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Abstract

Welding has been associated with neurobehavioral disorders. Welding fumes contain several 

metals including copper (Cu), manganese (Mn), and iron (Fe) that may interact to influence 

welding-related neuro-toxicity. Although welding-related airborne Fe levels are about ten-fold 

higher than Mn, previous studies have focused on Mn and its accumulation in the basal ganglia. 

This study examined differences in the apparent transverse relaxation rates [R2* (1/T2*), estimate 

of Fe accumulation] in the basal ganglia (caudate nucleus, putamen, and globus pallidus) between 

welders and controls, and the dose-response relationship between estimated Fe exposure and R2* 

values. Occupational questionnaires estimated recent and lifetime Fe exposure, and blood Fe levels 

and brain MRI were obtained. Complete exposure and MRI R2* and R1 (1/T1: measure to 

estimate Mn accumulation) data from 42 subjects with welding exposure and 29 controls were 

analyzed. Welders had significantly greater exposure metrics and higher whole blood Fe levels 

compared to controls. R2* in the caudate nucleus was significantly higher in welders after 
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controlling for age, body mass index, respirator use, caudate R1, and blood metals of Cu and Mn, 

whereas there was no difference in R1 values in the basal ganglia between groups. The R2* in the 

caudate nucleus was positively correlated with whole blood Fe concentration. The present study 

provides the first evidence of higher R2* in the caudate nucleus of welders, which is suggestive of 

increased Fe accumulation in this area. Further studies are needed to replicate the findings and 

determine the neurobehavioral relevance.
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Introduction

Welding has been associated with neurobehavioral disorders (Cersosimo and Koller, 2006). 

Welding fumes contain several metals originating from the electrodes and base metals, and 

previous studies suggest that these metal mixtures may interact to cause welding-related 

toxicity, especially for welders with chronic exposure (Lu et al., 2005). Iron (Fe), copper 

(Cu), and manganese (Mn) are among the major elements in many types of welding fumes 

(Burgess and Burgess, 1995). Although airborne Fe concentrations are about ten-fold greater 

than those of Mn (Ellingsen et al., 2006; Flynn and Susi, 2009) and whole blood Fe levels 

are much higher than those of Mn (Lu et al., 2005), past welding-related studies have 

focused on Mn accumulation in brain (Choi et al., 2007; Lee et al., 2015) with few studies 

examining brain deposition of Fe in welders or mine workers (Criswell et al., 2015; Long et 

al., 2014).

The major route of inhaled Fe into the brain is via the blood-brain-barrier (BBB), although 

Fe also can enter the brain via the blood–cerebrospinal fluid (CSF) barrier and perhaps 

olfactory pathways (Yokel, 2006). Influx of Fe into the brain is carrier-mediated, but Fe 

efflux is not fully understood (Ward et al., 2014). Fe uptake into brain is affected by several 

factors including particle size and the presence of other metals such as Mn and Cu. For 

example, Fe and Mn may compete for common transporters [e.g., transferrin and/or divalent 

metal transporter-1 (DMT1)] (Erikson et al., 2004), and Cu overload may decrease Fe brain 

uptake (Crowe and Morgan, 1996). Thus, increased levels of welding-related metals other 

than Fe (e.g., Mn, Cu, etc.) may influence its uptake into the brain and vice versa. Brain Fe 

distribution has regional specificity, with the highest concentrations found in the 

extrapyramidal system, less in the cerebral cortex, and least in the prefrontal cortex. Among 

the structures in the extrapyramidal system, the basal ganglia have the highest Fe 

concentration (primarily the globus pallidus), followed by putamen and caudate nucleus 

(Hallgren and Sourander, 1958).

Similar to Mn, Fe is an essential element that can be neurotoxic at higher doses (Sipe et al., 

2002). It has long been known that brain deposition of Fe increases with aging (Hallgren and 

Sourander, 1958), and Fe overload in the brain is associated with neurodegenerative 

disorders (Wallis et al., 2008; Ward et al., 2014). Indeed, pathological studies have 
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demonstrated increased Fe accumulation in the substantia nigra of Parkinson’s patients 

(Dexter et al., 1991; Sofic et al., 1991).

