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Abstract

The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA 

α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while 

extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory 

transmission. These receptors have distinct pharmacological and biophysical properties that 

contribute to interest in how these different subtypes are regulated under physiological and 

pathological states. We utilized subcellular fractionation procedures to separate these populations 

of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. 

Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) 

activation increases α4 subunit expression, and these effects are associated with increased β3 

S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases 

extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings 

suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to 

inform the development of more specific therapeutics for neurological diseases that involve 

deficits in GABAergic transmission.

INTRODUCTION

GABAA-Rs are ligand-gated ion channels that mediate the majority of inhibitory 

neurotransmission in the CNS. GABAA-Rs are normally heteropentamers that are composed 

of two α(1–6), two β(1–3), and either a γ (1–3) or δ subunit. The presence of either the γ or δ 
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subunit in the assembled receptor influences receptor localization and consequentially the 

type of GABAAergic neurotransmission. GABAA-Rs containing the γ subunit, are located 

synaptically and mediate phasic inhibition1,2. Conversely, the δ-containing GABAA-Rs are 

located exclusively extrasynaptically and mediate tonic inhibition2,3. Both synaptic and 

extrasynaptic GABAA-Rs are crucial to maintaining overall neuronal excitability3.

The α4 subunit is present in both synaptic and extrasynaptic GABAA-Rs in the mammalian 

cerebral cortex. The α4γ and α4δ-containing GABAA-Rs have unique physiological and 

pharmacological properties. α4γ2-containing GABAA-Rs have a lower affinity for GABA 

but faster desensitization than α4δ-containing GABAA-Rs4–6. In addition, other endogenous 

modulators such as GABAAergic neuroactive steroids, exhibit higher potency at α4δ-

containing GABAA-Rs than α4γ2-containing GABAA-Rs4. Both α4-containing GABAA-Rs 

assemblies are insensitive to classic benzodiazepine agonists such as diazepam4 although the 

structurally related benzodiazepine derivatives, imidazobenzodiazepines, such as Ro15-4513 

display activity at both receptor subtypes7. α4δ GABAA-Rs are also potentiated by low 

millimolar concentrations of ethanol while α4γ2 GABAA-Rs require a higher 

concentration7–9, although this data is controversial, as not all labs have found that δ-

containing GABAA-Rs are sensitive to low concentrations of ethanol10. Thus, differences in 

the pharmacological and physiological characteristics of these GABAA-Rs have generated 

considerable interest in the contributions of these receptors to both physiological and 

pathological disease states.

Both α4-containing GABAA-R populations have been implicated in multiple disease states, 

such as alcohol dependence, fragile X syndrome, epilepsy, schizophrenia, and depression11. 

In some disease states, such as alcohol dependence12, epilepsy13,14, and schizophrenia15, 

downregulation of the δ subunit is accompanied by upregulation of α4γ2-containing 

GABAA-Rs, suggesting that this change in overall GABAA-R population may be important 

to the pathogenesis of these diseases. In non-pathological states, genetic ablation of the δ 

subunit also resulted in an increase in γ2 subunit expression in the cerebellar granule cells16. 

Despite these observations, the intracellular mechanisms that regulate changes in expression 

of the α4δ and α4γ2 receptors are still largely unknown.

PKA and PKC have long been known to regulate GABAA-R expression either through direct 

phosphorylation of GABAA-R subunits or through proteins associated with GABAA-

Rs17–19. PKA is known to modulate expression and function of GABAA-Rs through direct 

phosphorylation on the β3 subunit serine site S408/40920. PKC has been shown to 

phosphorylate sites on the GABAA subunits at α4 S44319, β2 S410, β3 S408/40920, and γ2 

S32721. Phosphorylation on these sites contributes to different trafficking22, stabilization23, 

internalization24, or expression25, depending on both the phosphorylation site and the 

composition of the GABAA-R26. In addition to direct regulation by protein kinases, indirect 

regulation of signal transduction by G-coupled protein receptors has also been shown to 

effect GABAA-R expression and function27–29.

