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Abstract

Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of 

the neural processes which link two minds is unknown. We implemented a novel approach, which 

included connectome similarity analysis using resting state intrinsic networks of parent-child 

dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both 

parents and their adolescent child were identified using independent component analysis (ICA). 

Results indicate that parents and children who had more similar RSN connectome also had more 

similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was 

associated with children’s emotional competence, suggesting that being neurally in-tune with their 

parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is 

associated with emotional synchrony in what is often our first and most essential social bond, the 

parent-child relationship.
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INTRODUCTION

The human mind is continuously coupled to those around us, and this shared social 

synchrony influences the way we perceive, respond to, and thrive in a complex social world 

(Wheatley et al., 2012). As far back as 384 BC, Aristotle described human nature as 
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inherently social (Saunders, 1995 trans.), and scientists today describe humans as wired to 

connect with others (Lieberman, 2013; Schilbach et al., 2013; Wheatley et al., 2012; 

Wiltermuth and Heath, 2009). Indeed, social synchrony appears in infants as young as one-

day-old (Singer, 2006), suggesting that humans are biologically prepared to connect with 

others (Feldman, 2007b), and is found across species including mice (Langford et al., 2006), 

suggesting that synchrony is evolutionarily conserved. Despite emerging evidence 

suggesting a biological basis to our social tiles, our understanding of the neural processes 

which link two minds is unknown.

Although social synchrony is found across many forms of human relationships, synchrony 

occurs most with similar or close others, a phenomenon found in humans and mice 

(Langford et al., 2006). From an evolutionary perspective of parenting in mammals, parents 

and their child are wired to connect, which promotes survival (De Waal, 2007). Social 

synchrony in mother-child dyads includes the coordination of ongoing exchanges of sensory, 

hormonal, and physiological stimuli between parent and child and ranges from the initial 

consolidation of biological rhythms during pregnancy to the emergence of complex social 

and emotional exchanges between parent and child throughout development (Feldman, 

2007a, b; Rosenblatt, 1965; Schneirla, 1946). Given the protracted dependence of humans 

on their parents, coordinated social synchrony may be co-opted into childhood and 

adolescence, ultimately providing the foundation for youth to develop socioemotional 

competence. Indeed, dyadic synchrony influences emotion regulation and adjustment 

(Barber et al., 2001) such that coherence of emotional states between parents and children 

(e.g., shared affect) provides critical inputs for youths’ social and emotional well-being 

(Feldman, 2007a, b; Feldman et al., 1999).

Significant work has begun to examine the biological underpinnings of parent-child dyadic 

synchrony, such that physiological arousal (e.g., heart rate)(Feldman et al., 2011) and 

hormonal levels (e.g., cortisol levels)(Papp et al., 2009) are frequently in-synch between 

parents and their child. For instance, during free-play, mothers’ and infants’ heart rates 

become synchronized, and during stressful events, infants who engage in more synchronous 

interactions with their mothers show better autonomic regulation (Feldman, 2007b). Despite 

these exciting advances in the field of dyadic synchrony, we know relatively little about how 

two minds are coupled. If indeed, the human mind is wired to connect, then an exciting new 

research direction is to test whether parents and their children show similar patterns of 

neural connectivity.

In the current study, we examined how neural connectivity patterns are shared between 

parents and their child. We implemented novel statistical and methodological techniques to 

examine how similarity between parent-child intrinsic resting-state network (RSN) 

connectivity is associated with day-to-day emotional synchrony. Moving beyond the 

individual, resting state functional magnetic resonance imaging (rs-fMRI) was administered 

for both parents and children. Rs-fMRI provides an ideal method for examining the neural 

connectome, as it assesses the strength of multiple intrinsic functional neural networks, 

networks active and synchronized when the brain is at rest independent of stimulus-induced 

brain activity usually driven by experimental demands (Cole et al., 2010; Uddin et al., 2010). 

