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ABSTRACT

Genomic methods are used increasingly to interro-
gate the individual cells that compose specific tis-
sues. However, current methods for single cell isola-
tion struggle to phenotypically differentiate specific
cells in a heterogeneous population and rely primar-
ily on the use of fluorescent markers. Many cellular
phenotypes of interest are too complex to be mea-
sured by this approach, making it difficult to con-
nect genotype and phenotype at the level of indi-
vidual cells. Here we demonstrate that microraft ar-
rays, which are arrays containing thousands of indi-
vidual cell culture sites, can be used to select sin-
gle cells based on a variety of phenotypes, such as
cell surface markers, cell proliferation and drug re-
sponse. We then show that a common genomic pro-
cedure, RNA-seq, can be readily adapted to the sin-
gle cells isolated from these rafts. We show that data
generated using microrafts and our modified RNA-
seq protocol compared favorably with the Fluidigm
C1. We then used microraft arrays to select pancre-
atic cancer cells that proliferate in spite of cytotoxic
drug treatment. Our single cell RNA-seq data iden-
tified several expected and novel gene expression
changes associated with early drug resistance.

INTRODUCTION

A fundamental problem in modern biology is identify-
ing genetic and genomic characteristics that determine the
functional or phenotypic properties of individual tissues
and cells in a multicellular organism. New genomics tech-
niques, such as RNA-seq, ATAC-seq and Hi-C, have re-
vealed hidden details about how the genome is organized
and how that organization shapes gene expression to pro-
duce phenotypes. These high-throughput techniques are in-
dispensable tools, but they are most commonly performed
on bulk tissue samples containing millions of cells. Such
bulk analyses inherently blur the properties of individual
cells within a tissue (e.g. (1)). An aggregate view may hide
strong heterogeneity among cells within tissue, mask the
effects of small, phenotypically distinct subpopulations of
cells and drive a false impression of similarity across tissues.

Targeting and genomic characterization of individual
cells within a tissue resolves this problem and facilitates con-
necting genotype and phenotype at the level of individual
cells. Recently, several microfluidic methods have been de-
veloped to enable isolation of dozens to tens of thousands
of cells at once (2–5). The Fluidigm C1, for example, is a
widely used microfluidic single cell sorting system that per-
forms cell lysis, RNA isolation, and cDNA creation for 96
cells at once on a single chip (6). The C1 offers automated
single cell isolation, but is unable to select specific cell types
from a heterogeneous population, requiring the user to load
a pre-selected set of cells. Pre-selection based on fluorescent
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markers can be performed using flow cytometry or similar
approaches, but once cells enter the C1 chip, the user cannot
determine which 96 cells will be captured from their starting
pool.

In addition, even if a heterogeneous population of cells
is pre-sorted based on fluorescence, many cellular pheno-
types of interest are too complex to be captured by fluores-
cent markers. These approaches cannot capture many im-
portant cellular characteristics that can be measured only
as ‘complex’ phenotypes. Complex phenotypes can involve
a temporal component, such as proliferation, cell mobility,
extracellular matrix invasion and drug resistance that can-
not be characterized by fluorescent markers. This inability
to select cells based on temporally or spatially varying phe-
notypes limits the ability of existing single cell capture tech-
nologies to fully define specific individual cell types and in-
creases the risk that heterologous cells will be treated as a
single population.

We have developed a novel protocol for single cell isola-
tion and genomic analysis to address these limitations and
enable the linking of genotype to phenotype at the individ-
ual cell level. Our method allows for selection of individ-
ual cells from a heterogeneous population based on com-
plex phenotypes including cell surface markers, cell prolif-
eration and drug response. This enables genomic character-
ization at the single cell level by allowing the measurement
of cellular phenotypes before cell isolation. We illustrate this
approach by performing single cell RNA-seq on individual
cells that were selected for specific phenotypes from a het-
erogeneous population of cells. We focused on RNA-seq as
it is particularly susceptible to the problems of bulk tissue
analysis, it is currently one of the most commonly used sin-
gle cell approaches and it is most readily comparable to the
C1 technology (1,6).

