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Abstract

Objective—We examined associations of IRS1 genetic variation with adiposity and metabolic 

profile in US Hispanic/Latino individuals of diverse backgrounds.

Methods—Previously genome-wide association study identified IRS1 variants (rs2943650, 

rs2972146, rs2943641, and rs2943634) as related to body fat percentage (BF%) and multiple 

metabolic traits were tested among up to 12,730 adults (5232 men; 7515 women) from the 

Hispanic Community Health Study/Study of Latinos.

Results—The C-allele (frequency=26%) of rs2943650 was significantly associated with higher 

BF% in overall (β=0.34±0.11% per allele; P=0.002) and in women (β=0.41±0.14% per C-allele; 

P=0.003), but not in men (β=0.28±0.18% per C-allele; P=0.11), though there was no significant 

sex-difference. Using the inverse-normal-transformed data to compare effect sizes, we found that 

the association with BF% was stronger in Hispanic/Latino women than that previously reported in 

European women (β=0.054±0.018SD vs β=0.008±0.011SD per C-allele; P=0.03). We also 

observed that the BF%-increasing allele of rs2943650 was significantly associated with lower 
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levels of fasting insulin, HOMA-IR, Hemoglobin A1c and triglycerides, and higher HDL-

cholesterol (P<0.05).

Conclusions—Our study confirmed and extended previous findings of IRS1 variation associated 

with increased adiposity but a favorable metabolic profile in US Hispanics/Latinos, with a 

relatively stronger genetic effect on BF% in Hispanic/Latino women compared to European 

women.
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Introduction

Obesity is associated with insulin resistance, dyslipidemia and hypertension, and therefore 

represents a major risk factor for a number of metabolic diseases (1). However, most 

interestingly, a large-scale meta-analysis of genome-wide association studies (GWAS) for 

body fat percentage (BF%) identified a variant of which the adiposity-increasing allele is 

associated with favorable metabolic outcomes (2), illustrating the complexity of the 

relationship between obesity and metabolic diseases. Specifically, the C-allele 

(frequency=36%) of a common single nucleotide polymorphism (SNP), rs2943650, near 

IRS1 (insulin receptor substrate 1), was found to be associated with higher BF%, but also 

with a favorable metabolic profile (2). Other SNPs near IRS1, all in high linkage 

disequilibrium (LD) with rs2943650 according to the HapMap CEU, have also been 

identified by GWAS for various metabolic traits, including insulin resistance and type 2 

diabetes (rs2943641; r2
CEU = 1.0 with rs2943650) (3), triglycerides and HDL-cholesterol 

(rs2972146; r2
CEU = 0.95 with rs2943650)(4), and coronary artery disease (rs2943634, 

r2
CEU = 0.83 with rs2943650) (5). These GWAS findings are in line with the biological 

function of IRS1, which plays a key role in the insulin signaling pathway (6, 7), but an 

understanding of observed associations of IRS1 variants with both increased adiposity and a 

favorable metabolic profile remains incomplete. In addition, most previous studies are 

restricted to populations of European ancestry (2, 3, 4, 5), and only limited information 

regarding these intriguing findings on IRS1 variants is available in other ethnic groups. 

Associations of the IRS1 variants with insulin resistance and hyperglycemia have been 

confirmed in a cohort of Puerto Ricans living in Boston (8). However, this study did not 

report on association with BF%, and the participants did not represent the full diversity of 

US Hispanics/Latinos.

