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Abstract: Studies implicate choline and betaine metabolite trimethylamine N-oxide (TMAO) in
cardiovascular disease (CVD). We conducted a systematic review and random-effects meta-analysis
to quantify a summary estimated effect of dietary choline and betaine on hard CVD outcomes
(incidence and mortality). Eligible studies were prospective studies in adults with comprehensive
diet assessment and follow-up for hard CVD endpoints. We identified six studies that met our
criteria, comprising 18,076 incident CVD events, 5343 CVD deaths, and 184,010 total participants.
In random effects meta-analysis, incident CVD was not associated with choline (relative risk (RR):
1.00; 95% CI: 0.98, 1.02) or betaine (RR: 0.99; 95% CI: 0.98, 1.01) intake. Results did not vary by
study outcome (incident coronary heart disease, stroke, total CVD) and there was no evidence for
heterogeneity among studies. Only two studies provided data on phosphatidylcholine and CVD
mortality. Random effects meta-analysis did not support an association between choline and CVD
mortality (RR: 1.09, 95% CI: 0.89, 1.35), but one study supported a positive association and there
was significant heterogeneity (I2 = 84%, p-value < 0.001). Our findings do not support an association
between dietary choline/betaine with incident CVD, but call for further research into choline and
CVD mortality.
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1. Introduction

A recent body of literature implicates dietary choline and betaine metabolite trimethylamine
N-oxide (TMAO) in cardiovascular disease (CVD) risk [1–8]. These findings raise questions about
the role of choline and betaine consumption in CVD risk. Food sources of choline and betaine are
diverse, including foods that have been postulated to positively and negatively impact CVD—such
as red meat, eggs, fish, green vegetables, and whole grain [9]. In addition, non-dietary features of
TMAO production and excretion may contribute to substantial individual variability in circulating
TMAO [2,10–12].

To better understand the role of dietary choline and betaine in CVD risk, we systematically
reviewed the literature for studies of dietary choline or betaine with respect to CVD incidence or
mortality, and used random-effects meta-analysis to generate summary relative risks. We restricted our
analysis to prospective, population-based studies of adults with comprehensive dietary assessment
and long-term follow-up ascertainment of hard CVD endpoints. We hypothesize that dietary choline
and betaine are not predictive of CVD events. Our investigation has public health implications and
addresses the extent to which associations between TMAO and CVD impact dietary advice related to
consumption of TMAO precursors choline and betaine.
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2. Materials and Methods

Through all stages of the study, we followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) [13] and Meta-analysis of Observational Studies in Epidemiology
(MOOSE) guidelines [14].

2.1. Data Sources

We completed systemic searches in three databases (PubMed, EMBASE, and Scopus) for
manuscripts reporting results from prospective cohort studies of dietary consumption of choline
or betaine with respect to CVD incidence or mortality. Publications were included from the earliest
database indexing to 1 April 2017. Search terms included choline, betaine, cardiovascular disease, heart
disease, coronary heart disease, coronary artery, peripheral artery, sudden death, myocardial infarction,
heart attack, cerebrovascular disease, and stroke (see Appendix A for search details). We additionally
conducted hand searches based on the reference lists of eligible publications.

2.2. Study Selection

One investigator reviewed all titles and abstracts for potentially eligible articles. Full text of
potentially eligible publications were reviewed by both investigators, with instances of disagreement
decided by consensus. Eligible studies were publications that presented multivariable-adjusted effect
estimates and a measure of uncertainty (e.g., 95% CI) for the association between choline or betaine and
CVD incidence or mortality from prospective adult (aged 18+ years) cohorts. We excluded editorials,
letters, conference abstracts, and review articles. Studies were excluded if they were not prospective
(e.g., cross-sectional); if they were in population subgroups with major comorbidity, such as chronic
kidney disease; or if outcomes included only biomarkers or other soft endpoints. Studies were required
to derive choline and betaine consumption from a full dietary assessment.

2.3. Data Abstraction

From each eligible publication, we extracted study data, including first author; publication
year; location of study; study design; population ages, races, and gender; sample size; years
of study (baseline to complete follow-up); dietary assessment method; study outcome definition
and assessment method; analytic method; covariates included in multivariable-adjusted analysis;
multivariable-adjusted effect estimates and 95% confidence intervals (or other measure of uncertainty).
For studies with multiple exposure categories (e.g., quartiles), we extracted category-specific nutrient
consumption (median), number of events, person-years of follow-up, and effect estimates (and 95% CI).