MATERIALS AND METHODS

Cell line and culture conditions

CFPAC-1 pancreatic cancer cells were purchased from
American Type Culture Collection (Manassas, VA, USA)
and were used for all experiments. They were cul-
tured in RPMI plus 10% fetal bovine solution and 1×
penicillin/streptomycin. Prior to use for the sequenc-
ing only experiments, CFPAC-1 cells were infected with
mCherry lentivirus and flow cytometry sorted to enrich for
the cells that highly express mCherry.

C1 single cell isolation and sample preparation for sequencing

C1 selection of single mCherry CFPAC-1 cells was per-
formed according to the manufacturer’s recommended pro-
tocol using a starting cell suspension of 10 000 cells/ml. Fol-
lowing single cell isolation, the C1 chip was visualized un-
der a confocal microscope using the Texas Red (546) filter to
identify nests on the chip containing no cells, single cells and
two or more cells. Following visualization, cDNA was cre-
ated on the C1 chip using the manufacturer protocol and the
ClonTech SMARTer Ultra Low Input kit. Next, RT-PCR
was performed on a selection of five single cells, five double
cells and five empty wells from the C1 chip using GAPDH
(Hs02758991 g1) and EpCAM (hs00901888 g1) to ensure

proper samples were selected for subsequent analyses. Once
confirmed, the RNA-sequencing libraries were created us-
ing the manufacturer’s protocol with modifications specific
to the C1 for lower input with the Nextera XT library prep
kit.

C1 single cell isolation of healthy mouse blood spiked with
mCherry CFPAC-1 cells

About 2 ml of healthy mouse blood was spiked with 2000
mCherry CFPAC-1 cells. Ficoll separation and mouse lin-
eage and CD45 depletion was performed (Miltenyi Mouse
Linage Cell Depletion Kit and Mouse CD45 Microbeads)
using the MACS Separation Columns and MACS magnet.
The depleted fraction was loaded onto the C1 per the
manufacturer’s protocol. C1 chip was imaged as described
above and Specific Target Amplification was used with
the following TaqMan Probes (Life Technologies): (all
CD probes are mouse specific) Cd19 (Mm0515420 m1),
Cd11b (Mm00434455 m1), Cd2 (Mm00488928 m1), Cd41
(Mm00439741 m1), Cd123 (Mm00434273 m1), Cd45
(Mm01293577 m1), Cd235a (Mm00494848 m1), Cd62p
(Mm0129531 m1), GAPDH (Hs02758991 g1), ACTIN
B (Hs01060665 g1), EpCAM (human) (Hs00901888 g1).
RT-PCR was performed on a subset of samples using 40
cycles.

Microfabrication of microraft arrays

Microraft arrays containing 44 100 microraft elements that
were each 100 �m square, 20 �m deep and 15 �m apart
were fabricated as reported previously (7,8). Briefly, stan-
dard UV photolithography was employed to create array
templates in negative photoresist on glass. Polydimethyl-
siloxane (PDMS) replica molding from these templates pro-
duced PDMS microwell arrays, which were dip-coated in
a solution of magnetic polystyrene. Due to discontinuous
de-wetting, a bead of polystyrene remained within each mi-
crowell and formed a microraft after baking off the sol-
vent. The completed arrays were adhered to a polycarbon-
ate cassette, oxygen plasma treated for 5 min, sterilized
with ethanol, rinsed three times with 1× sterile phosphate
buffered saline (PBS), and then coated with a thin layer of
glucose to enhance surface wettability.

Microraft array single cell isolation similar to C1 isolation

Cell isolation was carried out similarly to that de-
scribed in prior publications (7,8) (see also, http://
www.cellmicrosystems.com/product-applications/). To iso-
late mCherry CFPAC-1 cells from the microraft array to
create a batch of cells as similar to the C1 cells as possi-
ble, ∼10 000 cells were added to the array and incubated
in 1 ml RMPI containing 10% Fetal Bovine Serum (FBS),
1× penicillin/streptomycin and 0.5 mg/ml geneticin for 24
h to allow cells to adhere. The array was inspected using
an epifluorescence microscope (Nikon Instruments) outfit-
ted with a needle-based release device mounted on the 4×
objective (7,8). As each microraft containing single, double
or no cells was randomly identified, it was released from
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the array using the needle device, collected using a mag-
netic wand, rinsed once with sterile 1× PBS and then de-
posited into a polymerase chain reaction (PCR) tube con-
taining 4 �l of sterile 1× PBS as the collection media,
in which the cells were lysed without stripping them from
the microraft culture surface. The entire release and col-
lection process required 15–20 s to perform per sample,
and sample tubes were immediately placed on dry ice and
stored at −80◦C. The five single, five double, five empty mi-
crorafts, two samples of ∼1000 mCherry CFPAC-1 cells,
200 pg of the SMARTer kit positive control and a wa-
ter sample were processed for isolation and amplification
of the mRNA using the ClonTech SMARTer Ultra Low
Input Kit for Sequencing-V3 kit per the manufacturer’s
recommendations. The resulting cDNA was analyzed with
RT-PCR using GAPDH (Hs02758991 g1) and EpCAM
(hs00901888 g1) probes to determine concentration along-
side a standard curve of CFPAC-1 cDNA. Libraries were
created using the C1 recommended Nextera XT kit with the
C1 modifications for low concentration reactions.