US Hispanics/Latinos are disproportionately affected by obesity and related metabolic 

diseases (9, 10). Elevated levels of adiposity traits, including higher BF%, are associated 

with increased prevalence of diabetes, dyslipidemia and hypertension, as well as unfavorable 

levels of metabolic biomarkers, in the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL) (11), a population-based cohort of US Hispanics/Latinos. In the current study, 

we examined whether the previously observed association of SNPs near IRS1 with adiposity 

and metabolic traits are also observed in up to 12,747 individuals of diverse Hispanic/Latino 

backgrounds from the HCHS/SOL.
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Methods

Participants

The HCHS/SOL is a population-based study of 16,415 Hispanic/Latino adults living in four 

U.S. metropolitan areas (Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA). To be 

eligible, individuals had to be 18–74 years old at recruitment; self-identify as Hispanic/

Latino; able to travel to the local study field center; and no plans to move out of the study 

area. Participants were recruited using a two-stage probability sample design, as described 

previously (12). Of 39,384 individuals who met eligibility criteria, 41.7% enrolled, 

representing 16,415 persons from 9,872 households. A comprehensive battery of interviews 

relating to personal and family characteristics, health status and behaviors, and a clinical 

assessment with blood draw, were conducted at an in-person clinic baseline visit during 

2008–2011. In the current study, a total of up to 12,747 participants who consented to 

participate genetic studies were included. The study was approved by the Institutional 

Review Boards at all participating institutions, and all participants gave written informed 

consent.

Measurements

Measurements of weight and BF% were obtained from the Tanita body composition 

analyzer (model TBF-300A; Tanita Corporation, Arlington Heights, IL). Height and waist 

and hip circumference were measured to the nearest centimeter based on a standard protocol 

(www.cscc.unc.edu/hchs). Body weight was measured to the nearest 0.1 kg. Body mass 

index (BMI) was calculated as weight in kilograms divided by height in meters squared. 

Blood samples (fasting and after a 2-hour oral glucose load) were collected and processed 

according to standardized protocols (www.cscc.unc.edu/hchs). Total serum cholesterol was 

measured using a cholesterol oxidase enzymatic method and HDL cholesterol with a direct 

magnesium/dextran sulfate method. LDL cholesterol was calculated using the Friedewald 

equation (13). Plasma glucose was measured using a hexokinase enzymatic method (Roche 

Diagnostics). Hemoglobin A1c (HbA1c) was measured using a Tosoh G7 Automated HPLC 

Analyzer (Tosoh Bioscience). Fasting insulin was measured using two commercial 

immunoassays (ELISA, Mercodia AB, Uppsala, Sweden; and sandwich immunoassay on a 

Roche Elecsys 2010 Analyzer, Roche Diagnostics, Indianapolis, IN); early measures 

conducted with the Mercodia assay were calibrated, and values were equivalent to the Roche 

method. Homeostatic model assessment of insulin resistance (HOMA-IR) was computed 

based on the following equation: fasting glucose × fasting insulin/405 (14).

Genotype data

Four SNPs (rs2943650, rs2972146, rs2943641, and rs2943634) near IRS1, previously 

identified in GWAS for BF%, insulin resistance and type 2 diabetes, blood lipids, and 

coronary artery disease (2, 3, 4, 5), were analyzed in the current study. Genotype data on 

SNPs rs2943641 and rs2943634 were derived from the HCHS/SOL Custom array 

(15041502 B3), which consists of the Illumina Omni 2.5M array (HumanOmni2.5-8v1-1) 

plus ~150k custom SNPs. Genotype and quality control (QC) were performed by Illumina 

Microarray Service at LA Biomed and the HCHS/SOL Genetic Analysis Center. The QC 

process and quality filters used at HCHS/SOL Genetic Analysis Center have been previously 
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described (15, 16). SNPs rs2943650 and rs2972146 were imputed based on the 1000 

Genomes Project phase 1 reference panel including Hispanic/Latino populations (i.e., 

Mexicans, Colombians and Puerto Ricans), using SHAPEIT2 (v2.r644) (17) and IMPUTE2 

(v2.3.0) (18), both with almost perfect imputation scores (info= 0.998 and 0.999, 

respectively). Genetic principal components (PC) and kinship coefficients (KC) were 

calculated using PC-AiR and PC-Relate to provide PC estimates robust to relatedness and 

KC estimates robust to population structure, admixture and deviations from Hardy-Weinberg 

Equilibrium (16).

