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Abstract

Mounting evidence indicates that ethanol (EtOH) exposure activates neuroimmune signaling. 

Alterations in pro-inflammatory cytokines after acute and chronic EtOH exposure have been 

heavily investigated. In contrast, little is known about the regulation of neurotransmission and/or 

modulation by anti-inflammatory cytokines in the brain after an acute EtOH exposure. Recent 

evidence suggests that interleukin-10 (IL-10), an anti-inflammatory cytokine, is upregulated 

during withdrawal from chronic EtOH exposure. In the present study, we show that IL-10 is 

increased early (1 h) after a single intoxicating dose of EtOH (5 g/kg, intragastric) in Sprague 

Dawley rats. We also show that IL-10 rapidly regulates GABAergic transmission in dentate gyrus 

neurons. In brain slice recordings, IL-10 application dose-dependently decreases miniature 

inhibitory postsynaptic current (mIPSC) area and frequency, and decreases the magnitude of the 

picrotoxin sensitive tonic current (Itonic), indicating both pre- and postsynaptic mechanisms. A 

PI3K inhibitor LY294002 (but not the negative control LY303511) ablated the inhibitory effects of 

IL-10 on mIPSC area and Itonic, but not on mIPSC frequency, indicating the involvement of PI3K 

in postsynaptic effects of IL-10 on GABAergic transmission. Lastly, we also identify a novel 

neurobehavioral regulation of EtOH sensitivity by IL-10, whereby IL-10 attenuates acute EtOH-

induced hypnosis. These results suggest that EtOH causes an early release of IL-10 in the brain, 

which may contribute to neuronal hyperexcitability as well as disturbed sleep seen after binge 
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exposure to EtOH. These results also identify IL-10 signaling as a potential therapeutic target in 

alcohol-use disorders and other CNS disorders where GABAergic transmission is altered.
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1. Introduction

A growing body of evidence from behavioral, molecular, genomic and electrophysiological 

studies indicates that ethanol (EtOH) exposure activates neuroimmune signaling (Crews et 

al., 2011; Mayfield et al., 2013; Bajo et al., 2015a). A number of hypotheses exist as to how 

EtOH causes increased activation of pro-inflammatory cytokines. For example, EtOH-

induced liposaccharide (LPS) release into the systemic circulation and increased high-

mobility group box 1 (HMGB1) protein release from neurons are implicated, both of which 

increase toll-like receptor 4 activity (Wang et al., 2010; Zou and Crews, 2014). This activity 

causes microglial activation, leading to further expression of pro-inflammatory genes, that 

are associated with increased alcohol consumption (Mayfield et al., 2013). Thus, mice 

treated with a high EtOH dose show an increase in systemic levels of pro-inflammatory 

cytokines such as tumor necrosis factor-alpha (TNFα) and monocyte chemoattractant 

protein-1 (MCP-1), accompanied with a persistent increase in pro-inflammatory cytokines in 

the brain (Norkina et al., 2007; Qin et al., 2008). EtOH preference and amount of EtOH 

consumed are significantly reduced in mice lacking interleukin-1 receptor antagonist 

(IL-1ra) and in interleukin-6 (IL-6) knockout mice (Blednov et al., 2012).

In addition to neuroimmune modulation after EtOH exposure, cytokines and their receptors 

regulate neurotransmission and synaptic plasticity (Vezzani and Viviani, 2015), including 

ligand-gated ion channel trafficking and function via kinase-dependent mechanisms (Viviani 

et al., 2003; Yang et al., 2005). TNFα acts on neuronal TNFR1 by a phosphatidylinositol-3-

kinase (PI3K) mechanism to exocytose AMPA receptors (AMPAR), thereby increasing 

excitatory neurotransmission in hippocampal neurons (Stellwagen et al., 2005). Conversely, 

TNFα causes endocytosis of GABAA receptors (GABAARs) (Stellwagen et al., 2005). 

Another pro-inflammatory cytokine, interleukin-1β (IL-1β), reduces the frequency of 

AMPAR-dependent excitatory synaptic currents, but enhances NMDAR-mediated currents 

by activation of tyrosine kinases (Viviani et al., 2003; Yang et al., 2005). In addition, the 

IL-1 receptor 1 (IL-1R1) and NMDA receptor families interact with each other (Gardoni et 

al., 2011). IL-1β also increases recruitment of GABAARs to cell-surface via IL-1R1-

dependent PI3K activation, causing a delayed enhancement of GABA currents (Serantes et 

al., 2006). Overall, investigations of GABAAR indicate that the two pro-inflammatory 

cytokines TNFα and IL-1β diminish and augment inhibitory synaptic transmission, 

respectively.