Microraft array single cell isolation with RNase out and
ERCC spike-ins

A second set of cells was isolated from the microraft ar-
rays in the same manner as described above, with the ex-
ception that RNase Out (Invitrogen) was added to the
1× PBS collection buffer at the recommended concentra-
tion of 2 units/�l. External RNA Controls Consortium
(ERCC) controls (9) were added to each sample at a di-
lution of 1:10 000 prior to RNA extraction. This dilution
was selected based on RT-PCR using probes for ERCC
0130 (Ac03459943 a1) and ERCC 00170 (Ac03460062 a1)
at various dilutions. The five selected single, five double, five
empty microrafts, two samples of ∼1000 mCherry CFPAC-
1 cells, 200 pg of the SMARTer kit positive control and a
water sample were processed for mRNA isolation and am-
plification using the ClonTech SMARTer Ultra Low Input
Kit for Sequencing-V3 kit. RT-PCR was performed to de-
termine concentration of the cDNA products as described
above. Libraries were then created using the standard Nex-
tera XT library prep kit per ClonTech’s recommendations.

Gemcitabine treatment and phenotypic selection for single
cells on microarrays

CFPAC-1 cells were stained with 10 �M CellTrace Far Red
(DDAO-SE) (Invitrogen C34553) for 30 min at 37◦C prior
to seeding. Four microraft arrays were seeded with ∼10 000
cells each and incubated overnight in standard 10% FBS
and 1× penicillin/streptomycin RPMI media containing no
additional treatment, 0.9% saline (as vehicle), 2 nM gem-
citabine and 5 nM gemcitabine. The arrays were imaged
daily on an Olympus IX81 microscope using custom image
acquisition software written using MATLAB and Micro-
Manager (Vale Lab, UCSF) (10). This imaging step took
place within a humidified, 37◦C, 5% CO2 stage incubator
on the microscope. Each day’s imaging run required ap-
proximately 30 min to acquire images of all 44 100 micro-
rafts on the array (15 minute focus scan + 5 min bright-
field + 5 min fluorescence channel 1 + 5 min fluorescence

channel 2). After 72 h of culture, the cells were stained
for EpCAM by incubating them in a 1:50 dilution of PE
conjugated anti-CD326 (Life Technologies A15782) for 30
min at room temperature. In total, 31 proliferative and 31
non-proliferative colonies were identified manually by their
specific location on the array using the arrays’ brightfield,
CellTrace and anti-CD326 time-lapse image data. Prolifer-
ative colonies were defined as colonies that grew to three or
more cells starting from a single cell, while non-proliferative
colonies were defined as those that remained as single cells
for the entire 72 h culture period (see Supplementary Fig-
ure S6). Specific microrafts of interest were isolated into 1×
PBS plus RNase Out (2 units/�l) as described above. The
entire collection procedure required ∼30 minutes and was
performed at room temperature and atmosphere. RT-PCR
was performed on all of the microraft samples prior to RNA
sequencing in order to determine adequacy of RNA content
for sequencing. RNA was extracted using the SMARTer kit
and ERCC spike-ins were used as previously described.