However, it is still unknown whether PKA and PKC regulate both synaptic and extrasynaptic 

populations of α4-containing GABAA-Rs. Therefore, we were interested in the role of these 

two kinases in GABAA-R subunit expression. Previous work in our lab has suggested that 
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PKA and PKC have opposing effects on GABAA α4 subunit expression in the presence of 

ethanol in cortical neurons25,30. Thus, the present study sought to determine if PKC and 

PKA were involved in regulation of both the synaptic and extrasynaptic populations of α4 

GABAA-Rs in the absence of ethanol.

MATERIALS AND METHODS

Primary cortical neuron cell culture and treatments

All experiments were conducted in accordance with guidelines from the National Institutes 

of Health and Institutional Animal Care and Use Committee at the University of North 

Carolina. Postnatal day 0–1 Sprague Dawley rat pups of both sexes were decapitated and 

cortices were isolated and cultured as previously described31. Neurons were maintained in 
vitro for 18 days in DMEM, B27 (1%, Invitrogen), and penicillin/streptomycin (15 days, 50 

U, Invitrogen). On day 18, drugs were diluted in ddH2O or DMSO. PKA was activated with 

Sp-Adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt (Sp-cAMPs, 50 

μM, Sigma Aldrich) and inhibited with Rp-Adenosine 3′,5′-cyclic monophosphorothioate 

triethylammonium salt (Rp-cAMPS, 50 μM, Sigma Aldrich). PKC was activated with 

Phorbol 12,13-dibutyrate (PDBu, 100 nM, Sigma Aldrich) and inhibited with Calphostin C 

(CalC, 300 nM, Sigma Aldrich, St. Louis) All control experiments were exposed to equal 

volume ddH2O. All drug exposures were for one hour since previous experiments showed 

PKA and PKC both alter GABAA receptors at this time point25,30.

Quantitative PCR

Following treatment, cells were homogenized in Trizol according to manufacturers 

instructions. RNA was purified using Direct-zol RNA miniprep kits (Zymo) and 260/280 

and 260/230 ratios >1.8 were determined using a Nanodrop 1000 (ThermoScientific). RNA 

was reversed transcribed into cDNA using High Capacity RNA-to-cDNA kit (Applied 

Biosystems). qPCR was performed using 10 ng of cDNA per reaction, TaqMan Gene 

Expression Assays (Life Technologies), and TaqMan Gene Expression Master Mix (Life 

Technologies). Each reaction was run in duplicate and analyzed with the ΔΔCt method with 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as a loading control.

Membrane, synaptic and extrasynaptic fractionation

Membrane, synaptic and extrasynaptic fractions were produced as described 

previously5,32–35. Following drug exposures, cells were lysed by brief sonication in PBS 

containing 0.32M sucrose. The nuclear fraction and cell debris were removed by 

centrifugation at 1,000×g for 10 minutes at 4 °C. The membrane fraction was produced by 

centrifugation of the supernatant at 12,000×g for 30 minutes at 4 °C. The resulting pellet 

was resuspended in 0.32M sucrose PBS buffer containing 0.5% (v/v) Triton-X100 and 

incubated at 4°C under rotation for 20 minutes. The synaptic fraction was produced by 

centrifugation at 32,000×g for 20 minutes at 4 °C. The resulting pellet containing the 

synaptic fraction was resuspended in PBS containing protease and phosphatase inhibitors. 

The supernatant containing the extrasynaptic fraction was incubated in acetone (1:8 v/v) 

overnight at −20°C to insolubilize and concentrate the protein. This solution was pelleted by 

centrifugation at 3000×g for 15 min at 4 °C. The resulting pellet containing the extrasynaptic 
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fraction was resuspended in PBS containing protease and phosphatase inhibitors (Halt™, 

ThermoScientific).

Biotinylation for isolation of surface proteins

Isolation of surface proteins with biotinylation was performed using the Cell Surface Protein 

Isolation Kit (Pierce) according to manufacturers instructions. An aliquot was taken before 

avidin pulldown in order to analyze expression in the total fraction. The eluted biotinylated 

fraction was then subjected to western blot analysis. Surface expression was analyzed as the 

ratio of α4 in the biotinylated fraction over α4 in the total fraction. β-actin was probed in the 

biotinylated fraction as a control to insure that there were no intracellular proteins in the 

biotinylated fraction. Results were then normalized to the control for each fraction.