We estimated necessary data if they were not reported or available from the corresponding author,
including median nutrient intake, person-years of follow-up, and the number of events. We estimated
category-specific median nutrient intake as category midpoints; if the highest category was open-ended,
we assumed the same range as the adjacent category. We estimated category-specific person-years by
multiplying the number of participants in the category by the overall mean (or median) person-years.
We estimated the category-specific number of events from category-specific effect estimates and
category-specific person-years of follow-up.

2.4. Quality Scoring

We used the Newcastle-Ottawa Scale (NOS) for cohort studies to assess studies with respect to
quality [15,16]. We assigned one point for each of the eight quality criteria that the study met, with
the sum of scores across criteria reflecting overall study quality. The NOS comprises items related to
the representative selection of study participants, ascertainment of exposure and outcome, control
for confounding, and loss to follow-up. We considered scores of 0–2 to be low quality, 3–5 to be
moderate quality, and 6–8 to be high quality. In addition, we noted the extent to which necessary
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category-specific data elements were estimated, including median nutrient intakes, person-years of
follow-up, and the number of events (as described above).

2.5. Statistical Analysis

We estimated linear dose–response across nutrient categories using generalized least-squares
models [17], with linear regression estimates standardized to reflect daily intake of 100 mg choline
or 35 mg betaine, corresponding to levels in commonly-consumed foods [9]. For studies that
reported results only by study subgroups (e.g., gender), we pooled subgroup-specific estimates
and variances using fixed effect meta-analysis with inverse-variance weighting. We then pooled
study-specific estimates to derive an overall estimate using inverse-variance weighted random-effects
meta-analysis [18]. Smaller studies are weighted more heavily in random effects estimation, and we
included fixed effects estimation for comparison where there was no evidence for heterogeneity across
studies. Separate analyses were conducted for choline and betaine and for incidence and mortality
outcome measures. Heterogeneity among studies was quantified by the I2 statistic [19]. We considered
an I2 statistic greater than 75% as an indication of a high level of heterogeneity. Publication bias
was assessed using funnel plots [20] if the number of studies was greater than or equal to ten [21].
If data from the same cohort were reported in more than one publication, we used data from the
report with (in order of preference): (1) the larger sample size; (2) longer follow-up; or (3) broader
CVD outcome definition. All analyses were completed using Stata 14.0 (Stata Corp, College Station,
TX, USA). Statistical significance was defined as a 2-tailed alpha level of 0.05.

3. Results

3.1. Study Characteristics

From 5398 unique abstracts, we identified 31 publications for full text review, and six eligible
manuscripts reporting estimated effects of dietary choline or betaine on cardiovascular disease
outcomes (Table 1). All eligible reports were published in English. Five distinct cohorts were included,
reflecting three countries (USA, The Netherlands, and Japan) and three race groups (Caucasian,
African-American, and Asian). Five of the six studies included results on CVD incidence; two included
results on CVD mortality.

Two publications reported results from the Nurses’ Health Study and Health Professionals
Follow-up Study [22,23]. In 2014, Bertoia et al. [22] reported on dietary choline and betaine (separately)
with respect to incident peripheral vascular disease; in 2016, Zheng et al. [23] reported on the intake of
phosphatidylcholine, the major dietary source of choline in the US, with respect to CVD mortality, CVD
incidence, and CHD incidence. The Zheng et al. [23] study had a larger sample size, comprising both
Nurses’ Health Study and Nurses’ Health Study II cohorts, longer follow-up, and included total CVD
and CHD events. Therefore, we included Zheng et al. [23] in analysis of choline, and Bertoia et al. [22]
in analysis of betaine.

Study quality was high, with quality scores ranging from 6–8 (on a scale of 8). CVD outcomes were
generally ascertained by death certificates, medical record review, or hospital discharge data; where
incident outcomes were based on self-report, studies included objective confirmation. In all studies,
diet was assessed by food frequency questionnaire (FFQ). All studies included covariate adjustment for
socio-demographics, health behaviors, measures of CVD risk, and total energy intake; Millard et al. [24]
adjusted for the fewest total covariates, particularly with respect to other aspects of diet.
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Table 1. Characteristics of six prospective cohort studies reporting the association between dietary choline or betaine and cardiovascular disease.