In contrast to pro-inflammatory cytokines, less is known about the regulation of 

neurotransmission and/or modulation of anti-inflammatory cytokines in the brain after acute 

EtOH exposure. Indeed, recent investigations show that IL-1ra, an endogenous anti-
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inflammatory factor, regulates GABAergic transmission in central nucleus of amygdala and 

EtOH effects on synaptic activity (Bajo et al., 2015b). Also, mice lacking IL-1ra show 

reduced EtOH consumption (Blednov et al., 2015). In this study, we focused on 

interleukin-10 (IL-10), an anti-inflammatory cytokine. The −592C > A IL-10 gene 

polymorphism is associated with alcoholism in Spanish subjects (Marcos et al., 2008). A 

recent human study showed that after a single binge EtOH exposure, LPS-induced pro-

inflammatory state is followed by an anti-inflammatory state in blood samples collected 2–5 

h post-binge (Afshar et al., 2015). A single 24 h incubation with EtOH (25 mM) also 

increases IL-10 production by human monocytes (Norkina et al., 2007). In a 4-day binge 

EtOH model, hippocampal IL-10 levels were upregulated 7 days after withdrawal (Marshall 

et al., 2013). Interestingly, no blood-brain-barrier (BBB) disruption or upregulation of 

hippocampal pro-inflammatory cytokines occurred at this time point. Despite increases 

peripherally from acute exposure and centrally from chronic exposure, much remains 

unknown about alterations in anti-inflammatory cytokines in the brain after a single binge 

EtOH exposure and their possible modulation of GABAergic neurotransmission.

In the current study, we examine the effects of a single intoxicating dose of EtOH on rat 

hippocampal IL-10 levels. We also examine IL-10 effects on inhibitory tonic and phasic 

GABAergic currents in hippocampal dentate gyrus (DG) neurons and the involvement of 

PI3-kinase in these effects. Finally, we examine the behavioral contributions of IL-10 to 

EtOH’s hypnotic responses, which may reflect neuroimmune modulation of sleep. Overall, 

these results suggest that early increases in brain IL-10 after a single intoxicating dose of 

EtOH may contribute to disrupted sleep following EtOH exposure.

2. Methods and materials

2.1. Animals

All animal experiments followed the Institutional Animal Care and Use Committee 

approved protocols. Newborn mixed-sex pups from Sprague Dawley breeding pairs (250–

300 g, Harlan) were used for preparation of primary neuron cultures. Male adult Sprague 

Dawley rats were used for hippocampal slice recordings and behavioral studies (200–250 g; 

Harlan and Taconic, respectively).

2.2. Cultured cerebral cortical neurons

Primary cultures of rat cerebral cortical neurons were prepared from rat pups on postnatal 

day 0–1 and maintained for 18–24 DIV (days in vitro) before experiments, as described 

previously (Kumar et al., 2010).

2.3. Chemicals

Unless otherwise stated, all chemicals and ELISA kits were obtained from Sigma-Aldrich. 

LY294002 and LY303511 were obtained from Tocris Bioscience.

2.4. In vitro and in vivo EtOH exposure

For acute EtOH (Pharmco Products) exposure in vitro, primary cultures of rat cerebral 

cortex were exposed to either vehicle or 50 mM EtOH for 4 h. For EtOH exposure, cultures 
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were incubated in media containing 50 mM EtOH and placed into an enclosed plastic vapor 

chamber inside the incubator. A separate beaker of water containing 50 mM EtOH was used 

to maintain stable EtOH concentrations in this plastic chamber. Control cells had media that 

did not contain EtOH and were placed in a vapor chamber with a beaker containing only 

water. For acute EtOH exposure in vivo, adult male Sprague Dawley rats were treated with 

either vehicle or 5 g/kg EtOH by gavage (n = 6/group). Control group was comprised of 

naive age-matched rats (n = 6). Rats were treated at the same time of the day (10–11:00 

a.m.) to control for diurnal variations in cytokine levels. At 1 h post-gavage, rats were 

anesthetized with isoflurane, euthanized, and hippocampi were extracted and frozen. 