In magnetic resonance imaging (MRI), Fe has paramagnetic characteristics and shortens the 

apparent transverse relaxation time (T2*; Haacke et al., 2005). Thus, one of the commonly 

used methods to assess Fe accumulation in human brain is measurement of the T2* 

relaxation rate [R2* (1/T2*)]. Indeed, several neuroimaging studies (Gelman et al., 1999; 

Peran et al., 2010) established associations between R2* values in selected brain areas 

(including the basal ganglia) and brain Fe content estimated from the postmortem data of 

Hallgren and Sourander (1958). Other neuroimaging studies have shown increased R2* in 

the substantia nigra of Parkinson’s patients (Du et al., 2011; Ulla et al., 2013). R2* may be, 

however, affected by the presence of other paramagnetic metals (e.g., Cu and Mn) that are 

common in welding (Vymazal et al., 1993). For example, increased R1 and R2 values 

occurred when there was elevated Mn exposure without additional Fe (Fitsanakis et al., 

2010).

Studies examining Fe brain accumulation in welding or Mn-exposure are sparse and 

inconsistent. Long et al. (2014) assessed Fe concentration via T2* and, when compared to 

controls, found full-time welders had lower T2* in the frontal cortex, but no difference in 

selected subcortical regions of interests (ROIs; e.g., globus pallidus, thalamus, and 

hippocampus). A recent study in deceased mine workers reported no differences in Fe tissue 

concentrations in the basal ganglia compared to controls (Criswell et al., 2015), although 

increased Fe tissue concentration was reported in the basal ganglia of Mn-exposed monkeys 

(Olanow et al., 1996).

In the present study, two hypotheses were tested based on the associations between high 

welding exposure and disorders of the basal ganglia. First, in welders with chronic, low level 

exposure, there will be higher R2* values in the basal ganglia structures (caudate nucleus, 

putamen, and globus pallidus) when compared to controls. Second, if the first hypothesis is 

true, the increased R2* values will be positively correlated with increased Fe exposure 

assessed by exposure metrics and blood Fe levels. We also explored the associations 

between R2* and other welding-related metals such as Cu and Mn.

Methods

Subjects

Eighty-one subjects were recruited from meetings of regional unions in Philadelphia and 

Harrisburg, PA, USA, and from the community around the Penn State Hershey Medical 

Center (HMC). Welders were defined as subjects who had welded at any point during their 

lifetime and controls were those who did not. Detailed demographic information was 

obtained from all subjects. This included age, education, history of smoking, and current 

and/or past major medical/neurological disorders. All subjects were examined and 

ascertained to be free of any obvious neurological and movement deficits using the Unified 

Parkinson’s Disease Rating Scale-motor scores (UPDRS-III) with threshold score of <15 

(Lee et al., 2015). All subjects had normal blood calcium and magnesium levels, and no Fe 

deficiency. All welders underwent an orbital radiograph to rule out any metal fragments 
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around the eye. Written informed consent was obtained from all subjects in accordance with 

guidelines approved by the Internal Review Board/Human Subjects Protection Office of the 

Penn State HMC.

One welder failed to complete the MRI acquisition. Six welders and three controls had poor 

quality R2* images and thus the data from these subjects were excluded. The final data set 

included 29 controls without history of welding and 42 welders (see demographic 

information in Table 1-A).

Welders represented several different trades and industry groups (e.g., boilermakers, 

pipefitters, pile drivers, railroad welders, and a variety of different manufacturing jobs). To 

explore the nature of Fe accumulation in basal ganglia, the 42 welders were subdivided into 

two subgroups: welders with recent exposure (Welding-Recent; N=35) who had welded in 

the 90 days prior to the MRI acquisition; and welders without exposure in the 90 days prior 

to the MRI (Welding-Not-Recent; N=7). Controls were age-matched volunteers from the 

community of the same region with various occupations.