Western blot analysis

Protein concentrations were determined using BCA assay (Pierce). 30–50μg of protein was 

electrophoresed on 4–16% Tris-Glycine polyacrylamide gels (Biorad) and transferred to 

iBlot PVDF membranes (Invitrogen), blocked for 1 h in 1–5% BSA and incubated overnight 

at 4 °C with either anti-GABAA α4 (Abcam, #ab117080, 1:500), anti-GABAA β2 (Novus, 

#NB300-198, 1:1000), anti-GABAA β3 (Novus, #NBP1-47613, 1:1000), anti-GABAA δ 

(Novus, #3002-200, 1:750), anti-GABAA γ2 (Novus, #NB300-190, 1:1000), anti-GABAA 

phospho-γ2 (Ser327)(PhosphoSolutions, p1130-327, 1:1000), anti-GABAA phosphor-β3 

(Novus, NBP2-29508, 1:1000) anti-PSD95 (Novus, #NB300-198, 1:2000), anti-Gephyrin 

(BD Transduction, #610584, 1:1000), anti-neuroligin2 (Alomone Labs, ANR-036, 1:1000) 

or β-actin (Novus, #NB600-501, 1:3000) Membranes were then incubated with peroxidase-

labeled secondary antibodies (Mouse, rabbit, goat, Jackson Laboratories, 1:10000) and 

signals were developed using ECLPrime (GE) on a LAS 4000 Imager (GE). Bands were 

quantified using GE ImageQuant software and normalized to β-actin to control for loading.

Statistical analysis

Student’s t test was used to determine significance for all comparisons between two groups. 

One-way ANOVA was used to determine significance for more than two groups. Tukey’s 

posthoc test was used to determine significance between groups after one-way ANOVA. All 

analysis was performed using GraphPad Prism (version 6).

RESULTS

PKA and PKC activation have opposite effects on α4 GABAA-R subunit expression

PKA and PKC activation are known to have opposite effects on GABAA-R function and 

expression cerebral cortical neurons in the presence of ethanol25,30. To determine if PKA 

and PKC activation cause changes in α4 expression independent of ethanol, we activated 

PKA with Sp-cAMPs and activated PKC with PBDu then prepared membrane fractions and 

analyzed α4 expression using western blots (Fig 1A). Our results indicate that PKA 

activation decreases α4 expression (Fig 1B) while PKC activation increases α4 expression 

(Fig 1C) in the membrane fraction. We next used quantitative PCR to determine if there 

were also changes in gene transcription. PKA activation increases Gabra4 expression (Fig 

1D) while PKC activation caused no change in Gabra4 expression (Fig 1E). We also used 
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qPCR to analyze Gabrd and Gabrg2 expression after all four drug treatments and found no 

significant changes in either transcript (Gabrd: Sp 1.21±0.19; Rp 0.83±24; PDBu 1.22±0.45; 

CalC 1.14±0.36. Gabrg2: Sp 1.18±0.22; Rp 1.00±0.08; PDBu 1.20±0.41; CalC 1.17±0.11). 

To determine if PKA and PKC activation caused changes in surface expression we used 

biotinylation to isolate surface receptors. Our results indicate that PKA activation decreases 

α4 surface expression (Fig 1F) while PKC activation increases α4 surface expression (Fig 

1G). There was no change in total α4 expression levels after either PKA or PKC activation 

(data not shown).

Synaptic and extrasynaptic receptors can be separated by detergent Triton X-100

Since the GABAA α4 subunit is present in both synaptic and extrasynaptic populations of 

GABAA-Rs, we utilized a biochemical approach previously used for glutamate32 and 

GABAA receptors5,33 to investigate both synaptic and extrasynaptic receptors. We validated 

this approach for separation of GABAA receptors in cortical cultured neurons by probing for 

synaptic markers neuroligin 2, gephyrin, postsynaptic density protein-95 and for the 

GABAA δ subunit that is exclusively localized extrasynaptically (Fig 2)3. The GABA 

specific synaptic markers, neuroligin 2 and gephyrin were highly enriched in the synaptic 

fraction, along with postsynaptic density protein 95, while the GABAA-R δ subunit was 

enriched exclusively in the extrasynaptic fraction. Of note, the GABAA-R α4, α1, and γ2 

subunits were found in both fractions as expected from previous studies1–3,5.