Hippocampi were homogenized in radio-immunoprecipitation assay buffer and total protein 

concentrations were measured in a DC protein assay (BioRad, Hercules, CA). All samples 

were resuspended to a concentration of 2 mg/ml.

2.5. Electrophysiology

Whole-cell voltage clamp recordings from cultured cortical neurons were conducted at room 

temperature using glass microelectrodes with a resistance of 2–5 MΩ when filled with 

internal solution composed of (in mM): CsCl2, 150; MgCl2, 3; HEPES, 15; K2ATP, 2; 

EGTA, 5; phosphocreatine, 15; and 50 U/ml creatine phosphokinase (adjusted to pH 7.4 

with KOH). GABAAR-mediated mIPSCs were pharmacologically isolated by perfusing the 

neurons with a HEPES-buffered solution composed of (in mM): NaCl 142, HEPES 10, D-

glucose 10, KCl 5, CaCl2 4, MgCl2 1, pH 7.4 with 300 nM tetrodotoxin and 1 mM 

kynurenic acid. Cells were voltage-clamped at −70 mV. GABAAR-mediated currents were 

acquired using pCLAMP10 software (Molecular Devices) and analyzed using pCLAMP10 

and the MiniAnalysis (Synaptosoft Inc.) programs.

For slice recordings, 400 μm hippocampal sections were obtained as previously described 

(Liang et al., 2007). Whole-cell recordings were obtained from DG cells at 34 ± 0.5 °C 

during perfusion with artificial cerebrospinal fluid (ACSF) composed of (in mM): NaCl, 

125; KCl, 2.5; CaCl2, 2; MgCl2, 2; NaHCO3, 26 and D-glucose, 10. The ACSF was 

continuously bubbled with a 95/5% mixture of O2/CO2 to ensure adequate oxygenation of 

slices and a pH of 7.4. Patch pipettes contained (in mM): CsCl2, 135; MgCl2, 2; CaCl2, 1; 

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid, 11; N-2-

hydroxyethylpiperazine-N′-2-ethanesulfonic acid, 10; K2ATP, 2; Na2GTP, 0.2; pH adjusted 

to 7.25 with CsOH. GABAAR-mediated mIPSCs were pharmacologically isolated by adding 

tetrodotoxin (TTX, 0.5 μM), D(−)-2-amino-5-phosphonopentanoate (APV, 40 μM), 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM), and CGP 54,626 (1 μM) to the ACSF 

from stock solutions. Cells were voltage-clamped at −70 mV. For the PI3-kinase 

experiments, LY294002 and LY303511 were dissolved in dimethyl sulfoxide (DMSO) to 

yield stock solutions of 50 mM PI3K inhibitor LY294002 (10 μM) or LY303511 (10 μM) 

were included in the recording pipette. The concentration of DMSO in the final internal 

pipette solution was 0.02%. The kinetics of mIPSCs recorded with control intrapipette 

solution were compared with those recorded with intrapipette solution containing LY303511 

or LY294002.
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2.6. Enzyme-linked immunosorbent assay (ELISA)

A rat IL-10 ELISA kit (Invitrogen, Carlsbad, CA) with a sensitivity of <5 pg/ml was used to 

measure IL-10 content in cortical cell culture supernatants and in adult rat hippocampal 

tissue.

2.7. Loss of righting reflex (LORR)

Intracerebroventricular (i.c.v.) cannulation surgeries and LORR were performed as we have 

done elsewhere (Carter et al., 2016). Briefly, animals were anesthetized with isoflurane and 

a 12.5 mm long steel cannulae were placed with the following stereotaxic measurements 

from bregma: AP −0.5 mm: ML +1.5 mm, DV −2.5 mm. All subjects were administered 

buprenorphine as postoperative analgesic and singly housed for one week with enrichment 

and daily observations and weighing prior to behavioral testing. To measure the effect of 

IL-10 on EtOH-induced LORR, adult rats were administered IL-10 (300 ng/rat) or ACSF 

intracerebroventricluarly (i.c.v., 1 μL/min rate) immediately following EtOH administration 

(3.5 g/kg, intraperitoneally). The selected IL-10 dose was based on studies elsewhere 

(Knoblach and Faden, 1998; Bluthe et al., 1999). Following completion of drug delivery, the 

i.c.v. needles were left in place for an additional minute to mitigate backflow into the 

cannula. Following EtOH and IL-10 administration, rats were placed in a supine position in 

V-shaped troughs (90° angle) until able to right themselves. The rat was considered to have 

regained its righting reflex if capable of righting itself three consecutive times within 60 s. 