Identification of Hispanic/Latino background

Individuals were classified into six “genetic analysis subgroups” (Hispanic/Latino 

background groups: Cuban, Dominican, Puerto Rican, Mexican, Central American, or South 

American) based on their self-reported background and position in the n-dimensional space 

defined by the first 5 genetic principal components (PCs) (16). For each group, a 99% 

tolerance hyper-ellipsoid was defined based on individuals who also self-reported as that 

background. Individuals within the hyper-ellipsoid for their self-reported background group 

were assigned to the corresponding genetic analysis group. Individuals who were outside the 

hyper-ellipsoid for their self-reported background group (or those who self-reported as 

“Other” or “Mixed") were assigned to the genetic analysis group with the closest hyper-

ellipsoid center. The concordance between the six genetic analysis subgroups and the 

specific Hispanic/Latino background groups reported by participants is very high (range 92–

98%, mean 96%).

Statistical analysis

We used a linear mixed model (LMM) to examine associations of IRS1 variants with BF% 

and other metabolic traits, adjusted for fixed effect covariates, including age, sex, field 

center, sampling weights, Hispanic/Latino background (six genetic analysis subgroups), and 

the first five PCs. Genetic relatedness (a matrix of pairwise kinship coefficients), household 

membership and census block group membership were also modeled as random effects to 

account for correlation between trait values of individuals. Variance components for each 

random effect were estimated under the null model (no genotype main effect) using Average 

Information Restricted Maximum. For each SNP, the effect size (Beta) and its standard error 

(SE) were estimated by using generalized least squares with the trait covariance structure 

estimated from the null model. A Wald test was performed to test for association at each 

SNP. Because associations between IRS1 variants and BF% were previously reported to be 

more pronounced in men than in women (2), all analyses were also performed in men and 

women separately. In addition, associations with BF% were also stratified by Hispanic/

Latino background (6 genetic analysis subgroups).

For individuals using lipid-lowering medications, we added a constant to each of their lipid 

traits, of which the amount was determined by the class of medication used (19). 

Associations with glycemic traits (fasting glucose, fasting insulin, HbA1c, 2-hour glucose, 

and HOMA-IR) were tested in individuals without diabetes. As distributions for BMI, 

triglycerides, fasting insulin and HOMA-IR were right-skewed, values were natural log-

transformed before the analyses. Waist circumference and Waist-to-hip ratio (WHR) were 

Qi et al. Page 4

Obesity (Silver Spring). Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also adjusted for BMI. All association analyses were repeated after inverse normal 

transformation of residuals after fitting the null model to an approximate mean of 0 and an 

approximate SD of 1, allowing comparison of effect sizes across different traits.

Results

Description of genotype and phenotype data

Among the 12,747 US Hispanics/Latinos (5,232 men and 7,515 women) included in the 

analyses, Hispanic/Latino backgrounds were: 11% Central American, 18% Cuban, 9% 

Dominican, 37% Mexican, 18% Puerto Rican, and 7% South American. In addition, 20% of 

participants had diabetes, and 5% of participates had self-reported coronary heart disease. 

The mean (SD) of BF% is 28.1 (8.2)% in men and 38.9 (7.7)% in women (Table 1).

The previously identified BF%-associated variant, rs2943650, showed moderate-to-strong 

LD with the other three IRS1 variants, rs2943634 (r2=0.65), rs2943641 (r2=0.75), and 

rs2972146 (r2=0.64), in US Hispanics/Latinos (Supplemental Table 1), while these variants 

showed a high LD pattern in Europeans (r2>0.8, according to HapMap CEU). The minor 

allele frequency (MAF) of the variant rs2943650 (C-allele) was 29%, and varied across 

Hispanic/Latino backgrounds, ranging from 20% in Mexicans to 49% in Dominicans 

(Supplemental Table 2).