Exposure Assessment

Exposures were assessed by two questionnaires. The work history (WH; Lee et al., 2015) 

questionnaire was designed to collect job information for the individual’s working lifetime, 

with an emphasis on characterizing welding and other jobs that may be associated with 

welding exposure. An additional supplementary exposure questionnaire (SEQ) focused on 

the three-month period prior to the MRI, and determined the time spent on welding, the type 

of metal welded, and the various types of welding performed. Information on respirator use, 

confined space work, and use of ventilation also was collected. The primary exposure metric 

derived from the SEQ was hours welding, brazing, or soldering [(HrsW = (weeks worked) × 

(hrs/week) × (fraction of time worked that is directly related to welding); (Lee et al., 2015)] 

in the 90 day period preceding the MRI and blood draw. Responses to the WH enabled an 

estimate of the cumulative lifetime years welding [YrsW = the Years spent welding during 

the subjects’ life; (Lee et al., 2015)].

Blood Analysis

Whole blood Cu, Fe, and Mn levels were assessed as described in Lee et al. (2015). Plasma 

Fe, total Fe binding capacity (TIBC; maximum amount of Fe needed to saturate plasma 

transferrin), and percent transferrin saturation [measure of Fe that is actually bound to 

transferrin; (plasma Fe/total Fe binding capacity) *100] were measured at the Penn State 

HMC Clinical Laboratory using a standardized protocol based on the absorbance of 

ferrozine against known standards.

MRI Image acquisition and analysis

All images were acquired using a Siemens 3 T scanner (Magnetom Trio, Siemens Medical 

Solutions, Erlangen, Germany) with an 8-channel head coil. First, high-resolution T1-

weighted (T1W) and T2-weighted (T2W) images were acquired for anatomical 

segmentation. T1W images were collected using an MPRAGE sequence with Repetition 

Time (TR) =1540 ms, Echo Time (TE) = 2.3 ms, FoV = 256 × 256 mm, matrix = 256 × 256 
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mm, slice thickness = 1 mm, slice number = 176 (with no gap), and voxel spacing 1 × 1 × 1 

mm. T2W images were collected using a fast-spin-echo sequence with TR/TE = 2500/316, 

and the same spatial resolution as the T1W images. A multigradient-echo sequence was used 

to estimate the apparent transverse relaxation rate: R2* (1/T2*). Five echoes with TE 

ranging from 8 to 40 ms and an interval of 8 ms were acquired with TR = 51 ms, flip angle = 

15°, FoV = 230 mm × 230 mm, matrix = 256 × 256, slice thickness = 1.6 mm, and slice 

number =88 with bandwidth of 35.9 kHz. The middle slice of the image was placed on the 

line between the anterior and posterior commissures.

Defining brain regions of interest

Bilateral basal ganglia structures [globus pallidus (GP), putamen (PUT), caudate nucleus 

(CN)] were selected as ROIs (Dorman et al., 2006). ROIs were defined for each subject 

using automatic segmentation software (AutoSeg; (Gouttard et al., 2007) and then were 

eroded by 1 voxel using a morphological operation in order to make sure the segmented 

ROIs were within the anatomical ROIs (Figure 1). The quality of the segmentation then was 

visually confirmed for all subjects by two reviewers blinded to group assignment.

Estimation of R2*values

The magnitude images of multigradient-echo images were used to generate R2* maps by 

using a voxel-wise linear least-squares fit to a monoexponential function with free baseline 

using in-house MATLAB (The MathWorks, Inc., Natick, MA) tools (see Supplementary 

Figure 1 for quality control information of R2* maps). The automatically segmented ROIs 

that were on the T1W images first were co-registered onto T2W images, and then the ROIs 

on T2W image space were co-registered again onto the R2* maps using an affine 

registration implemented in 3D Slicer (www.slicer.org; Rueckert et al., 1999; Figure 1). The 

last 3–4 inferior slices on the transverse plane were manually deleted for all subjects in order 

to ensure that the co-registered ROIs did not go beyond the lower boundary of the 

anatomical ROIs (Supplementary Figure 2). The R2* values of each ROI were calculated as 

1/T2* in each voxel and averaged over the entire ROI using a trimmed mean (5%–95% 

percentile) to reduce possible segmentation error and imaging noise.