Author
(Year) Country Study Sample Study

Period
Diet

Assess-ment
Exposure
Measure

Median Intake
per Category

(mg/Day)

Outcome
Ascertain-ment

Outcome
Measure

Sample
Size N Events Total

Person-Years RR (95% CI) Covariate Adjustment Quality
Score

Bertoia
(2014) [22]

United
States

Women aged
44–69 at
baseline

(Nurses’ Health
Study); men

aged 40–75 at
baseline
(Health

Professionals
Follow-up

Study)

1990–2010
for women;
1986–2010

for men

FFQ

Total
dietary

choline (mg)
and betaine

(mg)

Women:
(Choline: 246,
282, 307, 334,

377; Betaine: 67,
85, 101, 120, 159);
Men: (Choline:
304, 348, 379,

415, 488; Betaine:
81, 102, 121, 144,

191)

Self-report with
medical record

adjudication

Peripheral
artery

disease

116,852
(72,348
women,

44,504 men)

790 (274 in
women and
516 in men)

1,302,032
(723,480
women,
578,552
men)

Q5 v Q1:
Women:

Choline: 1.07
(0.72–1.60);

Betaine: 1.02
(0.69–1.52),

Men:
Choline: 1.24
(0.91–1.68);

Betaine: 1.02
(0.77–1.35)

Age, total energy intake, race,
smoking, hypertension, high
cholesterol, diabetes, family
history of MI, BMI, alcohol

consumption, physical activity,
aspirin use, postmenopausal
hormone use (women only).

6

Bidulescu
(2007) [25]

United
States

Men and
women in the

biracial
(European- and
African-American)

ARIC cohort,
aged 45–64 at

baseline

1987–2002 FFQ
Total

dietary
choline

Choline: 109,
250, 323, 403

Self-report with
medical record
adjudication;
community

surveillance of
hospital

discharge and
death certificate

data

Coronary
heart

disease
(CHD)

14,430 1072 202,020
Q4 v Q1:

Choline: 1.09
(0.79–1.50)

Age, gender, education, total
energy intake, dietary folate,
methionine and vitamin B6,
race, diabetes, field center,

menopausal status (women
only), dietary cholesterol,

dietary intake of saturated
fatty acids, animal fat, dietary

fiber, and animal protein.

8

Dalmeijer
(2008) [26] Nether-lands

Female
participants in
a breast cancer

screening
sub-study of

the
Prospect-EPIC

cohort

1993–1997
(base-line)
through

2004

FFQ

Total dietary
choline (mg)
and betaine

(mg)

Choline: 245,
282, 311, 356;

Betaine: 162, 214,
257, 322

Electronic
hospital

discharge
database

(Dutch Centre
for Health Care

Information)
and death
registries

CVD 16,165 717 130,667

Q4 v Q1:
Choline: 1.04
(0.71–1.53);

Betaine: 0.90
(0.69, 1.17)

Age; physical activity;
smoking; diabetes;
hypertension; BMI;

hypercholesterolemia; systolic
blood pressure; intake of total
energy, protein, saturated fat,

monounsaturated fat,
polyunsaturated fat, alcohol,

vitamin B2, vitamin B6,
vitamin B12, folate, choline

(betaine model), betaine
(choline model).

7
CHD 16,165 493 130,667

Choline: 1.28
(0.86–1.91);

Betaine: 0.95
(0.72, 1.25)

Stroke 16,165 224 130,667

Choline: 0.61
(0.33-1.13);

Betaine: 0.83
(0.55, 1.25)

Millard
(2016) [24]

United
States

Men and
women from

the
African-American
Jackson Heart

Study, aged
21–94 at
baseline

2000–2004
(base-line)
through

2011

FFQ

Total dietary
choline (mg)
and betaine

(mg)

Choline: 125,
239, 332, 730;
Betaine: 40.6,
87.4, 128, 478

Self-report;
hospital

discharge;
physician office

visit records

CVD 3924 153 35,316

Q4 v Q1:
Choline: 0.58
(0.28, 1.20);

Betaine: 1.07
(0.66, 1.73)

Age, gender, smoking, systolic
blood pressure,

antihypertensive medication,
fasting plasma glucose, total-

to HDL-cholesterol ratio,
dietary methionine, total

energy intake.