IRS1 variants, body fat percentage and other adiposity traits

In a pooled analysis of all participants, the minor allele (C-allele) of rs2943650 was 

significantly associated with higher BF% (β=0.34 ± 0.11% per allele; P=0.002) (Table 2). 

The association tended to be more pronounced in women (β=0.41± 0.18%; P=0.003) than in 

men (β=0.28 ± 0.14%; P=0.11), but this sex difference was not significant. Using the 

inverse-normal-transformed data to compare effect sizes, we found that the association with 

BF% was stronger in Hispanic/Latino women than that previously reported in European 

women (β=0.054 ± 0.018SD vs β=0.008 ± 0.011SD; P=0.03), while there was no significant 

difference between Hispanic/Latino men and European men (β=0.032 ± 0.022SD vs 

β=0.035 ± 0.009SD; P=0.88) (data in Europeans were reported by Kilpeläinen et al. (2)). In 

addition, the minor allele (C-allele) of rs2943650 was significantly associated with higher 

BMI (natural log-transformed) (β=0.007±0.003; P=0.013), but not associated with BMI-

adjusted waist circumference (P=0.77) or WHR (P=0.92) (Supplemental Table 3).

Consistent with the modest LD between the four IRS1 SNPs, the associations of the other 

three IRS1 variants with BF% was consistent with those observed for rs2943650 (Table 2). 

We examined whether either of the four variants was driving the observed associations using 

conditional analyses, but found no evidence for any one being the lead SNP, suggesting that 

they all represent the same signal within or near the IRS1 locus.

We further examined associations between rs2943650 and BF% among individuals with 

different Hispanic/Latino backgrounds separately. The minor-allele of rs2943650 showed 

significant associations (Cuban and Dominican) or non-significant associations (Central 

American, Mexican and Puerto Rican) with higher BF% among five of the six Hispanic/

Latino background groups, whereas a non-significant trend toward an inverse association 
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was observed in South Americans (Figure 1). However, there was no statistically significant 

heterogeneity between groups (P>0.27; Cochran’s Q test). Moreover, we examined 

associations between rs2943650 and BF% in men and women separately within each 

Hispanic/Latino background group, and did not find significant sex difference (All P>0.05) 

(Supplemental Table 4). However, a nominal-significant inverse association between 

rs2943650 and BF% was observed in men of South American group (P=0.027).

IRS1 variants and metabolic traits

We then examined the associations of the IRS1 variants with multiple metabolic traits 

(Supplemental Table 3; Figure 2). The minor allele (BF%-increasing-allele) of rs2943650 

was significantly associated with lower HbA1c (P=0.003), higher HDL cholesterol 

(P=0.002), and lower triglycerides (P=0.03); and these associations remained significant 

after further adjusting for BF%. Using the inverse-normal-transformed data, the effect size 

of rs2943650 minor allele on BF% (0.041 ± 0.014 SD per allele) was similar with that on 

HbA1c (−0.043 ± 0.014 SD per allele), and slightly larger than those on HDL cholesterol 

(0.033 ± 0.014 SD per allele) and triglycerides (−0.027 ± 0.014 SD per allele) (Figure 2). 

After adjustment for multiple tests for one genetic variant (4 SNPs are in the moderate-to-

strong LD) and 11 independently measured traits (we did not count HOMA-IR which was 

calculated based on fasting insulin and glucose), associations of rs2943650 with BF%, 

HbA1c and HDL-c remained significant (P<0.0045).

Generally similar results were observed for the other three IRS1 variants (Supplemental 

Table 3). The minor allele of IRS1 variants were associated with lower fasting insulin 

(P=0.08 to 0.01) and lower HOMA-IR (P=0.08 to 0.009) after, but not before, adjusting for 

BF% (Supplemental Table 3). In addition, associations of IRS1 variants with adiposity 

measures and lipids did not materiality change in sensitivity analysis after we excluded 

participants with diabetes and self-reported coronary heart disease (Supplemental Table 5).