As EtOH was administered 5 min prior to IL-10, LORR duration was calculated as the time 

from EtOH administration until they regained their righting reflex. Trunk blood samples 

were taken immediately after rats regained the righting reflex and blood alcohol 

concentration was analyzed using an AM5 Alcohol Analyzer (Analox Instruments, 

Lunenburg, MA).

2.8. Statistical analyses

Group differences were evaluated by t-test or ANOVA where appropriate. For ELISAs, one-

way ANOVA-Holm-Sidak method was employed. For electrophysiological data, Dunn’s 

multiple comparison versus control method after application of Kruskal-Wallis one-way 

ANOVA, or one-way ANOVA-Holm-Sidak method was employed, as appropriate. For 

LORR data, Student’s unpaired t-test was employed. p < 0.05 was considered statistically 

significant. Data are expressed as the mean ± SEM.

3. Results

3.1. A single intoxicating dose of EtOH increases hippocampal IL-10 levels

Preliminary in vitro studies were carried out in supernatant, i.e. sample media collected from 

rat primary cultured cortical neurons. EtOH (50 mM) exposure for 4 h increased IL-10 from 

82.29 ± 25.19 pg/ml (untreated cultures) to 175.07 ± 60.92 pg/ml (Fig. 1A). IL-10 levels 

were attenuated after incubation with a rat IL-10 neutralizing antibody (Fig. 1A). Based on 

these preliminary data we continued our studies in adult rats. We have previously shown that 

peak plasma [EtOH] of ~60 mM (~275 mg/dL) is reached at 1 h after EtOH (5 g/kg, gavage) 

administration, a level comparable to that used in our preliminary cultured neuron studies 
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(Liang et al., 2007). EtOH gavage increased hippocampal IL-10 levels from 60.97 ± 4.86 

pg/mg in naïve rats to 89.79 ± 9.17 pg/mg at one hour (p = 0.025, n = 8/group) (Fig. 1B). No 

significant change in IL-10 was observed following water gavage suggesting that the 

increase in IL-10 seen after EtOH treatment was not an effect mediated by gavage-related 

stress to the animals.

3.2. IL-10 causes a dose-dependent inhibition of GABAergic mIPSCs

In whole-cell patch clamp recordings, when GABAAR currents were pharmacologically 

isolated by blockade of ionotropic glutamate receptors, GABABRs, and voltage-gated 

sodium channels, GABAAR currents could be separated into two types: phasic miniature 

inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) which are mediated by 

synaptic and extrasynaptic and GABAARs, respectively (Mody and Pearce, 2004). In 

preliminary recordings from cultured cortical neurons (18–24 DIV), we observed that 

application of IL-10 (5–50 ng/ml) dose-dependently inhibited mIPSC total charge transfer 

and frequency (Fig. 2A and B). This IL-10 inhibition of GABAAR currents was reversible 

upon washout. IL-10 (5 ng/ml) also significantly reduced the holding current (Ihold), 

suggesting that IL-10 inhibits the tonic current. Conversely, incubating cultures with the 

IL-10 neutralizing antibody for 4 h caused a significant increase in mIPSC frequency as 

compared to untreated sister cultures (Fig. 2C). Decreased mIPSC frequency after IL-10 

application and increased mIPSC frequency after IL-10 neutralizing antibody incubation 

both suggest presynaptic actions of IL-10. In contrast, the IL-10-mediated decrease in 

mIPSC total charge transfer suggests postsynaptic actions.