6
CHD 3924 124 35,316

Choline: 0.66
(0.27, 1.60);

Betaine: 1.20
(0.68, 2.11)

Stroke 3924 75 35,316

Choline: 0.41
(0.16, 1.09);

Betaine: 0.56
(0.28, 1.14)
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Table 1. Cont.

Author
(Year) Country Study Sample Study

Period
Diet

Assess-ment
Exposure
Measure

Median Intake
per Category

(mg/Day)

Outcome
Ascertain-ment

Outcome
Measure

Sample
Size N Events Total

Person-Years RR (95% CI) Covariate Adjustment Quality
Score

Nagata
(2015) [27]

Japan

Men and
women from
the Takayama

Study, aged 35+
at baseline

1992–2008 FFQ

Total dietary
choline (mg)
and betaine

(mg)

Choline:
Women: 307, 388,

442, 525, Men:
362, 445, 513,
614; Betaine:

Women: 170, 239,
288, 377, Men:

208, 287, 350, 463

Death
certificates

CHD

29,079
(15,724
women,

13,355 men)

308
(154 women,

154 men)

Q4 v Q1:
Women:

Choline: 0.80
(0.40, 1.60);

Betaine: 0.90
(0.53, 1.51),

Men:
Choline: 1.08
(0.57, 2.04);

Betaine: 0.60
(0.37, 0.97)

Age; BMI; physical activity;
smoking; education; marital

status; menopausal status
(women); vitamin supplement

use; aspirin use; history of
diabetes or hypertension;

intakes of total energy, alcohol,
saturated fat, polyunsaturated

fat, folate, salt, and fruit.

7

Stroke

29,079
(15,724
women,

13,355 men)

676 (349
women,

328 men)

410,382
(227,083
women,
183,299

men)

Women:
Choline: 1.02
(0.65, 1.60);

Betaine: 1.04
(0.72, 1.49),

Men:
Choline: 0.98
(0.62, 1.55);

Betaine: 0.84
(0.59, 1.20)

Zheng
(2016) [23]

United
States

80,978 women
(NHS), aged

34–59 at
baseline; 39,434

men (HPFS),
aged 40–75 at

baseline

1980–2012
women;

1986–2012
men

FFQ

Dietary
phospha-

tidyl-
choline (mg)

Phosphatidyl-
choline: Women:
130, 154,171, 191,

236; Men: 140,
166, 187, 212, 261

Mortality:
Death

certificates and
medical records;

Morbidity:
Self-report with
confirmation by
medical record

review

CVD,
mortality

120,412
(80,978
women,

39,434 men)

4357 (2297
women,

2060 men)

2,828,658
(2,078,089
women,
748,911
men)

Pooled over
gender: 1.26
(1.15, 1.39),

Women: 1.19
(1.05, 1.35),
Men: 1.39
(1.20, 1.61)

Age, BMI, race, marital status,
menopausal status and HRT
(women), family history of

CVD, smoking, alcohol
consumption, physical activity,

presence of diabetes,
hypertension, or

hypercholesterolemia, regular
aspirin use, dietary energy,

trans fat,
polyunsaturated-to-saturated

fat ratio.

7

CVD,
incidence 120,412 15,344 3,199,530 1.00

(0.95, 1.06)

CHD,
incidence 120,412 11,305 3,201,620 1.01

(0.95, 1.07)

RR: relative risk; CVD: cardiovascular disease; CVD: coronary heart disease; PAD: peripheral artery disease; FFQ: food frequency questionnaire; BMI: body mass index; ARIC:
Atherosclerosis Risk in Communities; EPIC: European Prospective Investigation into Cancer and Nutrition; HRT: hormone replacement therapy; NHS: Nurses’ Health Study; HPSF: Health
Professionals Follow-up Study.
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3.2. Choline and Incident CVD

Four studies were included in the analysis of choline and incident CVD (CHD, stroke, or total
CVD), contributing 17,286 cases of any CVD in 154,931 participants (Figure 1). In random-effects
meta-analysis, choline was not associated with any incident CVD (relative risk (RR): 1.00 (95% CI: 0.98,
1.02) for an increase of 100 mg/day choline intake). There was no statistical evidence for heterogeneity
(I2 = 0%, p-value = 0.93). Results were similar in analysis for other CVD outcome groups (CHD only,
stroke only, and total CVD).
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3.3. Betaine and Incident CVD