Discussion

In the present study, we confirmed and extended previous findings (2, 8) that genetic 

variation near IRS1 associates with increased adiposity, but a favorable metabolic profile 

(low levels of fasting insulin, HOMA-IR, HbA1c and triglyceride, and high HDL cholesterol 

levels) among individuals of diverse Hispanic/Latino backgrounds. In addition, we also 

found a relatively stronger genetic effect on BF% in Hispanic/Latino women than that 

previously reported in European women.

Previous data in Europeans showed that the association between IRS1 rs2943650 variant and 

BF% was more pronounced in men than in women (2), while we did not observe such sex-

difference in US Hispanics/Latinos. Moreover, our further analysis indicated that the genetic 

effect on BF% was larger in Hispanic/Latino women than that in European women, but there 

was no significant difference between Hispanic/Latino men and European men. It has been 

speculated that the previously observed relatively weaker genetic effect on adiposity in 

women might be related to more subcutaneous fat in women driven by hormones compared 

to men (20), which may attenuate the influence of IRS1 variation on subcutaneous fat (2). 

However, it is unclear whether the observed ethnic-difference in genetic effect is related to 
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different fat deposition between Hispanic/Latino women and European women. Hispanic/

Latino women have higher prevalence of obesity (9) and higher BF% than non-Hispanic 

white women (21, 22), but comparison of accurate fat deposition between them need further 

investigations. In addition, it is should be noted that the previous GWAS in Europeans 

included multiple cohorts using bioimpedance analysis (BIA) and/or dual-energy X-ray 

absorptiometry (DEXA) measures (2), while we used Tanita-BIA to estimate BF%. 

However, our method has been reported to have good agreement with DEXA in Hispanics/

Latinos (23), and similar results between using BIA and DEXA measures were reported in 

the previous GWAS in Europeans (2)..

Genetic heterogeneity in associations with adiposity measures (e.g., BF% and WHR) 

between men and women (sex-specific effect) has been observed in previous studies. For 

example, a number of loci (including IRS1) have shown significant sex-specific effects on 

BMI-adjusted WHR and BF% in recent GWAS (2, 24, 25). In addition, a few SNPs 

exhibited significant evidence for heterogeneity of effect on BMI between ethnic groups, but 

it remains unclear whether these results may reflect true heterogeneity or are due to (LD) 

differences across ancestries (25). Nevertheless, recent large GWAS meta-analyses including 

multiple ethnic groups considering genetic heterogeneity provides insight into the genetic 

architecture of complex metabolic diseases (25, 26). However, ethnic-specific effects of BF

%-associated SNPs have not been well-examined as previous studies included most 

individuals of European-ancestry but few of non-European-ancestry (2, 24). Thus, the 

observed ethnic-difference in women needs validation, and future studies using same 

methods with more accurate adiposity measures across different ethnic groups might help 

clarify this interesting finding.

One unique element of this study is the diversity of Hispanic/Latino backgrounds in our 

sample. Previous genetic studies on obesity and related metabolic outcomes conducted in 

US Hispanics/Latinos have largely examined individuals of single background (mostly 

Mexicans) or unidentified origins (8, 27, 28, 29, 30). However, the complexity of the 

biological and cultural diversity within US Hispanics/Latinos has been well-acknowledged. 

Our genetic analysis identified six genetic groups (Cuban, Dominican, Puerto Rican, 

Mexican, Central American, or South American), which are highly consistent with the self-

reported Hispanic/Latino backgrounds. In our study, associations with higher BF% were 

generally consistent among these groups, except for the South American group which 

showed a non-significant inverse association between the rs2943650 and BF%. This 

discrepancy might be also due to relatively small sample size, different phenotype and/or 

genotype distributions, since South American group was the smallest group, and had the 

lowest BF% and MAF of SNPs among 6 Hispanic background groups. Nevertheless, there 

was no significant heterogeneity across groups.