PKA and PKC regulation of synaptic α4 GABAA-Rs

Following validation of our strategy to separate synaptic and extrasynaptic populations of 

GABAA-Rs, we determined if PKA and PKC regulate the two different populations of α4-

containing GABAA-Rs. Activation of PKA decreased synaptic α4 expression (Fig 3B) while 

activation of PKC increased synaptic α4 expression (Fig 3F). We next analyzed γ2 

expression, and found that PKA activation caused a decrease in γ 2 expression (Fig 3C) 

while PKC activation did not alter γ2 expression (Fig 3G). We found that neither PKA 

activation nor PKC activation caused a change in β3 expression (Fig 3A, Sp-cAMPs 

110.4±14.9 % control; PdBU 99.9±23.4 % control).

We next determined if inhibition of PKA or PKC caused changes in synaptic α4 expression. 

We inhibited PKA with the cAMP derivative Rp-cAMPs and found that there was no change 

in GABAA α4 expression (Fig 3A). Inhibition of PKC with CalC also caused no change in 

expression (Fig 3A).

The β3 subunit has two known PKA and PKC phosphorylation sites on S408 and S409, 

therefore we were interested if activation of PKA or PKC caused direct phosphorylation of 

β3 S408/409. Interestingly, we found that PKA activation increased phosphorylation on β3 

S408/409 (Fig 3D), but PKC activation did not (Fig 3H). Intrigued by the lack of PKC-

induced phosphorylation of β3 S408/409 on the β3 subunit, we next tested to see if there was 

increased phosphorylation on γ2 S327, another known GABAA-R site phosphorylated by 

PKC but not PKA. PKC activation increased phosphorylation of γ2 S327 (Fig 3I). As 

expected, PKA activation did not increase γ2 S327 phosphorylation (Fig 3E).
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PKA and PKC regulation of extrasynaptic α4 GABAA-Rs

Regulation of extrasynaptic GABAA-Rs by protein kinases is still poorly understood, and to 

date, no definitive phosphorylation site has been identified on the δ subunit despite the 

intracellular loop (316–410) of the GABAA δ subunit containing putative serine 

phosphorylation sites for PKA and PKC at δ S305/404 and δ S364/390 respectively (http://

www.cbs.dtu.dk/services/NetPhos/, accessed 3/4/15)36. In the present study, we found that 

activation of PKA caused an increase in the expression of α4 (Fig 4B) and δ subunits (Fig 

4C) in the extrasynaptic fraction, while activation of PKC did not change in either 

extrasynaptic α4 (Fig 4C) or δ expression (Fig 4F). We then inhibited PKC with CalC and 

analyzed the extrasynaptic fraction by western blot. Interestingly, we found that inhibition of 

PKC resulted in a decrease in δ subunit expression (51.9±10.4 % control, Fig 4A) but no 

change in α4 expression (109.4±12.34 % control, Fig 4A), suggesting that PKC inhibition 

may alter other extrasynaptic δ-containing GABAA-Rs. We found that neither PKA nor PKC 

activation altered β3 S408/409 phosphorylation (Fig 4A, D), or β3 expression (Fig 4A; Sp-

cAMPs 111.4±7.2 % control; PDBu 103.4±15.0 % control) in the extrasynaptic fraction.

Effects of PKA and PKC activation can be prevented

Since pharmacological activation of PKA and PKC may have off target or downstream 

effects, we next wanted to test that the activators were selective for PKA and PKC. 

Therefore, we simultaneously activated and inhibited PKA and analyzed α4 expression in 

the synaptic and extrasynaptic fractions. Our results indicate that simultaneous activation 

and inhibition of PKA prevented changes in α4 expression in the synaptic and extrasynaptic 

fractions (Fig 5A–C). Simultaneous activation and inhibition of PKC prevented the increase 

of α4 expression in the synaptic fraction, and had no effect on the extrasynaptic α4 

expression (Fig 5B–E).

Since PKC and PKA appear to regulate synaptic GABAA-Rs in opposing directions (Fig 3B, 

F) we sought to determine if simultaneous activation of both PKA and PKC would negate 

the effects on synaptic GABAA-Rs. Our results indicate that simultaneous activation of PKA 

and PKC restores α4 expression to control levels (Fig 5G, H). In contrast, simultaneous 

activation of PKA and PKC did not prevent PKA-induced up-regulation of α4 expression in 

the extrasynaptic fraction (Fig 5G, I), consistent with the conclusion that PKC does not 

regulate extrasynaptic α4 receptors.