To study the actions of IL-10 in adult brain slices, we recorded the effect of bath application 

of IL-10 on mIPSCs and on the picrotoxin-sensitive Itonic in DG cells of rat hippocampus 

(Fig. 3). Similar to recordings from cultured neurons, we found that IL-10 (20–50 ng/ml) 

decreased the mIPSC area to ~ 80% of control (Fig 3B). In agreement with a decrease in 

mIPSC area, 20–50 ng/ml IL-10 also reduced the peak amplitude to 63% of the control peak 

amplitude (Fig. 3C, n = 7–13 neurons/6 rats; p < 0.05). In addition, IL-10 application caused 

a reversible decrease in Itonic (Fig. 3A and E). Application of 1–50 ng/ml IL-10 caused a 

concentration-dependent decrease in Itonic from 46.2 ± 6.9 pA (control) to 5.6 ± 2.6 pA (50 

ng/ml) (Fig. 3E, n = 7–13 neurons/6 rats p < 0.05). IL-10 also caused a concentration-

dependent decrease in mIPSC frequency, 50 ng/ml IL-10 reduced mIPSC frequency to 71% 

of the control frequency (Fig. 3D, n = 7–13 neurons/6 rats, p < 0.05), indicating presynaptic 

effects of IL-10 (Cagetti et al., 2003). Together, these data suggest both pre- and 

postsynaptic actions of IL-10 on GABAergic neurotransmission.

3.3. IL-10 inhibits GABAergic neurotransmission via a mechanism involving 
phosphatidylinositol 3-kinase (PI3K)

Previous studies have shown that neuropeptides such as insulin and brain-derived 

neurotrophic factor (BDNF) modulate GABAAR trafficking via diverse mechanisms such as 

phosphoinositide 3 kinase (PI3K) mediated activation of Akt and PKC-mediated 

phosphorylation of GABAAR β3 subunit (reviewed in (Luscher et al., 2011)). It is also 

known that phosphorylation of a single site of the GABAAR β subunit can have differential 

effects on GABAAR trafficking depending on the kinase involved (Luscher et al., 2011). 
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Given these observations, we hypothesized that PI3K was involved in IL-10 modulation of 

postsynaptic GABAAR function. To test this hypothesis, we examined the effects of IL-10 

on GABAAR currents in DG cells, in the presence/absence of a PI3K inhibitor in the patch 

pipette (Fig. 4 A–C). We found that IL-10-mediated decreases in mIPSC area and Itonic 

magnitude were abolished in presence of the PI3K inhibitor LY294002 (10 μM) but not by 

LY303511 (10 μM), a structurally related negative control compound (Fig. 4A and B, n = 6–

8 neurons/3 rats; p < 0.05). In the presence of LY303511 in the patch pipette, bath 

application of 20 and 50 ng/ml IL-10 caused a similar change in mIPSC area (Fig 4A), Itonic 

magnitude (Fig. 4B) and mIPSC frequency (Fig. 4C), similar to results seen in control 

recordings with application of IL-10 alone (n = 6–8 neurons/3 rats, p < 0.05). However, in 

the presence of LY294002 in the pipette, 20 and 50 ng/ml IL-10 application no longer 

caused a decrease in mIPSC area or Itonic magnitude (Fig. 4A and B, n = 6–8 neurons/3 rats, 

p > 0.05). As expected, inhibiting postsynaptic intracellular PI3K activity did not alter 

IL-10-mediated decrements in mIPSC frequency (Fig. 4C).

3.4. IL-10 administration decreases duration of EtOH-induced LORR

Finally, since EtOH exposure caused an increase in hippocampal IL-10, we investigated if 

IL-10 administration (300 ng/rat, i.c.v.) affected the obtunding behavioral response to EtOH. 

IL-10 reduced the duration of EtOH-induced LORR by ~26% (Fig. 5: 189.8 ± 17.1 min for 

IL-10; 257.1 ± 21.9 for vehicle controls; t(10) = 2.426, p < 0.05). Analysis of blood EtOH 

concentrations revealed higher levels in IL-10- versus ACSF-treated rats upon regaining the 

righting reflex. (IL-10-treated group: 357.2 ± 10.9 mg%, ACSF-treated group: 320.9 ± 15.6 

mg%; t(10) = 1.906, p <0.05). As IL-10 exposure resulted in shorter LORR duration, despite 

higher BECs, this suggests that IL-10’s behavioral effect is likely due to its central 

neurochemical activity and not related to altered EtOH metabolism.

4. Discussion

We show that brain content of the anti-inflammatory cytokine IL-10 is increased 1 h after a 

single intoxicating dose of EtOH. We also identify a novel rapid regulation of GABAergic 

transmission by IL-10 in cortical and hippocampal neurons, via both pre- and postsynaptic 

mechanisms. The postsynaptic effect appears to be PI3K-dependent. Reduced sleep quality 

is one of the most prominent effects of acute EtOH withdrawal and is likely due to 

hyperexcitability, but the mechanisms involved are unclear. Behavioral evidence presented 

shows that IL-10 regulates EtOH sensitivity, by reducing acute EtOH-induced hypnosis. 