Intrinsic resting-state networks for both parents and their adolescent child were identified 
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using independent component analysis (ICA). Parent-child dyads also completed daily 

diaries, in which they indicated their daily mood each evening for two weeks. From these 

daily diaries, we were able to capture parent-child emotional synchrony, or the extent to 

which their mood fluctuated together day-by-day. We examined how dyadic connectome 

similarity is associated with the quality of daily emotional synchrony and whether the 

association between brain similarity and daily emotional synchrony confers benefits to 

adolescents’ emotional competence. We hypothesized that greater similarity of intrinsic 

functional connectome in parent-child dyad would increase daily emotional synchrony and 

be linked to adolescents’ emotional well-being.

METHODS

Participants

As part of a larger study, we recruited 76 participants (37 adolescent children and 39 primary 

caregivers). All participants provided informed consent/assent, and no participants reported 

any mental health problems (e.g., current clinical diagnose or pharmacological intervention 

for a mental illness). Among all participants, 31 parent-child dyads (n = 62) successfully 

completed the dyadic resting state scan (parent Mage = 43.06 years, range = 33 – 57, 12.90% 

father; child Mage = 14.80 years, range = 13 – 17, 48.39% female). All parent-child dyads 

were biologically related and provided written informed consent/assent. No participants 

were excluded due to excessive motion (i.e., mean framewise displacement, FD > 0.5 mm) 

or reported any mental health problems (e.g., current clinical diagnose or pharmacological 

intervention for a mental illness).

Procedures

Adolescent children and their primary caregiver completed a brain scan during which resting 

state was acquired. Children and their parent also completed daily checklists for 14 days. 

Participants either completed the checklists by accessing a secure website or by using pencil 

and paper. For those completing with paper/pencil, we monitored completion of the 

checklists by providing participants with fourteen manila envelopes and an electronic time 

stamper. The time stamper is a small, hand-held device that imprints the current date and 

time and is programmed with a security code so that the correct date and time cannot be 

altered. Participants were instructed to place their completed checklists into a sealed 

envelope each night and to stamp the seal of the envelope with the time stamper. For those 

completing the surveys on the secure website, an email with the link to each daily survey 

was sent separately to the parent and child, and the time and date of completion were 

monitored via the website. In addition to the daily diaries, parents and children completed a 

questionnaire, which included adolescents’ emotional competence, as well as several 

measures as part of the larger study and published elsewhere (e.g., Lee & Telzer, 2016).

Questionnaires

Daily emotional synchrony—Children and their parents each completed daily checklists 

for two weeks (a total 14 daily measures). Each night before going to bed, participants 

responded to three questions about their positive mood (e.g., “joyful” “calm” “happy”) and 

10 questions about their negative mood (e.g., “sad” “hopeless” “discouraged” “uneasy”) 
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using a five-point scale (1 = “Not at all” to 5 = “Extremely”). From these 14 daily measures, 

we first calculated the daily concordance between adolescents’ and parents’ mood. The 

mood concordance for each dyad was estimated by predicting children’s daily mood from 

parents’ daily mood that day (positive and negative coherence, respectively). Given the 

nested nature of the data, we used Hierarchical Linear Modeling (HLM) which was designed 

to analyze nested data of the type that were collected for this study (i.e., daily level data 

nested within individuals) as follows:

Mood on a particular day (i) for a particular child (j) was modeled as a function of the 

average mood of the children across days (b0j) and the parent’s mood that day (b1j). Separate 

models were run for positive and negative mood, and the empirical Bayes estimate for each 

dyad over the 14 days was extracted from each of the statistical models. The empirical 

Bayes estimate is an optimally weighted average that combines the dyad’s average slope and 

“shrinks” it towards the mean slope of the group (Diez, 2002) for each mood category such 

that higher values indicate higher concordance between parent and child for a given mood. 