DISCUSSION

Dysfunction of GABAergic systems that contribute to the development of neurological 

diseases likely stems from changes in GABAA-R expression, however little is known about 

the underlying mechanisms that facilitates these changes. We used a pharmacological and 

biochemical strategy to investigate the role of PKA and PKC on GABAA-Rs containing the 

α4 subunit. We focused on the α4 subunit because of its unique physiological properties37 

and due to its dysregulation in many disease states11,25,38–42. We focused on PKA and PKC 

because both kinases have long been known to modulate GABAA-R function17,20,21,30,43–45 

and expression18,46–48. We found that the activation of PKA or PKC had opposite effects on 

α4 expression, with PKA activation decreasing α4 expression and PKC noticeably 
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increasing α4 expression (Fig 1). Our results further indicate that changes in GABAA-R 

trafficking are likely responsible for changes in α4 expression, as surface expression 

changed, but total α4 expression did not (Fig 1). Since GABAA-R expression is thought to 

occur through either de novo insertion or reinsertion following internalization49 and since 

we didn’t observe increased Gabra4 mRNA levels following PKC activation we propose that 

increases in α4 surface expression are due to changes in receptor trafficking as opposed to 

de novo synthesis. Similarly, PKA activation increased Gabra4 expression but decreased α4 

surface expression, again indicating that changes in α4 expression are likely due to changes 

in GABAA-R trafficking. These results indicate that PKA and PKC activation have opposite 

effects on α4 membrane and surface expression in cultured cortical neurons, possibly 

through a trafficking mechanism. Future studies will need to address if changes in surface 

expression of α4 occur due to stabilization, changes in insertion, or recycling of these 

receptors.

The α4 subunit readily assembles into two distinct receptor populations in the cortex, the 

primarily synaptic α42βx2γ2 and exclusively extrasynaptic α42βx2δ GABAA-Rs. We utilized 

and validated a biochemical strategy that had previously been utilized for separation of 

synaptic and extrasynaptic NMDA receptors32 and for GABAA-Rs in vivo5 and in vitro33 to 

determine if there was differential regulation of these two populations by protein kinases in 

cultured cortical neurons (Fig 2). The enrichment of synaptic marker PSD-95 and 

GABAergic synaptic markers neuroligin 250 and gephyrin51,52 in our synaptic preparation 

and the presence of the δ exclusively in our extrasynaptic fraction provide ample evidence 

that our protocol can be used to interrogate the expression of synaptic vs. extrasynaptic 

populations of GABAA-Rs in cultured neurons. The presence of gephyrin outside the 

synaptic fraction, was surprising, but is consistent with gephyrin’s role as a synaptic 

organizer52, but not located exclusively at the synapse53. We discovered that there was 

significant expression of γ2 in our extrasynaptic preparation suggesting that some γ2-

containing receptors are localized outside of the synapse consistent with the previous 

studies52,54,55. Differentiation of α4-containing subtypes is important, as in epileptic and 

alcohol dependence models, there is a downregulation of δ-containing α4 GABAA-Rs and 

an upregulation of γ2-containing α4 GABAA-Rs11,12,56. These receptors mediate different 

forms of GABAergic inhibition3 and therefore changes in expression will have important 

consequences in mediating overall neuronal excitability and neurotransmission. Our 

methodology provides a relatively simple procedure that could be used to further 

investigation of endogenous populations of synaptic and extrasynaptic GABAA-Rs.

PKA has been shown to modulate GABAA-R responses and expression in recombinant 

systems and in cortical neurons17,20,30. Consistent with previous findings in the 

hippocampus57, PKA activation caused a decrease in synaptic α4 expression and provides 

further evidence that PKA is a modulator of α4-containing GABAA-Rs (Fig 3). 