RNA-seq data analysis

RNA-seq reads were aligned to hg19 using MapSplice (11)
v. 2.1.4 and to the ERCC reference transcripts (9) using
bowtie2 (12) v. 2.2.5. Genomic read distribution and gene
body coverage plots were generated using RSeQC (13) v.
2.4 and UCSC hg19 known gene annotations. RSEM (14) v.
1.2.8 was run with UCSC hg19 known gene annotations to
calculate gene expression levels and with the flag––estimate-
rspd. Only samples with at least 1500 genes detected (detec-
tion defined as at least 1 fragment per kilobase (FPKM))
were used in subsequent analyses. Gene set enrichment
analysis of the C1 and microraft cells was performed us-
ing GSEA (15) v. 2.2.0 run with default parameters and the
Gene Ontology All gene set database (c5.all.v5.0.symbols).
A one-tailed, homoscedastic t-test at P = 0.05 was used to
determine differential expression; only genes with a mean
expression level of at least 10 FPKMs in both proliferat-
ing and non-proliferating cells were tested. Enriched gene
ontology terms were identified using DAVID (16) in back-
ground list mode. Pearson correlations were computed us-
ing the cor function in R. Heatmaps were generated us-
ing the HeatMapImage module (v. 6) of the GenePattern
(17) suite. We used the quasi-likelihood model in edgeR
(glmQLFTest, 18) to perform differential gene expression
analysis of bulk versus single cell data.

RNA sequencing

All three sets of samples for each isolation (0, 1 and 2-cell
nests or microrafts) were pooled and run on a single lane of
a MiSeq for 50 pb paired end sequencing. Five MiSeq runs
were completed for samples described above.

The flowcell and a reagent cartridge were loaded accord-
ing to Illumina specification on a MiSeq. Flowcells pro-
duced a median of 34 million reads each, with a median
of 98% of reads passing filter and median Q-score of 37.
Only 2.1% of reads had ambiguous barcodes. Given that
some samples were empty, the balance between barcodes
was close to expectation (5.26% each) with a median coef-
ficient of variation of 0.44. Raw data has been deposited in
GEO (GSE85183).
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RESULTS

Overview of approach

We developed a novel method for single cell selection, iso-
lation and sequencing based on microraft arrays (Figure 1,
Supplementary Figure S1 and Supplementary File 5) (7,8).
These arrays consist of thousands of individual square mag-
netic polystyrene cell culture sites that are each contained
within elastomeric microwells. Cells are plated on the mi-
croraft array as a dilute suspension and settle onto indi-
vidual microrafts. Once these cells have adhered, individ-
ual microrafts chosen by the investigator can be dislodged
from the underlying array using a motorized microneedle
that pierces the array from below. Dislodged microraft cell
carriers can then be magnetically manipulated into separate
sample containers where the attached cells are lysed without
being stripped from the microraft carrier.

Microraft arrays enable investigators to selectively isolate
single cells of interest, even from small numbers of cells,
based on a rich variety of cellular phenotypes, such as cel-
lular morphology, proliferation and cell surface marker ex-
pression levels. Individual cells on microrafts are isolated
gently without the need to strip the cells from their sub-
strate or perform microfluidic sorting. Furthermore, micro-
raft arrays present an ideal environment for in vitro cul-
ture, enabling examination of cell morphology and growth
properties over extended periods of time or in response to
treatment/conditions. Cell isolation performed using mi-
croraft arrays yields highly viable cells that can be assayed
or maintained in culture for other downstream applications.

Comparison of microrafts and the Fluidigm C1

We compared RNA sequencing on microraft arrays and the
Fluidigm C1 by isolating and sequencing pancreatic can-
cer cells using both systems. We recognize that the two sys-
tems utilized different techniques to isolate and sequence
single cells and that there may be systematic technical vari-
ation between the results from each system. It is also pos-
sible that the process of cell isolation changes gene expres-
sion levels. We investigated these effects by sequencing sam-
ples containing 0, 1 and 2 cells from the same CFPAC-1 cell
line using both the C1 and microrafts (Figure 1A and Sup-
plementary Figure S2). Overall, both approaches produced
data of high quality, but we observed several notable dif-
ferences. We compared the read coverage (Figure 2A), 3′
bias (Figure 2B), genomic read distribution (Figure 2C) and
number of genes detected (Figure 2D) in the resulting RNA-
seq data. The proportion of reads aligning to the genome,
3′ bias and genomic read distribution for the C1 and mi-
croraft data are highly similar. We noticed that the number
of genes detected shows more variation for single microraft
cells than single C1 cells, and the median number of genes
detected using microrafts is smaller (Figure 2D). Part of this
difference reflects a difference in the multiplexing used for
sequencing the two sets of samples as we were able to multi-
plex more microraft samples per run than the C1. To show
the relationship between number of genes detected and se-
quencing depth, we plotted genes detected both as a func-
tion of number of aligned reads, as well as genes detected
per 100 000 reads (Supplementary Figure S3). We also spec-