Estimation of R1 values

First, whole brain T1 time images were generated by the scanner. ROIs were co-registered 

onto the T1 maps using an affine registration implemented in 3D Slicer (www.slicer.org; 

Rueckert et al., 1999). The R1 values in each ROI were calculated as 1/T1 in each voxel and 

averaged over the entire ROI using a trimmed mean (5%–95% percentile), the same method 

as used for the T1W intensities (Lee et al., 2015).

Statistical analysis

All error terms in the text, figures, and tables are standard deviations. SAS 9.3 was used to 

perform all statistical analyses. Right- and left- hemisphere MRI data were averaged within 

each subject. One-way analysis of covariance (ANCOVA) with t-distributed errors was used 

for any group comparisons in order to account for outliers (Lange, 1989). For the between-

group comparisons of MRI R2*s or R1s, the analyses were adjusted by using age, body 

Lee et al. Page 5

Neurotoxicology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mass index (BMI), respirator use, R1 or R2* values for the corresponding ROI, and whole 

blood metal levels of Mn and Cu as covariates. Because multiple brain areas were compared, 

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) was used to control the 

false discovery rate (FDR) at the q=0.05 level. We report raw p-values and indicate whether 

the tests were significant at a FDR level of 0.05.

Welding-Recent and Welding-Not-Recent subjects were examined using ANCOVA. 

Subgroup analyses were corrected for multiple group (i.e., three) comparisons using the 

Benjamini-Hochberg method. To explore any relationships between R2* and exposure 

metrics, both Pearson (to examine a linear relationship) and Spearman (to account for 

outliers) correlation analyses were performed. Both correlations were performed with 

adjustment of age in welders only because controls had 0 HrsW and YrsW. To explore the 

relationships between R2* and whole blood Fe levels, Pearson and Spearman partial 

correlations were performed with adjustment for age, R1 values for the corresponding ROI, 

and whole blood Mn and Cu levels for subjects in the entire cohort and then for welders and 

controls separately. Statistical significance was defined as α = 0.05. Due to the exploratory 

nature of these analyses, they were not corrected for multiple comparisons.

Results

Group comparisons between all welders and controls

Demographics, exposure metrics, and blood Fe levels—As shown in Table 1-A, 

there were no significant group differences in age, liver function (ALT: alanine 

aminotransferase), or UPDRS-III scores. Welders had a higher BMI (p=0.04) and controls 

had more years of education than welders (p<0.001). Welders had significantly greater 

HrsW, a short-term exposure metric, and YrsW, a long-term exposure metric (p<0.001; 

Table 1-A). Whole blood Fe (560 ± 49 vs 496 ± 77 μg/mL; p<0.001), Cu (899 ± 113 vs. 754 

± 139 ng/mL; p<0.001) and Mn (10.8 ± 3.2 vs 8.5 ± 2.1 ng/mL; p=0.014) levels also were 

significantly higher in welders compared with controls (Table 1-B). There were no 

significant group differences in plasma Fe, total Fe binding capacity, and transferrin 

saturation levels (Table 1-B).

MRI R2* and R1 measurements in basal ganglia—As shown in Figure 2a, R2* in 

the CN was significantly greater in welders compared to controls (p=0.004) after controlling 

for age, BMI, respirator use, R1 in the CN, and whole blood levels of Cu and Mn. This CN 

difference remained significant after correction for multiple comparisons. Comparison of 

R2* values in the PUT and GP between welders and controls did not reach statistical 

significance, with p= 0.12 for PUT and p=0.48 for GP (Figure 2a). As seen in Figure 2c, 

there were no group differences in R1 values of any ROI after controlling for age, BMI, 

respirator use, R2* value of the corresponding ROI, and blood metal levels of Cu and Fe (ps 

>0.18).