Three studies were included in the analysis of betaine and incident CVD (CHD, stroke, or total
CVD), contributing 1660 cases of any CVD in 136,941 participants (Figure 2). Betaine was not associated
with any incident CVD [relative risk (RR): 0.99 (95% CI: 0.97, 1.02) for an increase of 35 mg/day choline
intake] in random-effects meta-analysis (Figure 2), with no statistical evidence for heterogeneity
(I2 = 0%, p-value = 0.93).
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3.4. Choline and CVD Mortality

Two studies reported results for phosphatidylcholine with respect to CVD mortality, with a total of
5342 events and 165,215 study participants (Figure 3). There was a high level of heterogeneity between
the two studies (I2 = 86.3%, p-value < 0.01). In a Japanese sample, Nagata et al. [27] reported a relative
risk for CVD mortality of 0.97 (95% CI: 0.85, 1.12) for a 100 mg/day increase in phosphatidylcholine
intake. In contrast, in a U.S. sample, Zheng et al. [23] reported a relative risk for CVD mortality of 1.21
(95% CI: 1.12, 1.31) for a 100 mg/day increase in phosphatidylcholine intake. The summary relative
risk from random effects meta-analysis did not support an effect of phosphatidylcholine on CVD
mortality (RR = 1.09 (95% CI: 0.89, 1.35)). Nagata et al. [27] additionally conducted analysis of total
choline intake and individual choline-containing compounds; we included phosphatidylcholine in the
present study for comparability with Zheng et al. [23], who included only phosphatidylcholine. In the
analysis of total choline, Nagata et al. reported that they found significant inverse associations for
choline (RR = 0.58 (95% CI: 0.36, 0.93)) and betaine (RR = 0.62 (95% CI: 0.39, 0.998)) with CHD death
in men, but not in women. However, confidence intervals were wide, the trend was not statistically
significant, and a test for interaction by gender was not presented. Zheng et al. [23] also conducted
subgroup analysis, and demonstrated that the risk of CVD mortality was significantly stronger
(p-value interaction: 0.001) among individuals with diabetes, as compared to individuals without
diabetes, though phosphatidylcholine was significantly associated with increased CVD mortality in
both subgroups (respectively, RR (95% CI: 1.67 (1.26, 2.20) and 1.19 (1.07, 1.31)).
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3.5. Betaine and CVD Mortality

There was only one study on betaine and CVD mortality (984 events and 29,079 participants).
Betaine was not associated with CVD mortality, with a relative risk of 0.98 (95% CI: 0.85, 1.12) for every
35 mg/day increase in betaine intake.

3.6. Publication Bias

We did not perform small-study analysis, as the Cochrane Handbook recommendation to restrict
such analyses to investigations with at least 10 studies [21].

4. Discussion

In this systematic review and meta-analysis of prospective studies, neither dietary choline nor
betaine were associated with incident CVD. There were only two studies of choline and CVD mortality,
with inconsistent findings. Studies included in the meta-analysis were of high quality and reflected
diverse samples, with three countries and three race groups represented. Studies contributed a large
number of CVD events and person-time of follow-up, including 18,076 incident CVD events and
5343 CVD deaths from 184,010 total participants. In random-effects meta-analysis, there was no
association between either choline or betaine and incident CVD, and no statistical evidence for
heterogeneity across studies. There was significant heterogeneity in the two studies of choline and
CVD mortality, with a large study supporting a statistically significant positive association with CVD
deaths over 32 years of follow-up. In summary, our findings do not support a role for choline or
betaine in CVD incidence, but indicate the need for additional research into choline and CVD mortality.

Our study was motivated by the question of whether dietary precursors of choline and betaine
metabolite trimethylamine N-oxide (TMAO) are associated with CVD in large-scale prospective cohort
studies. There is a growing body of literature implicating choline and betaine metabolite TMAO
in CVD risk [1–8]. The generation of TMAO relies on: (1) the consumption of dietary precursors;
(2) conversion to TMA by gut microbiota; and (3) oxidation by liver flavin-containing monooxygenases
(FMOs) of TMA to TMAO [2,11,12,28]. A genome-wide association study (GWAS) of mouse and human
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studies indicates that relatively little of the variability in TMAO can be explained by FMO variants
and that TMAO variability primarily reflects dietary consumption of precursors and differences in
the gut microbiota [10]. In the present study, we specifically focused on the role of dietary precursors
choline and betaine in CVD to address the question of how the TMAO-CVD findings may impact
dietary recommendations related to the consumption of TMAO precursors.

