originally aimed to emphasize influence of 
nonlinearity. Now it is also has a mathematical 
interpretation – it ensures the applicability of 
the second extreme value theorem. 

Use of the second extreme value theorem 
leads to use of the Generalized Pareto 
distribution (GPD) to approximate the 
distribution above a certain large threshold. 
The selection of the threshold is done based on 
applicability of GPD approximation above the 
chosen threshold. Five different techniques for 
selecting the threshold have been considered. 

Fitting the GPD is performed with the 
maximum likelihood estimation (MLE) method. 
These parameter estimates from the MLE fit 
are assumed to follow a normal distribution. 
Several methods were considered for 
estimating the confidence interval of the 
extrapolated probability of exceedance. Some 
of them we anti-conservative and some were 
conservative. A definitive recommendation on 
which to use is still outstanding. 

Significant progress has been achieved in 
the validation techniques of EPOT and the 
problems of extreme rarity in general. A very 
fast simulation code has been developed that is 
capable of producing statistics for events that 
occur only a few times during  millions of 
hours.  The simulation was shown to be 
qualitatively similar to higher fidelity codes 
like LAMP (Weems and Belenky, 2015). A 
procedure for the validation of statistical 
extrapolation techniques has been developed 
and applied to EPOT (Smith and Zuzick, 2015). 
While not all the tested environmental 
conditions satisfied the currently proposed 
requirements, the EPOT method shows 
promise and potential to be acceptable.  

In addition to finalizing the confidence 
interval formulation, attention needs to be paid 
to reducing the uncertainty in the extrapolated 
probability of exceedance estimates. It may be 
possible to reduce the uncertainty if a 

818



Proceedings of the 12th International Conference on the Stability of 
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK 

relationship between the GPD parameters and 
physical considerations can be established. 
Pipiras, et al. (2015) investigated fixing the 
ratio between the GPD parameters for the case 
of pitch based on shape of the longitudinal GZ 
curve. This resulted in decreasing of width of 
the confidence interval and spread of the 
estimates around the “true” value. Such a 
decrease of uncertainty was the result of 
introducing additional physical information 
into the problem. The idea of a limiting roll 
angle is discussed by Campbell, et al (2015) 
and may lead to a similar result for roll. It is 
anticipated that further study into the nature of 
the tail of the distribution of large ship motions 
will lead to an application-ready EPOT method. 
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