ulate that this difference in genes detected could be due to
the greater efficiency of reagent delivery in the microfluidic
system, which allows the tiny amount of starting RNA to be
concentrated in a microscale reaction volume. This differ-
ence was much smaller when comparing samples containing
two cells (Figure 2D), likely because of the larger amount of
starting RNA generated by two cells.

Comparing the C1 empty samples with the microraft
empty samples shows that the C1 empty samples contain
a much higher proportion of reads mapping to the hu-
man genome (Figure 2E). These mapped reads from empty
C1 samples are strongly enriched for coding regions of the
genome, indicating that these reads come from RNA, not
DNA contamination (Figure 2E). The C1 empty samples
show a much higher proportion of reads mapping to the
3′ UTR (Figure 2E), suggesting that the reads may origi-
nate from broken or degraded transcripts. These reads may
have originated from cells that lysed after being deposited
in the C1, resulting in free-floating RNA in the cell sus-
pension that subsequently was carried within the microflu-
idics. We also performed qPCR on cells isolated on the C1
from a starting cell suspension mixture of mouse blood cells
and mCherry CFPAC-1 cells, which were identified on the
C1 chip under the Texas Red filter. We found mouse RNA
in both empty nests and nests containing human cells (see
Supplementary Table S1). Such cross-contamination was
also observed in a similar recent evaluation of the Fluidigm
C1 (2). In contrast, we observed few reads in the empty mi-
croraft samples (Figure 2E), likely because we rinsed and
deposited the microrafts into separate reaction wells before
RNA extraction, removing any contaminating RNA.

It is difficult to assess how much contamination between
wells on the C1 affects single cell RNA-seq results for two
reasons. First, in the examples of contamination that we
show in Supplementary Table S1, the CT values for the con-
taminating RNA present in the empty wells are compara-
ble to the CT values from wells containing single cells, in-
dicating that the amount of contaminating RNA is signif-
icant. Also, although computational filtering can be used
to remove contaminating reads from another species, as in
the example of mouse reads contaminating human RNA-
seq data, there is no way of computationally disambiguat-
ing RNA from two cells with the same genome. Thus, the
real problem is potential mixing of RNA from different cells
of the same species, blurring the identities of the individual
cells under consideration.

To assess the technical variability of the RNA-seq data
generated from microrafts, we added ERCC spike-in tran-
scripts to a subset of the cells we sequenced (total of 55 cells
with spike-ins). The spike-in transcripts were added manu-
ally to each individual cell after isolation; in contrast, spike-
ins are loaded onto the C1 along with other reagents and
then dispersed to all cells on the chip through the microflu-
idic system. The sequencing data that we generated from
the Fluidigm C1 did not contain spike-in transcripts, so we
used previously published Fluidigm C1 data for compar-
ison (19,20). Using these data, we found similar levels of
technical variation in measured expression and also similar
correlation between the true and measured expression lev-
els of the spike-in transcripts (Supplementary Figure S4).
Thus the manual pipetting of spike-ins does not introduce
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Figure 1. Selective cell isolation using microraft arrays. (A) Composite fluorescence and bright-field microscopy of mCherry cells on microraft arrays. (B)
Selection of cells based on a phenotype such as proliferation. (C) A microneedle dislodges microraft cell-carriers, which are manipulated through multiple
buffer washes and into lysis buffer using a magnetic wand.

significant levels of additional technical variation. Because
we could manually add spike-ins to each cell after isolation,
we used two separate spike-in mixes with different concen-
trations of the individual spike-in transcripts. This experi-
ment is not possible on the Fluidigm C1, because spike-ins
for all cells are loaded in a single batch. We used this infor-
mation to show that the spike-in transcripts with different
expression levels between the two mixes show the expected
differential expression across the set of cells that we studied
(Supplementary Figure S4).