The association of R2* measures in the basal ganglia with Fe exposure 
estimates—The welder group showed no correlations between R2* values in any ROI and 

HrsW or YrsW after controlling for age (ps >0.39). On the other hand, R2* values in the CN 

and GP were correlated positively with whole blood Fe levels among all subjects (Spearman; 
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R=0.35, p=0.004 for CN and R=0.30, p=0.015 for GP) after controlling for age, the R1 value 

for the corresponding ROI, and whole blood Cu and Mn levels. Within welders, R2*in the 

CN was correlated positively with whole blood Fe level (Spearman; R=0.37, p=0.021; Table 

2-B and Figure 3a).

For controls, R2* values in the GP were correlated positively with blood Fe levels after 

adjustments for age, GP R1, and blood levels of Cu and Mn (for both Pearson and 

Spearman, Rs > 0.41, ps < 0.045), whereas R2* values in the CN and GP were correlated 

negatively with blood Mn levels after controlling for age, R1 values in the corresponding 

ROI, and blood levels of Cu and Fe (Spearman; R=−0.40, p= 0.047 for CN and for both 

Pearson and Spearman: Rs < −0.57, ps < 0.003 for GP; Table 2 and Figure 3b–c).

Subgroup comparisons among controls, Welding-Not-Recent and Welding-Recent

Demographics, exposure metrics, and blood metal levels—As seen in Table 3, 

both welding subgroups had greater YrsW compared to controls (ps <0.001). The Welding-

Not-Recent subgroup was older, and had last welded between 5–180 months before 

participation. The Welding-Not-Recent subgroup also had higher whole blood Cu (898 ± 99 

vs. 754 ± 139 ng/mL; p=0.029) and Fe (543 ± 20 vs 496 ± 77 μg/mL; p= 0.005) levels than 

controls. The Welding-Recent subgroup had greater whole blood Fe levels (563 ± 53 vs. 496 

± 77 μg/mL; p< 0.001), along with increased whole blood Cu (900 ± 117 vs. 754 ± 139 

ng/mL; p<0.001) and Mn (10.6 ± 2.9 vs 8.5 ± 2.1 ng/mL; p=0.01) levels compared with 

controls.

MRI R2* and R1 measurements in basal ganglia—As seen in Figure 2b, R2* values 

in the CN were significantly greater in the Welding-Recent subgroup compared to controls 

(p=0.0007) after controlling for age, BMI, respirator use, CN R1, and whole blood levels of 

Cu and Mn. This CN difference remained significant after correction for multiple group 

comparisons. Comparisons of R2* values among controls and welding subgroups in the 

PUT and GP revealed no group differences (ps> 0.16 for PUT and ps>0.51 for GP). 

Although R2* values in the CN seemed to be higher in the Welding-Not-Recent group, this 

comparison did not reach statistical significance after controlling for age, BMI, respirator 

use, CN R1, and whole blood levels of Cu and Mn.

As seen in Figure 2d, R1 in the CN for the Welding-Not-Recent subgroup was greater than 

that of controls (p=0.015); this remained significant after correction for multiple group 

comparisons. Comparisons of R1 values among controls and welding subgroups in the PUT 

and GP revealed no differences after controlling for age, BMI, respirator use, the R2* value 

of the corresponding ROI, and blood metal levels of Cu and Fe (ps >0.095).

The association of R2* measures in the basal ganglia with Fe exposure 
estimates—There were no significant associations between R2* measurements and 

exposure metrics in either welding subgroup in any of the ROIs after controlling for age (ps 

>0.17). R2* values in the CN were, however, correlated positively with whole blood Fe 

levels for the Welding-Recent subgroup (Spearman; R=0.40, p=0.026). No other correlations 

within the Welding-Recent subgroup were significant (ps >0.15). Moreover, there were no 
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significant associations between R2* measurements and blood Fe level in the Welding-Not-

Recent subgroup in any ROI (ps>0.099).