Finally, we calculated an emotional synchrony index between parents and children by 

subtracting the concordance score of negative mood from the positive mood concordance 

score such that higher values represent more synchronized daily emotion between parents 

and their child toward positive mood and away from negative mood. On average, parent’s 

daily mood did not predict children’s daily mood (B = 0.14, SE = .01, p=.10). However, 

there was significant variability in parent-child emotional synchrony (M = −0.10, SD = 0.66, 

range = −1.25 – 0.66), indicating that some families are desycnronous and others are highly 

synchronized. Three adolescent children did not complete the daily checklists.

Child’s emotional competence—Emotional competence was measured using the 

Toronto Alexithymia Scale (Bagby et al., 1994). Using a five-point scale (1 = “strongly 

disagree” to 5 = “strongly agree”), adolescent children responded to 20 items examining (1) 

difficulty in identifying feelings (e.g., “When I am upset, I don’t know if I am sad, 

frightened, or angry”); (2) difficulty in describing feelings (e.g., “It is difficult for me to find 

the right words for my feelings”), and (3) external-oriented thinking (e.g., “I prefer to just let 

things happen rather than to understand why they turned out that way”). The 20 items were 

summed and reverse scored (Telzer et al., 2014), such that higher scores indicate greater 

emotional competence. The scale’s internal consistency was α = .72. We failed to get 

responses from four adolescent children.

Resting-state fMRI (rs-fMRI)

Data acquisition, preprocessing—Participants completed a 6-minute resting state scan, 

during which they were instructed to view a black screen with a white fixation cross. All 

imaging data were collected using a 3T-Siemens Trio MRI scanner with a 32-channel matrix 

coil. High-resolution structural images (T1-MPRAGE) were acquired first (repetition time or 

TR = 1.9 s, echo time or TE = 2.3 ms, matrix size = 256 X 256, field of view or FOV = 230 

mm, flip angle or FA = 90°, 1 mm isotropic voxel). The resting-state data were acquired 

from a gradient-echo echo-planar image sequence. The resting-state scan parameters for 15 
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dyads were 180 volumes, 38 slices with 0.3 mm-slice gap, TR = 2 s, matrix = 92 X 92, FOV 

= 230 mm, FA = 90°, voxel size 2.5 X 2.5 X 3.0 mm3, and 6 min duration, and the other 16 

dyads were 120 volumes; 36 slices with no inter-slice gap, TR = 3 s, matrix = 64 X 64, FOV 

= 220 mm, FA = 90°, voxel size 3.5 X 3.5 X 4.0 mm3 and 6 min duration. Data 

preprocessing were performed using FMRIB’s Software Library (FSL; www.fmrib.ox.ac.uk/

fsl), including skull stripping of structural images with BET, motion correction with 

MCFLIRT, smoothing with full-width half-maximum 6 mm, masking of non-brain voxels; 

128 s high-pass, voxel-wise demeaning and normalization into 2mm-MNI-standard via 

individual T1-weighted anatomical image with FLIRT. Noise signals were identified 

individually and removed using MELODIC ICA and an automated signal classification 

toolbox (an average of 4.7 components (13.4 %) were removed from each participant; mean 

FD = 0.03 mm, range = 0.01 – 0.10 mm)(Tohka et al., 2008). Although there are several 

strategies suggested to rigorously correct for motion-related noise in resting state data, such 

as spike regression with 24-type of motion parameters (Lemieux et al., 2007; Satterthwaite 

et al., 2013) and individual high-motion contaminated volume scrubbing (Power et al., 

2012), several considerations of these strategies also exist such that they can introduce 

overfitting by the use of a large set of nuisance regressors, linear assumption about motion, 

and negative influences in the autocorrelation structure of data (see Pruim et al., 2015b). 