In addition to the confirmed associations of IRS1 variants with fasting insulin, HOMA-IR, 

HDL cholesterol and triglycerides (2, 3, 4), a novel finding of our study is the significant 

association between IRS1 variants and HbA1c levels. Given the well-established role of 

IRS1 in insulin resistance, it is possible that the observed associations with HbA1c might be 

through the regulation of blood glucose. A recent study suggested that the IRS1 G972R 

missense is associated with uncontrolled diabetes (e.g., HbA1c >8%) through interaction 
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with oral anti-diabetes drugs among patients with type 2 diabetes (31). However, IRS1 
variants were not associated with HbA1c levels in previous GWAS among Europeans and 

Asians (32, 33). Moreover, IRS1 variants were associated with insulin resistance to a lesser 

extent (only significant after adjusting for BF%) and were not associated with fasting 

glucose in our study of US Hispanics/Latinos, suggesting other pathways beyond glucose 

metabolism might be involved (32, 33).

The mechanisms underlying the observed associations of IRS1 variants with both increased 

adiposity and a favorable metabolic profile remain unclear. Kilpeläinen et al. (2) found that 

the BF%-increasing allele of rs2943650 was associated with increased abdominal 

subcutaneous fat but not visceral fat, which may contribute to a favorable metabolic profile. 

This association suggests a role of the IRS1 locus in the distribution and storage of body fat. 

A number of studies have suggested that increased leg fat (mainly subcutaneous fat) is 

associated with favorable levels of metabolic traits, especially with low insulin resistance, 

low triglycerides and high HDL-cholesterol (34, 35, 36, 37), but no data on associations 

between IRS1 variants and leg fat have been published. On the other hand, our findings may 

also reflect the fact that high insulin sensitivity may promote lipid storage in adipocytes and 

thus results in increased adiposity. In line with this speculation, genetic scores of insulin 

sensitivity increasing alleles (including the IRS1 variant) have been associated with 

increased adiposity (38, 39). Indeed, the SNP rs2943650 is significantly associated with 

gene expression of IRS1 in subcutaneous adipose tissue (P=3.5×10−7) (data from the GTEx, 

http://www.gtexportal.org), suggesting a role of the IRS1 variant in regulating insulin 

signaling pathway in adipose tissue. However, we could not exclude the independent 

pleiotropic effects of IRS1 variants on adiposity and metabolic traits. A number of obesity-

susceptibility loci were found to show pleiotropic associations with various metabolic traits, 

and half of the significant associations were directionally inconsistent with the phenotypic 

correlations (40).

Major strengths of this study include a population-representative sample of US Hispanics/

Latinos of diverse backgrounds, and multiple adiposity and metabolic biomarkers measured. 

However, our study lacked data on regional fat deposition measured by DEXA, computed 

tomography or magnetic resonance imaging, as these approaches require high cost and time 

investment for large epidemiological studies. Other limitations of the study include the 

nature of cross-sectional data and hence a lack of data on incident diabetes and 

cardiovascular disease events. Future studies using longitudinal data may help clarify 

whether IRS1 variation first influence adiposity and then affect metabolic diseases, or 

whether these associations are independent.

In summary, this study generally confirmed the previous GWAS findings of IRS1 variants 

associated with increased adiposity and a favorable metabolic profile in US Hispanics/

Latinos. We also found a relatively stronger genetic effect on BF% in Hispanic/Latino 

women compared to European women. These findings further imply the complexity of 

biological and molecular mechanisms that link obesity with metabolic diseases. Studies with 

more accurate adiposity measures (e.g., regional fat deposition) are needed to further 

investigate relationships between IRS1 genetic variants, adiposity, and metabolic traits in US 

Hispanics/Latinos.
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Refer to Web version on PubMed Central for supplementary material.
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STUDY IMPORTANCE

What is already known about this subject?

• Adiposity is related to impaired metabolic profiles and adverse 

cardiovascular health outcomes.

• IRS1 genetic variation has been associated with elevated body fat 

percentage but a favorable metabolic profile in non-Hispanic White 

population.