Overall, these results suggest that early increases in brain IL-10 after a single intoxicating 

dose of EtOH may contribute to disrupted sleep following EtOH exposure.

A growing body of evidence implicate several cytokines in modulation of synaptic function 

and surface expression of ion channels (Vezzani and Viviani, 2015). For example, IL-1β 
augments GABAAR function in the brain, an effect that presumably mediates somnogenic 

and motor-depressant effects of IL-1β (Miller et al., 1991). Conversely, TNF-α shifts the 

balance between synaptic excitation and inhibition towards excitation via an increase in 

surface expression of AMPARs and endocytosis of GABAARs (Stellwagen et al., 2005). 

IL-6 has been similarly shown to tilt the balance between excitation and inhibition towards 
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excitation in the temporal cortex (Atzori et al., 2012). We show that the anti-inflammatory 

cytokine IL-10 has a direct inhibitory effect on GABAergic mIPSCs recorded from adult rat 

hippocampal DG neurons. IL-10 causes a concentration-dependent inhibition of mIPSC 

frequency and amplitude, as well as tonic current magnitude. Previous studies have shown 

that IL-10 does not affect GluA1 trafficking in hippocampal cultures, so the effects of IL-10 

seem to be selective for GABAARs (Stellwagen et al., 2005).

Several studies also indicate changes in cytokine production and neuroinflammation after 

EtOH treatment. For example, Qin et al. have shown that after 10 daily doses of EtOH (5 

g/kg) and LPS, pro-inflammatory cytokines are acutely elevated in the brain and remain 

elevated for a prolonged periods (Qin et al., 2008). The same study also reported that IL-10 

expression and peptide levels were elevated in the liver, but decreased in the brain after 

EtOH and LPS treatment. Here, we show that a single intoxicating dose of EtOH increases 

IL-10 content in rat hippocampus as well as in primary cultured cortical neurons. Since 

IL-10 is a cytokine with anti-inflammatory and neuroprotective properties, this observation 

suggests early adaptive neuroprotective changes after an acute EtOH exposure. Interestingly, 

other studies report protracted elevations in IL-10 peptide levels 7 days after a 4-day binge 

EtOH exposure, without a breach in the BBB, as well as after 12-day withdrawal in a 

chronic EtOH exposure model (Marshall et al., 2013; Schunck et al., 2015). Moreover, it has 

been shown that IL-10 cannot cross the BBB (Kastin et al., 2003). These observations, along 

with our data, indicate that: 1) EtOH results in rapid de novo IL-10 synthesis in the brain 

independent of peripheral immune responses; and 2) IL-10’s early adaptive effects may 

contribute to withdrawal hyperexcitability.

We find that hippocampal IL-10 levels are elevated as early as 1 h after an acute binge 

alcohol exposure and that IL-10 inhibits GABAergic transmission. It is also known that 

alcohol consumption is associated with increased wakefulness during the second half of 

sleep (Westermeyer, 1987; Landolt et al., 1996). Moreover, binge-drinking disrupts sleep 

homeostasis, leading to alcohol-related sleep disorders (Thakkar et al., 2014). Interestingly, 

central IL-10 administration has been shown to reduce sleep in rats and rabbits (Opp et al., 

1995; Kushikata et al., 1999). IL-10 KO mice spend more time in slow-wave sleep and less 

time in wakefulness than WT mice (Toth and Opp, 2001). In parallel to these observations, 

our behavioral data show that IL-10 decreases EtOH-induced LORR duration in rats. These 

observations coupled with the role of GABAAR in sleep suggest that acute EtOH exposure 

increases brain IL-10 levels, which in turn may inhibit sleep by inhibiting GABAergic 

transmission. Increased brain IL-10 levels could also play a role in disrupting sleep 

architecture, a commonly occurring phenomenon in binge alcohol drinkers (Popovici and 

French, 2013).