Discussion

Using R2* as a surrogate for Fe accumulation, our study of PA-based cohort of welders and 

controls found that welders had greater exposure metrics, higher whole blood Fe levels, and 

higher R2* values in the basal ganglia compared to controls. In addition, the imaging 

changes were selective for the CN, not other regions of the basal ganglia. Whereas past 

welding-related studies focused on Mn accumulation in the basal ganglia (predominantly in 

the GP), the present study is the first human study to delineate increased R2* values in the 

basal ganglia (predominantly in the CN), which suggests higher Fe accumulation in this 

region, and its association with blood Fe levels in asymptomatic welders. Follow-up studies 

that provide insight into a possible role of Fe in welding-related neurobehavioral disorders 

are clearly important.

Increased Fe exposure in welders with chronic, low level exposure

Our welders averaged 229 welding hours in the past 90-days, approximately equivalent to 

spending nearly half of their worktime welding (Lee et al., 2015). They also had an average 

of 25.8 lifetime welding years. Thus, our welders have the characteristics of chronic but low-

level welding exposure, different from most previous studies that focused on high-level 

welding exposure.

Despite relatively modest exposure, higher Fe exposure was evidenced by both greater 

exposure metrics and higher whole blood Fe levels, and even the Welding-Not-Recent 

subgroup who had not welded for at least five months prior to the study visit showed higher 

blood Fe (543 ± 20 μg/mL) compared to controls (496 ± 77 μg/mL). This result is consistent 

with previous reports that both airborne and blood Fe concentrations were much higher than 

those of Mn in many types of welding (Ellingsen et al., 2006), and underscore the 

importance of studying the role of Fe in welding-related toxicity in relatively low-exposed 

welders.

Blood Fe homeostasis in welders with chronic, low level exposure

Interestingly, although blood Fe levels were greater in welders, plasma Fe levels were 

comparable to controls. This result is consistent with previous studies suggesting whole 

blood metal levels may be a better exposure biomarker than plasma or serum metal levels 

(Costa and Aschner, 2014; Spahr et al., 1996), especially when exposure is relatively low. 

This is probably because the majority of Fe in the body (~ 80%) is bound to hemoglobin in 

red blood cells (RBC) and only a fraction is found in plasma (Collings et al., 2013). In 

addition, the finding of comparable plasma Fe levels may suggest that the body is able to 

regulate Fe overload. This is important because Fe content in plasma (rather than RBCs) 

influences what is transported to other organs including the brain via the BBB or choroid 

plexus (Yokel, 2006).
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Higher R2* values in selective basal ganglia structures in welders

Along with increased exposure metrics and whole blood Fe levels, welders also 

demonstrated significantly higher R2* values, suggestive of elevated Fe accumulation, in the 

basal ganglia after controlling for confounders including R1 values and blood levels of Cu 

and Mn. R2* values were highest in the GP (followed by PUT and CN) for both controls and 

welders, consistent with the general Fe brain distribution patterns based on postmortem data 

(Hallgren and Sourander, 1958). A significantly increased R2* value in welders, however, 

was present only in the CN, not the PUT or GP. The seemingly greater R2* value in the PUT 

of welders failed to be significant perhaps because the increase is due to aging rather than 

welding (Hallgren and Sourander, 1958). Also, note that the GP is the region where welding-

related Mn predominantly accumulates (Erikson et al., 2004; Kim et al., 1999). Our data are 

consistent with Long et al. (2014) who did not find significant difference in T2* (1/R2*) in 

the GP, but unfortunately did not include the CN as an ROI and also did not control for 

possible Mn brain accumulation effects on T2*.

It is unclear why higher R2* values were found in the CN and not in the PUT and GP. A 

PET study reported that occupational welders had decreased dopamine transporter density, 

particularly in the CN but not the PUT (Criswell et al., 2011), suggesting that dopaminergic 

terminal loss may share a similar pattern of Fe accumulation. It also is possible that welding-

related Fe increases may be detected more easily in the CN than in the PUT or GP because 

Fe levels in the CN are generally lower than those in the PUT and GP (Hallgren and 

Sourander, 1958).