We computed correlations between the gene expression
profiles of cells and found that pairs of samples sequenced
using the same platform showed strong concordance, indi-
cating that both the microrafts and the C1 produce repro-
ducible results across replicates (Figure 2F and Supplemen-
tary Figure S5). However, the correlations between pairs of
samples from different platforms showed lower agreement
(Figure 2F and Supplementary Figure S5). In computing
these correlations, we restricted the set of genes to those
with an average expression level of at least 1 FPKM across
both C1 and microraft samples to ensure that the effect was
not simply due to differences in number of genes detected.

To further investigate the differences between C1 and mi-
croraft samples, we performed gene set enrichment analysis
(GSEA, 15) and found several gene sets with significantly
higher transcript abundance (FDR: false discovery rate <
10%) in the microraft samples (Supplementary File 1). No
gene sets show significant upregulation in the C1 samples
after FDR correction (10% FDR), but several have signif-
icant nominal P-values (P < 0.05), which is suggestive of
differences rather than conclusive and may reflect the fact
there is less power for the C1 comparison because there are
fewer C1 samples than microraft samples. An interesting
theme emerges from the gene sets that show differences be-
tween the two methods. Among the top gene sets upregu-
lated in the raft cells are electron transport, mitochondrial
protein, ribosome, nucleoside kinase, chromosome conden-
sation (Figure 2G) and mitosis. All of these gene sets are
required for active cell growth and division. Among the top
gene sets showing up-regulation in the C1 cells, in contrast,

are cell junction (Figure 2H), cell adhesion and cell migra-
tion.

We confirmed the reliability of the microraft platform for
single cell RNA-seq with two additional analyses that con-
trol for artifacts unique to the microraft system. First, to
control for possible variations in the microraft manufac-
turing process, we compared RNA-seq results from cells
grown on separate microraft arrays under identical condi-
tions. Pairwise correlations among the cells showed strong
concordance (Figure 3 and Supplementary Figure S6), indi-
cating that systematic differences between microraft arrays
are not a significant source of experimental variation. We
also examined RNA-seq data from cells grown on the mi-
crorafts and RNA-seq from bulk grown cells whose RNA
was pooled and split into single cell volumes before se-
quencing. Because the growing conditions are slightly dif-
ferent and the RNA from bulk grown cells was pooled be-
fore sequencing, we expect the gene expression profiles to be
quite similar but not identical. Most genes appeared highly
similar (Pearson ρ = 0.71, Spearman ρ = 0.70), with
differences possibly caused by the slightly different grow-
ing conditions for the bulk and single cells. Differential ex-
pression analysis did, however, reveal 588 differentially ex-
pressed genes (DEGs) (2% of expressed genes), with only a
handful of GO terms in common among genes upregulated
in bulk versus microraft cells (Supplementary File 2). The
only noticeable commonality among GO terms was trans-
lation, with terms including ‘ribosome’, ‘ribosomal protein’
and ‘translational elongation’ appearing on the list (Supple-
mentary File 2). These data show that for the CFPAC-1 cells
characterized here in bulk and as single cells are largely sim-
ilar, but that single cell resolution can identify subtle differ-
ences between patterns inferred from bulk data versus single
cells.

Selective cell isolation based on proliferation after gemc-
itabine treatment

To show how microrafts may be used to study and se-
lect different cellular phenotypes within a population of
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Figure 2. Comparing RNA-seq from cells isolated with microrafts and the Fluidigm C1. (A) Fraction of reads aligning to the human genome. (B) Gene
body coverage plots measuring 3′ bias in read coverage. (C) Distribution of read coverage by genomic region. (D) Number of genes detected. (E) Read
coverage for empty samples. (F) Heatmap of Pearson correlations among C1 and microraft cells. (G) Heatmap of chromosome condensation gene set,
which shows strong upregulation in raft cells. (H) Heatmap of cell junction gene set, which shows slight upregulation in C1 cells.