Neural structures and systems involved in sleep production and regulation, including the 

corticothalamocortical network, prefrontal and limbic structures, and hippocampal–cortical 

communications (Hobson and Pace-Schott, 2002) are highly susceptible to disruption by 

EtOH (Fadda and Rossetti, 1998) and especially by multiple cycles of chronic EtOH 

exposure (Becker, 1998; Veatch, 2006) Thus, mice exposed to repeated cycles of EtOH 

vapor show profound disruptions sleep time and sleep architecture mirror those reported for 

the human alcoholics (Veatch, 2006). We have previously shown that acute EtOH induces 
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temporary, but reversible changes in GABAAR plasticity in DG neurons, and such changes 

are highly correlated with tolerance to diazepam-induced LORR (Liang et al., 2007), while 

chronic intermittent EtOH causes persistent GABAAR plasticity in DG, along with tolerance 

to EtOH-induced LORR (Liang et al., 2006). Interestingly, neurogenesis in DG cells is 

reduced after sleep deprivation (Guzman-Marin et al., 2008), while binge alcohol 

consumption also reduces neurogenesis and cell proliferation in the adult rat DG (Nixon and 

Crews, 2002). Overall these results implicate the dentate gyrus as an important predictor 

brain region in behavioral plasticity to EtOH and sleep.

IL-10 has been reported to be produced by microglia (Lim et al., 2013) and astrocytes 

(Fickenscher et al., 2002). The IL-10 receptor is expressed by glia as well as neurons 

(Sharma et al., 2011). It has also been shown that IL-10 does not cross the blood-brain-

barrier (Kastin et al., 2003), further supporting de novo synthesis in the brain, as suggested 

by our results. IL-10 binds to its cognate cell surface heterotetramer complex consisting of 

two ligand binding IL-10 receptor 1 (IL-10R1) and two accessory IL-10 receptor 2 

(IL-10R2) subunits. Binding of IL-10 to the IL-10R activates IL-10R1-associated Janus 

kinase 1 (JAK1) and IL-10R2-associated tyrosine kinase 2 (Tyk2), reviewed in (Kwilasz et 

al., 2015). Activation of these 2 kinases causes IL-10R1 phosphorylation and 

phosphorylation of STAT3. Ultimately, a variety of downstream signaling events such as 

cytokine modulation by NF-κB activation, neuroprotection, among others are affected. IL-10 

receptors have been shown to be expressed in microglia (Ledeboer et al., 2002) and cortical 

(Sharma et al., 2011) and hippocampal neurons (Lim et al., 2013). IL-10 is postulated to 

mediate neuroprotective effects by activation of the survival pathway consisting of PI3K and 

Akt/PKB and by modulation of intracellular Ca2+ levels (Strle et al., 2002; Tukhovskaya et 

al., 2014). PI3K activation leads to formation of phosphatidylinositol (3,4,5)-trisphosphate 

(PIP3) at the plasma membrane, causing the recruitment of AKT and its kinase, 

phosphoinositide-dependent protein kinase 1 (PDK1), to the membrane. With respect to 

GABAARs, insulin has been shown to induce surface expression of GABAAR via activation 

of PI3K, reviewed in (Luscher et al., 2011). One postulated mechanism is that PI3K P85 

subunit forms a complex with GABAAR and this complex is abundant under basal 

conditions. On stimulation with insulin, there is a further rapid increase in the abundance of 

this complex and its association with phosphorylated lipids (PIP3). There is also an increase 

in the translocation of the GABAAR-PI3K P85 complex to the membrane. Similarly, PI3K 

plays a role in interleukin-2 receptor (IL-2R) endocytosis (Basquin et al., 2013). In addition, 

infusion of the PI3K inhibitor, wortmannin in the nucleus accumbens attenuates both 

alcohol-mediated phosphorylation of AKT and excessive alcohol drinking in rats (Neasta et 

al., 2011). Collectively, these studies indicate that PI3K is activated after IL-10 binding to 

IL-10R and implicate PI3K in regulation of membrane GABAAR expression during binge 

alcohol intake. Based on these observations and our results that show IL-10-mediated 

inhibition of GABAergic mIPSCs, we hypothesized that PI3K was involved in IL-10 

mediated inhibition of GABAergic transmission. To test this hypothesis, we carried out 

mIPSC recordings in presence/absence of a PI3K inhibitor in the patch pipette. Our results 

indicate that PI3K is involved in the postsynaptic effects of IL-10 on GABAAR, since the 

PI3K inhibitor ablated the inhibitory effects of IL-10 on mIPSC area and tonic current, but 

not mIPSC frequency. The mechanisms of the intracellular signaling cascade after activation 
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of IL-10 R and any crosstalk with GABAAR remain to be elucidated. Similarly, IL-10 could 

also be altering trafficking of GABAAR.