Interestingly, decreased synaptic α4 expression is accompanied by an increase in 

phosphorylation of the known PKA phosphorylation sites and positive modulator of 

GABAA-R function β3 S408/40917. Phosphorylation of this site has been shown to inhibit 

binding of GABAA receptors to the AP2 complex, preventing internalization58, which 

appears to be at odds with our current results. However, previous studies in our lab 

demonstrate that PKA activation increases α1 expression and zolpidem evoked-currents30, 
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suggesting that PKA simultaneously down-regulates α4-containing GABAA-Rs and up-

regulates α1-containing GABAA-Rs. Future studies are needed to determine whether 

changes in β3 S408/409 phosphorylation are associated with receptors containing both the 

α1 or α4 subunits following PKA activation.

Like PKA, PKC modulates GABAA-R function and expression in recombinant and neuronal 

systems18,21,22,59. We found that PKC activation increases synaptic α4 expression in direct 

opposition to our finding with PKA activation (Fig 3) but consistent with previous results 

that PKC increases overall α4 surface expression in COS7 cells19 and cortical neurons25. 

These effects are likely specific to PKC as this effect was blocked by the co-exposure with 

the PKC inhibitor, CalC (Fig 5). We also observed an increase in γ2 S327 phosphorylation 

that may account for the increase of synaptic α4 expression following PKC activation. 

Phosphorylation of γ2 S327 has been shown to stabilize GABAA-Rs at synaptic sites60. 

Further studies are needed to demonstrate that phosphorylation of γ2 S327 is required for the 

effects of PKC on synaptic α4 receptors.

PKA and PKC appear to be working in opposition on synaptic α4 expression as 

simultaneous activation of both kinases blocked changes in synaptic α4 expression (Fig 5). 

PKA and PKC have previously been shown to work in opposition61 and have opposite 

effects on GABAA-R function in a cell-type specific manner5729. This is also consistent with 

previous work showing that ethanol exposure for one hour increases both PKA and PKC 

membrane activity and consequently there is no change in α4 expression30 suggesting that 

these kinases have opposite effects on synaptic α4 expression. PKA and PKC may compete 

for regulation of these receptors, as previous reports have found that PKA phosphorylation 

of β3 S408/409 is only increased when PKC is inhibited18.

In contrast to findings in the synaptic fraction, we found that PKC did not regulate 

extrasynaptic α4 expression (Fig 4). Previous studies examining the effects of PKC on 

extrasynaptic GABAA-Rs have demonstrated that PKC regulation of extrasynaptic GABAA-

Rs is complex and varies depending on receptor composition, cell type, drug exposure, and 

experimental temperature19,23,24. In recombinant systems, pharmacological activation of 

PKC for twenty minutes decreased α4β2δ surface expression in HEK293 cells while other 

studies have shown that 10 minute pharmacological activation of PKC increases α4β3δ 

GABAA-Rs in COS7 cells19. PKC activation in dentate gyrus granule cells and thalamic 

relay neurons caused a decrease in GABAA-R tonic current24 possibly due to down-

regulation of δ-containing GABAA-Rs. In the hippocampus, treatment with PDBu increased 

α4 surface expression19. Other studies have found that neither activating nor inhibiting PKC 

had any effect on GABAA-R tonic current in cerebellar granule cells62. Conflicting reports 

regarding PKC regulation of extrasynaptic GABAA-Rs may be due to the presence of 

different PKC isoforms, GABAA-R assemblies, or experimental conditions.

In contrast, we found that PKA activation increases the expression of extrasynaptic α4 

GABAA-Rs (Fig 4), and this effect can be blocked by simultaneous exposure with a PKA 

inhibitor (Fig 5) but not a PKC activator. This suggests that in contrast to synaptic α4 

GABAA-Rs, PKA and PKC do not work in opposition on extrasynaptic α4 GABAA-Rs in 

cultured cortical neurons. This result agrees with functional studies conducted in our 
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laboratory showing increases in tonic current in cultured cortical neurons after exposure to a 

PKA activator but no change in tonic current after PKC activation33 as well as other studies 

conducted in the visual cortex finding that PKA activation increases tonic current63. 

However, other studies have shown PKA activation decreases tonic conductance in 

thalamocortical neurons, while activation of metabotropic Gi/o GABAB receptors or use of 

PKA inhibitors increases tonic conductance27 suggesting that PKA modulation of GABAA-

Rs may be brain region or cell type specific. The present results suggest that PKA has 

differential effects on α42βx2δ and α2βx2γ2 GABAA-Rs which backs work in recombinant 

systems showing that PKA activation increases α42β32δ spontaneous currents, but not 

α42β32γ2 spontaneous currents59. Future studies will need to determine the precise 

mechanism of how PKA activation increases α42βx2δ expression.