Previous studies have reported welding-induced executive function and working memory 

deficits (Bowler et al., 2006; Park et al., 2009). Note that the frontal cortex (Long et al., 

2014) and CN [regions reported as having increased welding-related Fe brain deposition 

suggested by lower T2* and higher R2* values] are areas often associated with similar types 

of cognitive performance (McKinney et al., 2004). Future studies are needed to investigate 

any potential connections between the cognitive decline in welders and increased Fe 

deposition in these areas.

It is important to note that no differences in R1 values were found between welders and 

controls. Subgroup analyses indicated that only the Welding-Not-Recent subgroup showed 

higher R1 values in the CN compared to controls, probably because Mn may not accumulate 

in brain if the exposure level is low (Lee et al., 2015). Note that the Welding-Recent 

subgroup had an average 274 welding hours (past 90 days), indicating low-level exposure. 

The Welding-Not-Recent subgroup may have higher R1 values because subjects may have 

higher exposure-level when they welded.

Dose-response relationship between estimated Fe exposure and R2* values

We demonstrated that higher R2* values in the CN were correlated positively with blood Fe 

levels after controlling for age, R1 in the CN, and blood Mn and Cu levels. Along with the 

absence of increased R1 values in any ROIs for welders, this suggests that increased R2* 

may be associated with increased exposure specifically to Fe. In addition, increased blood 

Fe levels were observed in both Welding-Recent and Welding-Not-Recent subgroups, 
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suggesting that the blood Fe levels may reflect lingering long-term exposure effects. 

Although the Welding-Not-Recent subgroup showed higher R2* values in the CN than 

controls, this increase was not significant probably due to relatively small sample size. The 

correlation between R2* values and YrsW was also not significant. Although it is possible 

that the YrsW metric is a poor measure of long-term exposure, it is unclear whether the 

higher R2* values in the CN are associated with long-term or short-term exposure effects. 

Further studies with larger sample sizes and better exposure metrics (such as cumulative 

lifetime hours of welding and on-site airborne Fe measures) are needed to determine the 

exact nature of the R2* increase observed in welders.

Roles of other welding-related metals (e.g., Cu and/or Mn) in R2* measures

We explored the associations between R2* values in the basal ganglia and other welding-

related metals such as Mn and/or Cu. We found that R2* in the CN and GP was correlated 

negatively with blood Mn, whereas R2* in the GP was correlated positively with blood Fe in 

controls after adjustment for confounders including R1 values and other blood metal levels. 

These results suggest potential attenuation of Fe brain accumulation due to Mn for those 

who have a well-regulated balance of Mn and Fe concentrations in blood and brain. It is 

interesting that the negative correlations between R2* values and blood Mn are lacking in 

welders. It is possible that in welders, physiological handling is disrupted or more 

complicated, since all welding-related metals (e.g., Cu, Fe, and Mn) were elevated 

simultaneously. Previous animal studies reported complex interactions between Mn and Fe 

when content of both metals was increased (Fitsanakis et al., 2010; Zhang et al., 2009), and 

Fitsanakis et al. (2010) reported increased levels in both R1 and R2 values for rats exposed 

to Mn without additional Fe exposure. The R2 values were even greater when rats were 

exposed simultaneously to both Mn and Fe, although brain region Fe concentrations in those 

rats showed no change (e.g., striatum) or even decreases (e.g., cerebellum and cortex). More 

studies are needed to investigate the interactions among multiple metal mixtures, their brain 

deposition, and effects on MRI changes.

Summary

The present study demonstrated increased R2* values in the CN concomitant with increased 

Fe exposure in chronic, low-exposure, asymptomatic welders. The current findings of higher 

R2* values in welders compared to controls after adjustment for confounders (including R1 

values and blood Cu and Mn levels), suggest the Fe exposure-R2* association. Although it is 

impossible to measure actual brain metal content of the study cohort in order to directly link 

Fe exposure and R2*, vast body of literature unequivocally supports such a relationship. 