cells, we performed a pilot study to evaluate the differences
in proliferative capacity of single cancer cells in response
to chemotherapy treatment. Proliferation is an important
property of tumor cells that cannot be used as a basis for
sorting using the C1 system. CFPAC-1 cells were plated
onto a microraft array, treated with 2 or 5 nM gemcitabine
and allowed to grow for 4 days. Control cells were plated
and subjected to a placebo treatment and no treatment, re-
spectively. We also stained the cells in this experiment for
EpCAM, which illustrates the compatibility of microrafts
and cell staining (Supplementary Figure S7). Tracking the
cells on the array during the growth period showed that the
placebo treatment had essentially no effect on cell growth,
but the 5 nM gemcitabine treatment strongly restricted the

growth of many cells compared to the control arrays (Fig-
ure 4). The cells treated with 2 nM gemcitabine showed
only a moderate restriction of cell growth, so we used only
the data from cells treated with 5 nM gemcitabine in sub-
sequent analyses. From each microraft array, we selected
and harvested (1) cells that divided and (2) cells that did
not divide (Figure 5A and C). Note that microrafts with
cells that divided contained a small clonal population of 2–
4 cells rather than a single cell. These multi-celled samples
provided more starting material, making RNA extraction
and sequencing likely to succeed. On the other hand, only
expression changes that are shared across the two or more
cells on the selected microraft will be detectable, but this is
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Figure 3. Reproducibility of microraft results. Heatmap shows the correlations among expression profiles of cells grown under identical conditions on three
separate microraft arrays. The correlation among cells grown under the same conditions on either the same or different microraft array suggests strong
reproducibility, although the correlation with some cells on array 1 is lower. With the exception of two cells, all of the cells on array 1 have <3000 genes
detected, which partially reflects the multiplexing of array 1. In contrast, the smallest number of genes detected in any of the other cells shown is 5000. The
correlations between cells on arrays 2 and 3 are all very high, although we observe some biological variation, as expected, among individual cells.

Figure 4. Quantification of CFPAC-1 colony growth. (A) Bulk cell mea-
surements. (B) Single-colony measurements. Upper, middle and lower red
lines indicate the 75th, 50th and 25th percentiles, respectively. The 50th
percentile fold change was 4.46, 4.21, 3.95 and 2.58 for cells receiving no
treatment, placebo, 2 and 5 nM drug, respectively.

not unreasonable given that each such microraft contains a
clonal colony formed from a single cell.

As expected, DEGs involved in cell growth and division
were seen in cells that divided compared to non-dividing
cells on the control ‘no treatment’ and placebo treatment
arrays (Figure 5B and Supplementary File 3). We searched
for DEGs in dividing versus non-dividing cells from the
drug treatment array and then removed from these candi-
date DEGs any genes that were also differentially expressed
in the dividing versus non-dividing cells on the control ar-
rays (Figure 5D and Supplementary File 4). We further re-
fined the list by removing DEGs that were from the same
gene family as genes differentially expressed in the control
experiment (we removed 47 genes, leaving 42), because dif-
ferences in these genes may be artifacts of read alignments.

Strikingly, roughly 30% of the genes that show specific
response to gemcitabine have been previously implicated in
tumor progression and chemotherapy resistance (Supple-
mentary File 3). For example, Immediate Early Response
Gene X-1 (IEX-1) has been implicated in pancreatic can-
cer cell resistance to gemcitabine treatment (21) and used as
a prognostic biomarker in pancreatic cancer (22). Previous
studies have linked changes in expression of IEX-1 to pan-
creatic cancer patient survival in different settings (23); we
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Figure 5. Linking gene expression changes to differences in proliferation
after drug treatment. (A) Cells on no treatment and placebo treatment mi-
croraft arrays are selected based on proliferation. (B) Heatmap of genes
that change in dividing versus non-dividing cells from the no treatment
and placebo treatment microraft arrays. (C) Cells on gemcitabine treat-
ment microraft arrays are selected based on proliferation. (D) Heatmap of
genes differentially expressed in cells that divide after gemcitabine treat-
ment but not control cells.

observed lower expression of IEX-1 in cells dividing after
gemcitabine treatment. Similarly, we observed downregula-
tion of CASP4 in cells that proliferate after drug treatment.
This result is consistent with prior reports of CASP4 knock-
down in pancreatic cells leading to decreased apoptosis af-
ter bortezomib treatment (24). We also noted an example
of up-regulation after drug treatment; LGALS3 was pre-
viously shown to induce cell proliferation and invasion in
pancreatic cancer cells by activating Ras signaling (25). Fi-
nally, several of our candidate genes overlapped with those
seen in a somewhat similar bulk RNA-seq study looking at
gemcitabine resistance (26).