The current study demonstrates that PKA and PKC are regulators of α4 expression and 

provides insight into how activation of these kinases may facilitate changes in α4 

expression. Additional studies will be required in order to determine if changes in synaptic 

and extrasynaptic α4 expression are due to receptor trafficking, surface stabilization, or 

degradation. Unfortunately, biotinylation interferes with TritonX-100 fractionation and 

prevents adequate separation of the synaptic and extrasynaptic fractions. Future studies 

using alternative methods will be needed to determine the mechanism of changes in 

expression of these two populations of α4 containing GABAA-Rs. Future studies will also 

need to determine if changes in phosphorylation observed in the current study occur only on 

the α4-containing GABAA-Rs or other GABAA-R complexes assembled with a different α 

subunits. These studies could use the methodology that we present in the present study order 

to further interrogate whether these changes occur on synaptic or extrasynaptic GABAA-Rs.

Overall, our present work suggests that PKA and PKC have opposing effects on synaptic α4 

expression while only PKA has effects on extrasynaptic α4 expression in cortical neurons 

(Fig 6). The results of this study demonstrate one regulatory mechanism for the expression 

of extrasynaptic GABAA-Rs in the cortex. This could inform diagnostic and therapeutic 

interventions for alcoholism, depression, epilepsy, stroke, and schizophrenia as well as 

broaden the knowledge and understanding of the regulation of extrasynaptic GABAA-Rs and 

inhibitory tonic current in the cortex.
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HIGHLIGHTS

• PKA regulates the expression of synaptic and extrasynaptic α4 GABAA-Rs.

• PKC regulates the expression of synaptic but not extrasynaptic α4 GABAA-Rs.

• PKA and PKC have opposing effects on expression of synaptic α4-containing 

GABAA-Rs.

• Biochemical separation of synaptic and extrasynaptic α4-containing GABAA-Rs 

shown.
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Figure 1. PKA and PKC activation have opposite effects on GABAA α4 subunit expression
(A) Cortical neurons (DIV 18) were treated 1 hr with either ddH2O(Con), PKA activator Sp-

cAMPs (Sp, 50μM) or PKC activator PDBu (PDBu, 100 nM), followed by membrane 

fractionation or surface biotinylation and western blot.

(B) Quantification of membrane expression of GABAA α4 subunit following PKA 

activation.

(C) Quantification of membrane expression of GABAA α4 subunit following PKC 

activation.

(D) qPCR for Gabra4 in cortical neurons (DIV 18) treated by PKA activators and inhibitors.

(E) qPCR for Gabra4 in cortical neurons (DIV 18) treated by PKA activators and inhibitors.

(F) Quantification of surface expression of GABAA α4 subunit following PKA activation.

(G) Quantification of surface expression of GABAA α4 subunit following PKC activation.

Values are relative to control. *p<0.05, **p<0.01. Error bars indicate ± SEM. n = 3–8 

independent experiments.
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Figure 2. Synaptic and extrasynaptic populations of α4 containing GABAA receptors can be 
separated with Triton X-100
Representative blots showing TritonX-100 (0.5%) enriches the synaptic fraction for synaptic 

markers, neuroligin 2, PSD-95, and gephyrin, while the extrasynaptic fraction is enriched for 

GABAA δ subunit.
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Figure 3. PKA and PKC have opposing effects on synaptic α4 subunit expression
(A) Cortical neurons (DIV 18) were treated 1 hr with either ddH2O(Con), PKA activator Sp-

cAMPs (Sp, 50μM), PKC activator PDBu (PDBu, 100 nM), PKA inhibitor Rp-cAMPs (Rp, 

50 μM), or PKC inhibitor Calphostin C (CalC, 300nM) followed by isolation of the synaptic 

fraction and western blot.

(B) Quantification of synaptic expression of GABAA α4 subunit following PKA activation.

(C) Quantification of synaptic expression of GABAAγ2 subunit following PKA activation.

(D) Quantification of extrasynaptic expression of GABAA β3 S408/409 phosphorylation 

following PKA activation.