Considering the involvement of the CN in neurobehavioral functions, this result may suggest 

a potential role of Fe in welding-related neurobehavioral changes. These findings may guide 

future studies and the development of occupation- and public health-related polices 

involving welding exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of abbreviations

AMY amygdala

ANOVA analysis of variance

BBB blood brain barrier

CN caudate nucleus

GP globus pallidus

HrsW hours welding, brazing, or soldering in the 90 day period preceding MRI

MRI magnetic resonance imaging

PUT putamen

R2* T2* relaxation rate

ROIs regions-of-interest

T2* MRI transverse relaxation time

TE echo time

TR repetition time

UPDRS Unified PD Rating Scale

YrsW cumulative lifetime years welding
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Figure 1. 
Automatically segmented basal ganglia regions of interest [caudate nucleus (CN), putamen 

(PUT), globus pallidus (GP)] on T1-weighted MPRAGE images after erosion by 1 voxel for 

one representative welder (1a) and one control (2a). 1b (welder) and 2b (control) show ROIs 

co-registered and overlaid onto the R2* maps.
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Figure 2. 
a) MRI apparent transverse relaxation rates (R2*) in basal ganglia regions of interest 

[caudate nucleus (CN), putamen (PUT), globus pallidus (GP)] for welders and controls, and 

b) for controls, Welding-Not-Recent, and Welding-Recent subgroups. c) MRI longitudinal 

relaxation rates (R1) in basal ganglia regions of interest for welders and controls, and d) for 

controls, Welding-Not-Recent, and Welding-Recent subgroups. Values are raw R2* means ± 

SD. * indicates significance (p<0.05) after correction for multiple group comparisons using 

the Benjamin-Hochberg method.
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Figure 3. 
Scatter plots show a) ranked R2* in the CN (y-axis) versus ranked blood iron (Fe: x-axis) 

for controls and welders; b) ranked R2* in the GP (y-axis) versus ranked blood Fe (x-axis). 

R2* and blood Fe values were adjusted for age and whole blood copper (Cu) and manganese 

(Mn) levels for a) and b); c) ranked R2* in the GP (y-axis) and ranked blood Mn (x-axis). 

R2* and blood Mn values were adjusted for age and blood levels of Cu and Fe.

Lee et al. Page 17

Neurotoxicology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 18

Table 1

Summary statistics for demographic and exposure metrics (A) and blood metals (B) in welders and controls.

Welders (N=42)
Mean ± SD

Controls (N=29)
Mean ± SD p-values

A. Demographic and Exposure metrics

Age (years) 48.1 ± 11.2 44.0 ± 11.5 0.14

Education (years) 13.0 ± 1.7 16.2 ± 2.4 < 0.001***

HrsW (hours) 229 ± 184 0 ± 0 (0) < 0.001***

YrsW (years) 25.8 ± 11.1 0 ± 0 (0) < 0.001***

ALT1 (IU/L) 39.4 ± 17.5 37.3 ± 16.7 0.23

BMI (kg/m2) 28.9 ± 5.1 26.2 ± 3.4 0.04*

UPDRS-III 2.1 ± 2.5 1.6 ± 2.2 0.24

B. Whole Blood Metals

Whole Cu (ng/mL) 899 ± 113 754 ± 139 <0.001***

Whole Mn (ng/mL) 10.8 ± 3.2 8.5 ± 2.1 0.013*

Whole Fe (μg/mL) 560 ± 49 496 ± 77 <0.001***

Plasma blood levels

Plasma Fe (μg/dL) 104 ± 38 105 ± 32 0.97

Total_IBC2 (μg/dL) 324 ± 66 321 ± 52 0.81

Transferrin Saturation (%) 33 ± 13 33 ± 10 0.85

Hemoglobin (μg/dL) 15.2 ± 1.0 14.8 ± 0.8 0.07

RBC (μg/dL) 5.0 ± 0.4 5.0 ± 0.3 0.28

*
p <0.05,

**
p <0.01,

***
p<0.001

1
ALT = alanine aminotransferase;

2
IBC = iron binding capacity
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