• U.S. Hispanics/Latinos, especially Hispanic/Latino women, have 

higher prevalence of obesity and higher body fat percentage, compared 

to their non-Hispanic White counterparts.

What does this study add?

• We show among a novel, population-based sample of up to 12,730 

Hispanics/Latinos that IRS1 variation is associated with increased 

adiposity but favorable levels of metabolic biomarkers.

• Genetic effect of IRS1 variation on BF% is stronger in Hispanic/Latino 

women than that previously reported in non-Hispanic White women, 

while there is no significant difference between Hispanic/Latino men 

and non-Hispanic White men.
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Figure 1. 
Association between the SNP rs2943650 near IRS1 and Body fat percentage across 

Hispanic/Latino background groups.

*Data are effect size (95% confidence interval) for each minor allele of rs2943650 on body 

fat percentage (%), adjusted for age, sex, sampling weights, relatedness and population 

structure (kinship coefficients and eigenvectors). Overall results were pooled by fixed effect 

meta-analysis.
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Figure 2. 
Associations of the minor (C) allele of rs2943650 near IRS1 with obesity traits, glycemic 

traits and blood lipids.

All traits were inverse normally transformed to approximate normality (mean= 0, SD=1) in 

men and women separately, adjusted for age, sex (if appropriate), sampling weights, 

Hispanic/Latino background, relatedness and population structure (kinship coefficients and 

eigenvectors). Data are effect size and standard errors (error bars).
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Table 1

Characteristics of participants

All Men Women P for sex-
difference

No. of participants 12747 5232 7515 -

Hispanic/Latino background* -

  Central American 1397 (11) 568 (11) 829 (11)

  Cuban 2257 (18) 1062 (20) 1195 (16)

  Dominican 1180 (9) 410 (8) 770 (10)

  Mexican 4750 (37) 1877 (36) 2873 (38)

  Puerto Rican 2242 (18) 945 (18) 1297 (17)

  South American 921 (7) 370 (7) 551 (7)

Age, years 46.1 (13.9) 45.3 (14.2) 46.7 (13.6) <0.001

Diabetes, n (%) 2501 (20) 997 (19) 1504 (20) 0.01

Self-reported coronary artery
disease, n (%)

700 (5) 379 (7) 321 (4) <0.001

Body fat percentage, % 34.5 (9.5) 28.1 (8.2) 38.9 (7.7) <0.001

BMI, kg/m2 29.8 (6.1) 29.1 (5.3) 30.3 (6.5) <0.001

Waist circumference, cm 98.3 (13.9) 99.1 (13.4) 97.8 (14.3) <0.001

Waist-to-hip ratio 0.92 (0.08) 0.95 (0.07) 0.90 (0.07) <0.001

Fasting glucose, mg/dl 93.8 (8.3) 95.9 (8.2) 92.3 (8.1) <0.001

Fasting insulin, mU/L 12. 1(8.4) 12.1 (9.0) 12. 1(8.4) 0.88

HOMA-IR 2.8 (2.2) 2.9 (2.3) 2.8 (2.1) 0.009

2-hour glucose, mg/dl 115.8
(31.2)

110.7
(31.8)

119.3
(30.2)

<0.001

HbA1c, % 5.47 (0.37) 5.45 (0.37) 5.47 (0.36) 0.001

LDL cholesterol, mg/dl† 128.9
(38.1)

128.6
(37.8)

129.1
(38.4)

<0.001

HDL cholesterol, mg/dl† 48.7 (13.2) 44.4 (11.9) 51.8 (13.2) <0.001

Triglycerides, mg/dl† 142.6
(102.3)

159.5
(122.5)

130.8
(83.5)

<0.001

Data are mean (SD) or n (%).

*
Hispanic/Latino background was defined based on their self-reported background and position in the n-dimensional space defined by the first 5 

genetic principal components (PCs).

†
These variables were adjusted to account for average effects of lipid medication use.
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