We also identify a novel neurobehavioral regulation of EtOH sensitivity by IL-10. We show 

that IL-10 blocks acute EtOH-induced hypnosis. Several other neuroimmune molecules have 

been implicated in the behavioral response to acute EtOH. For example, inhibition of toll-

like receptor 4 (TLR4) signaling by (+) naloxone and null mutations in TLR4 cause a 

reduction in LORR duration (Wu et al., 2012). A similar effect on has been reported by 

blocking IL-1R signaling and by using IL-1ra in mice (Wu et al., 2011). It would be 

interesting to evaluate the behavioral response to EtOH using an IL-10R antagonist, but such 

a compound is not yet available commercially, albeit a human IL-10R peptide antagonist has 

been recently described (Naiyer et al., 2013). Given that anti-inflammatory compounds such 

as minocycline (Agrawal et al., 2011) and the NFκB inhibitor, caffeic acid phenethyl ester 

(CAPE) have been shown to reduce alcohol consumption (Harris and Blednov, 2013), it 

would be intriguing to evaluate the effects of IL-10 administration on EtOH consumption 

and preference.

Overall, our results uncover a novel neuroimmune modulation of GABAergic 

neurotransmission as well as a novel role for IL-10 in response to acute EtOH intake. We 

propose that an early increase in IL-10 levels contribute to the complex changes in 

neuroimmune signaling that occur after acute exposure to EtOH. Further, IL-10 has an 

inhibitory effect on GABAergic transmission, possibly leading to inhibition of sleep. 

Targeting IL-10 or signaling molecules such as PI3K may be a novel option for development 

of therapies in various CNS disorders such as alcohol-use disorders and epilepsy associated 

with an inflammatory component.
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Fig. 1. 
A. IL-10 release in primary cultured cortical neurons was potentiated after a 4-h incubation 

with 50 mM EtOH. IL-10 levels appeared attenuated after incubation with a rat IL-10 

neutralizing antibody (n = 4/group). B. Hippocampal IL-10 content in adult rats was 

significantly increased one hour after a single intoxicating dose of EtOH (5 g/kg, i.g.). *, p = 

0.025 (n = 8/group).
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Fig. 2. 
A. Application of 10 and 50 ng/ml IL-10 caused a reversible decrease in holding current of 

mIPSCs recorded from rat cultured cortical neurons (n = 11–13). B. Application of 5–50 

ng/ml IL-10 caused a decrease in mIPSC total charge transfer (*, p < 0.05), an outward shift 

in holding current (*, p < 0.05) and decreased mIPSC frequency (*, p < 0.001), n = 5–13/

group. C. Incubation of cultured neurons with a rat IL-10 neutralizing antibody caused a 

significant increase in mIPSC frequency (*, p < 0.05, n = 8/group).
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Fig. 3. 
A. Application of IL-10 caused a reversible decrease in the picrotoxin-sensitive tonic current 

(Itonic) recorded from a DG neuron. Application of 1–50 ng/ml IL-10 caused a decrease in B. 

mIPSC total charge transfer (*, p < 0.05). C. peak amplitude (*, p < 0.05), D. frequency of 

mIPSCs (*, p < 0.001) and E. tonic current magnitude (*, p < 0.05) and n = 7–13.
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Fig. 4. 
Effects of IL-10 (20 and 50 ng/ml) perfusion on A. mIPSC total charge transfer, B. tonic 

current magnitude, and C. mIPSC frequency. Recordings were made with control ( ), 10 

μM LY294002 ( , PI3-kinase inhibitor), or 10 μM LY303511 (●, negative control for 

LY294002) intrapipette solutions. Note that the IL-10-induced decreases in mIPSC area and 

Itonic magnitude were blocked by the PI3-kinase inhibitor, but not by the negative control. 

With both LY compounds, the IL-10-induced decreases in mIPSC frequency were similar to 

recordings with control pipette solution. *, p < 0.05, n = 6–8/group.
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Fig. 5. 
Effects of IL-10 administration on EtOH-induced loss of righting reflex. Immediately 

following a 3.5 g/kg intraperitoneal dose of EtOH, vehicle (ACSF) or IL-10 (300 ng, i.c.v.) 

was administered in adult rats. *, p < 0.05, n = 6 per group.
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