Continued proliferation during gemcitabine treatment is
also associated with DEGs functioning in secretion of pro-
teins to the endoplasmic reticulum (ER) and, to a lesser ex-
tent, mRNA surveillance and splicing (Supplementary File
3). Changes in ER stress response are known to allow tu-
mors to survive chemotherapy treatment in some cases (27).
Gemcitabine is a nucleoside analog that results in increased
DNA damage, and response to DNA damage is known to
be intertwined with ER stress response (27). We hypothesize
that changes in the expression of this set of genes modifies
ER stress response, which allows drug-treated cells to han-
dle gemcitabine-induced damage.

Finally, we looked at the within-group gene expression
differences among the cells from each treatment group, a
comparison that highlights a key benefit of single cell res-
olution. Given the small sample size and relatively low
sequencing depth, our power to make conclusive state-
ments is limited. Nevertheless, we observed several inter-

esting patterns. A set of genes showed much greater varia-
tion in the gemcitabine-treated cells than the control cells
(Supplementary Figure S8). Among such highly variable
genes in the drug treated cells, we noticed DNA repair
associated genes (NSMCE1, RAD23A) and/or oncogenes
(RNF103-CHMP3). This indicates that gemcitabine treat-
ment changed the expression levels of these genes, but pos-
sibly only in a subset of the cells, hinting that in this ex-
periment there are multiple mechanisms for continuing to
proliferate in the presence of gemcitabine.

DISCUSSION

Microraft arrays provide two key advantages over exist-
ing single cell isolation approaches for genomics: (i) selec-
tive isolation without the need for a pre-selection step and
(ii) the ability to sort cells based on complex temporal or
spatial phenotypes, as well as by cellular markers. Here,
we reported the application of this cellular isolation sys-
tem to connect a proliferative pancreatic cancer cell phe-
notype in the presence of chemotherapeutic to these cells’
altered transcriptome. We also showed that microrafts pro-
duce data of comparable quality to the C1 but with less con-
tamination between cells during the isolation process.

Microrafts promise to be broadly useful. To date more
than 30 cell lines and a number of primary cell types have
been successfully cultured on the arrays, which can be
coated with any desired extracellular matrix to promote
cell health and growth (7,28–31). Many dynamic pheno-
types, such as cell mobility, invasiveness, morphology or
biomarker expression, are of immense interest in basic re-
search fields such as cell and developmental biology. Mi-
crorafts are also useful for isolating rare cells, and in prin-
ciple can be used to isolate cells from a suspension con-
taining only a few dozen cells of interest. While the cur-
rent report describes a manual protocol for cell isolation
and analysis, the method has the potential to perform high-
throughput cell isolation, because a single microraft array
can be scaled to contain thousands to millions of microrafts
and is amenable to incorporation in an automated plat-
form. Indeed, work is ongoing to develop automated high-
throughput instrumentation that will carry out the entire
procedure of array scanning, target-cell identification, mi-
croraft release, collection and transfer under temperature,
humidity and CO2 controlled conditions at much faster
rates than is currently possible. By virtue of indexing on the
array, cells in culture can also be used to provide time-series
measurements of phenotypic phenomena as was done in
the current work or to provide samples for multiple down-
stream analyses.

The selective ability of microraft arrays can also be ex-
ploited for several other genomic approaches beyond RNA-
seq. Individual cells or small selected clonal populations
from microrafts can be used for Hi-C (32), which measures
the 3D organization of the genome; ATAC-seq (33), which
measures nucleosome positioning; bisulfite sequencing for
DNA methylation (34); or ChIP-seq, for histone modifica-
tions (35). Similarly, the selectivity of microraft arrays can
be applied to metagenomic and microbiome studies to dis-
tinguish, select and sequence members of a complex com-
munity.
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There are also a number of potential applications for mi-
crorafts in clinical research. For example, tumors often ex-
hibit strong intratumoral gene expression and phenotypic
heterogeneity. Microrafts could be used to make the link be-
tween transcriptomic and functional heterogeneity within
tumors. Some functional differences among tumor cells,
such as the ability of cells to leave the solid tumor, have im-
portant implications for patient outcomes. Microrafts pro-
vide an invaluable tool for studying such phenomena by
connecting gene expression with phenotypic measurements
from individual cells.
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