(E) Quantification of synaptic expression of GABAAγ2 S327 phosphorylation following 

PKA activation.

(F) Quantification of synaptic expression of GABAA α4 subunit following PKC activation.

(G) Quantification of synaptic expression of GABAAγ2 subunit following PKC activation.

(H) Quantification of extrasynaptic expression of GABAA β3 S408/409 phosphorylation 

following PKC activation.

(I) Quantification of synaptic expression of GABAAγ2 S327 phosphorylation following 

PKC activation.

Values are relative to control. *p<0.05, Error bars indicate ± SEM. n = 4–9 independent 

experiments.
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Figure 4. PKA, but not PKC activation, increases extrasynaptic α4 subunit expression
(A) Cortical neurons (DIV 18) were treated 1 hr with either ddH2O(Con), PKA activator Sp-

cAMPs (Sp, 50μM), PKC activator PDBu (PDBu, 100 nM), PKA inhibitor Rp-cAMPs (Rp, 

50 μM), or PKC inhibitor Calphostin C (CalC, 300nM) followed by isolation of the 

extrasynaptic fraction and western blot.

(B) Quantification of extrasynaptic expression of GABAA α4 subunit following PKA 

activation.

(C) Quantification of extrasynaptic expression of GABAA δ subunit following PKA 

activation.

(D) Quantification of extrasynaptic expression of GABAA β3 S408/409 phosphorylation 

following PKA activation.

(E) Quantification of extrasynaptic expression of GABAA α4 subunit following PKC 

activation.

(F) Quantification of extrasynaptic expression of GABAA δ subunit following PKC 

activation.

(G) Quantification of extrasynaptic expression of GABAA β3 S408/409 phosphorylation 

following PKC activation.

Values are relative to control. *p<0.05, Error bars indicate ± SEM. n = 4–9 independent 

experiments.
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Figure 5. Effects of PKA and PKC activation on synaptic and extrasynaptic α4 expression can be 
blocked by PKA or PKC inhibitors
(A) Cortical neurons (DIV 18) were treated 1 hr with either ddH2O(Con), PKA activator Sp-

cAMPs (Sp, 50μM), PKA inhibitor Rp-cAMPs (Rp, 50 μM), or both followed by 

fractionation and western blot.

(B) Quantification of synaptic GABAA α4 expression following simultaneous PKA 

activation and inhibition.

(C) Quantification of extrasynaptic GABAA α4 expression following simultaneous PKA 

activation and inhibition.

(D) Cortical neurons (DIV 18) were treated 1 hr with either ddH2O(Con), PKC activator 

PDBu (PDBu, 100 nM), and PKC inhibitor Calphostin C (CalC, 300nM), or both followed 

by fractionation and western blot.

(E) Quantification of synaptic GABAA α4 expression following simultaneous PKC 

activation and inhibition.

(F) Quantification of extrasynaptic GABAA α4 expression following simultaneous PKC 

activation and inhibition.
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(G) Cortical neurons (DIV 18) were treated 1 hr with either ddH2O(Con), PKA activator Sp-

cAMPs (Sp, 50μM), PKC activator PDBu (PDBu, 100 nM), or both followed by 

fractionation and western blot.

(H) Quantification of synaptic GABAA α4 expression following simultaneous PKA 

activation and PKC activation.

(I) Quantification of extrasynaptic GABAA α4 expression following simultaneous PKA 

activation and PKC activation.

Values are relative to control. p<0.05, Error bars indicate ±SEM. n = 4–6 independent 

experiments.
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Fig 6. Model of PKA and PKC regulation of subpopulations of α4 GABAA-Rs in cortical 
neurons
PKA activation decreases synaptic α4 GABAA-R subunit expression in conjunction with 

increased S408/409 phosphorylation of the β3 subunit, while PKA activation increases 

extrasynaptic α4/δ GABAA-R expression independent of β3 subunit phosphorylation, 

suggesting these distinct receptor subtypes are independently regulated in opposite 

directions by PKA. PKC activation increases synaptic α4 GABAA-R subunit expression in 

conjunction with increased S327 phosphorylation of the γ2 subunit, while this activation has 

no effect on extrasynaptic α4/δ GABAA-R expression. PKA and PKC have opposing effects 

on synaptic α4 GABAA-Rs.
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