Our results do not support population benefit from decreasing the intake of choline or betaine as
a primary prevention strategy for incident CVD. These results were robust to race and country, which
may contribute variability in the consumption of dietary sources of choline and betaine, including
foods hypothesized to independently influence CVD risk. In addition, decreasing choline and betaine
intake may have adverse health effects, particularly related to methylation, lipid metabolism, and
neurotransmitter synthesis [29,30]. Furthermore, in three of the five studies that included total choline,
the median intake at even the highest category of consumption did not meet the adequate intake (AI) for
prevention of liver damage [31] of 425 mg/day for women and 550 mg/day for men [22,25,26]. Choline
intake was higher in the Jackson Heart Study [24], an African-American cohort, and in the Japanese
sample [27], but in each study at least half of the participants were below the recommended AI.

In contrast to the consistent findings for incident CVD, findings for choline intake and CVD
mortality were divergent. We identified only two studies of CVD mortality that met our study criteria.
In one study, Zheng et al. reported a positive association between phosphatidylcholine intake and
CVD mortality [23]. Phosphatidylcholine is a major source of dietary choline in the US [32] and
accounted for 54% of total choline intake in the Zheng et al. study [23]. In contrast to Zheng et al. [23],
Nagata et al. found that phosphatidylcholine intake was not associated with CVD mortality in
a Japanese sample [27]. We note that Nagata et al. [27] also reported results for total choline intake and
other choline compounds; we elected to use results for phosphatidylcholine for comparability with
Zheng et al. [23]

With only two studies, we were not able to determine sources of heterogeneity that may explain
differences in findings. Nagata et al. [27] was conducted in Japan, while Zheng et al. [23] was conducted
in a relatively homogeneous US population of mostly European-Americans. In addition to racial and
country differences, Nagata et al. [27] participants were older, and had a higher prevalence of risk
factors at study baseline. In particular, the Japanese sample had a higher baseline prevalence of
type 2 diabetes [27] than Zheng et al. [23], which is especially relevant given Zheng et al.’s findings
that choline was more strongly associated with CVD deaths among individuals with diabetes [27].
Differential study results also could not be attributed to differences in the level of, or variability
in,choline intake: intakes ranged from 138 to 290 in women and 152–321 in men in Nagata et al. [27]
and 130–236 in women and 140–261 in men in Zheng et al. [23] The studies differed with respect to
CVD causes of death, with stroke more common than CHD in Nagata et al. [27], but neither stroke
nor CHD mortality was associated with phosphatidylcholine in Nagata et al. [27] Study samples
likely differ in their consumption of food sources of choline, and—although both studies included
adjustment for several dietary variables—there is the potential for residual confounding by diet. For
example, in the Japanese study, seafood accounted for a much larger percentage of choline intake
(15.2% in men and 13.9% in women) [27] as compared to a US sample (5.2%) [33]. Gut microbiota data
were not available in either study, and it is possible that differences in the gut microbial community
contributes to divergent study findings, perhaps through variable generation of TMAO.

These findings highlight the need for further work to delineate sources of heterogeneity and
refine our understanding of a possible role for choline in CVD mortality. Taken together, however,
our analysis suggests that choline may—at least in some populations—increase the risk of CVD
mortality, while not influencing incident CVD. Indeed, in the same study in which they reported
the positive association between phosphatidylcholine and CVD mortality, Zheng et al. found no
association between phosphatidylcholine and incident CVD [23]. These findings suggest that choline
intake may—perhaps through generation of TMAO—influence the prognosis of CVD, but not the
development of CVD. Such a model is not inconsistent with the current literature on TMAO and CVD.
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Studies that show a positive association between TMAO and CVD risk have generally been
conducted in clinic-based samples at high risk for CVD risk or in disease-based cohorts, such as groups
with chronic kidney disease [1–8]. Zheng’s finding of a stronger choline effect on CVD mortality among
individuals with diabetes may similarly reflect an etiology dependent on the extent of underlying
disease [23]. In further support of this model, plasma TMAO was not associated with the progression
of subclinical atherosclerosis in a population-based cohort of healthy individuals [34].

Our analysis has several strengths. We followed standardized protocols for the conduct of
systematic reviews and meta-analysis of observational studies and defined precise inclusion criteria to
ensure that our analysis included all available high-quality studies. Studies were of high quality, with
large samples, covariate adjustment, comprehensive dietary assessment, and long-term follow-up for
hard CVD endpoints. Study data came from three countries and three racial groups were represented,
which limits confounding by covariates that would differ among samples, such as diet. Given
consistent findings for no effect of choline or betaine on incident CVD, it is unlikely that these results
were influenced by publication bias. Although results were divergent for phosphatidylcholine and
CVD mortality, the positive finding was in the largest study in the entire meta-analysis, arguing against
a small-study bias.

Our investigation also has several limitations. Measurement error in diet may have attenuated
findings. There is large error in the assessment of both choline and betaine from FFQ, with reliability
coefficients of roughly 0.50 [35], though we note similar reliability estimates have been reported
for nutrients for which the evidence with respect to CVD risk is more consistent, including dietary
fiber, and saturated and polyunsaturated fatty acids [36]. Studies included adjustment for a range of
covariates, but the potential for residual confounding remains. There were few eligible studies for
inclusion in the analysis, and we lacked power for subgroup analyses that may be informative, such
as related to variation in the observation period and participant characteristics of included cohorts.
The small number of studies also limited the usefulness of certain statistical tests that are typically
included in meta-analyses [21], such as an Egger’s test for small-study bias and accompanying Funnel
plots. In part, the small number of studies likely reflects the relatively recent introduction of choline
and betaine estimates into nutrient databases of cohort studies [9,32].

The scientific advantages of a systemic review must be considered alongside the possibility that
some relevant material does not meet study eligibility criteria. For example, in a cross-sectional study
of adults, Detopoulou et al. reported inverse associations between dietary choline and betaine with
circulating concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and
tumor necrosis factor-alpha [37]. However, in addition to the cross-sectional design and lack of hard
endpoints, this study did not include adjustment for dietary covariates or total energy intake.

In conclusion, in this systematic review and meta-analysis of prospective cohort studies,
we found no evidence of a positive association between dietary choline or betaine and incident CVD.
The summary estimate for dietary choline and CVD mortality was also not statistically significant,
but this analysis was based on only two studies; there was appreciable heterogeneity between the
studies, with one showing a positive association between phosphatidylcholine and CVD death. These
findings have relevance for dietary recommendations, and do not indicate a population benefit to
decreasing intake of choline- or betaine-rich foods in the prevention of CVD. Given the paucity of
studies on choline intake and CVD mortality, the observed heterogeneity between the two eligible
publications, and the growing body of literature supportive of an etiologic role of choline metabolite
TMAO in CVD in non-health samples, further work is needed to define the prognostic relevance of
choline intake in CVD mortality.
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Appendix A. Database Search Strategy

PubMed: (“cardiovascular diseases” [MeSH Terms] OR “heart disease” [all fields] OR “heart
diseases” [all fields] OR “myocardial infarction” [all fields] OR “myocardial infarctions” [all fields] OR
“heart attack” [all fields] OR “heart attacks” [all fields] OR “carotid artery” [all fields] OR “coronary
artery” [all fields] OR “peripheral artery” [all fields] OR “coronary syndrome” [all fields] OR “sudden
death” [all fields] OR “sudden deaths” [all fields] OR (“cardiovascular” [All Fields] AND “disease”
[All Fields]) OR “cardiovascular disease” [All Fields] OR “cerebrovascular disorders” [mesh terms]
OR “stroke” [mesh terms] OR “carotid artery diseases” [mesh terms] OR “stroke” [all fields] OR
“cerebrovascular disease” [all fields]) AND (“choline” [mesh terms] OR “choline” [all fields] OR
“betaine” [mesh terms] OR “betaine” [all fields])

EMBASE: (“cardiovascular”/exp OR cardiovascular OR coronary OR “stroke”/exp OR
cerebrovascular) AND (“choline”/exp OR choline OR “betaine”/exp OR betaine)

Scopus: (cardiovascular OR coronary OR stroke OR cerebrovascular) AND (choline OR betaine).
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