Therefore, we applied ICA denoising approach for the current analysis given the recent 

evidence that ICA denoising can effectively enhance the fidelity of data quality in terms of 

motion control (Birn et al., 2008; Pruim et al., 2015a; Starck et al., 2013). It has been well 

demonstrated that RSNs estimated by ICA are less prone to artifactual effects from noise 

such as physiological signal, global signal fluctuation and motion due to the ability of ICA 

to account for the existence of such noise effects within additional non-RSN components 

(Boubela et al., 2013; Cole et al., 2010) with robustness of RSN identification in rs-fMRI 

(Poldrack et al., 2011). Furthermore, a recent study demonstrates that ICA-based denoising 

can diminish potential differences due to multi-center/protocol data collection in rs-fMRI 

(Feis et al., 2015; Paolini et al., 2015).

Group ICA—In order to compare children and their parents and obtain commonly shared 

resting-state networks (RSNs), we first pooled our data for all possible adolescent children 

and parents (n = 76). Then, temporal concatenate group ICA was applied with probabilistic 

principal component analysis (PCA) where the number of dimensions was estimated using 

the Laplace approximation to the Bayesian evidence of the model order (Beckmann et al., 

2009; Beckmann and Smith, 2004; Minka, 2000), yielding 19 network spatial maps. To 

distinguish group-level brain networks from artefactual components (e.g., residual head 

movement and physiological noise) and to identify canonical RSNs, all network maps were 

spatially cross-correlated with canonical RSN templates (i.e., template-matching procedure) 

acquired from previous resting-state studies (Laird et al., 2011; Shirer et al., 2012; Smith et 

al., 2009). We finally identified 13 intrinsic RSN components (cross-validation threshold r > 

0.25; Figure 1A); two default mode networks (DMN1 and DMN2), right and left 

frontoparietal network (RFPN and LFPN), salience network (SN), limbic network (LN), 

ventral stream network (VSN), three visual networks (VN1, VN2 and VN3), somatosensory 

network (SMN), auditory network (AN) and cerebellum-midbrain network (CMN). The six 

remaining group level components were considered artifactual (e.g., physiological) due to 
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predominant activation in white matter, ventricles, vasculature, or head movement. To ensure 

that these networks were consistently shared across participants regardless of their age group 

(parents and children), we additionally ran the same group ICA analysis for each age group 

separately and found these RSNs exist in both groups consistently. These group level maps 

are all available in a public repository of human brain imaging (http://neurovault.org/).

Analysis for dyadic resting-state intrinsic functional connectome similarity—
Using the group level RSN maps yielded by group ICA, we estimated specific time-courses 

of each RSN for each participant (parent-child dyad; n = 31) using the spatial regression 

approach of the dual-regression method (Filippini et al., 2009). In the spatial regression, we 

performed linear model estimation with the full set of group-level ICA network maps against 

the separate individual datasets and estimated subject-specific temporal dynamics for each 

RSN map while controlling for the influence of other network dynamics including noise 

components (Figure 1B.Step1). The estimated individual time-courses for each RSN were 

then used to create an ICA-based functional network connectivity matrix (i.e., connectome) 

by correlating (Pearson-r) all possible pairs of time-courses from 13 RSNs as shown in 

Figure 1B.Step 2. Finally, the connectivity matrix for each individual was Fisher-Z 

transformed, vectorized and correlated between each pair of parent-child dyads to calculate 

RSN connectome similarity (see Figure 2A for the averaged functional RSN connectome in 

both parent and child groups). Note that the large-scale group-level network maps were used 

for individual-specific estimations to calculate functional connectivity in each individual 

rather than group-level comparison (e.g., parents vs. children). The neural similarity varied 

across parent-child dyads (M similarity = 0.47, SD = 0.23, range = 0.07 – 1.05).

RESULTS

Relationship between RSN connectome similarity, daily-emotional synchrony and 
children’s emotional competence

To examine how dyadic RSN connectome similarity, daily emotional synchrony, and 

children’s emotional competence are related, we performed Pearson correlation analyses 

using robust method with non-parametric bootstrapping resampling (n = 50,000) at 95% 

confidence level (Pernet et al., 2012). We first examined how RSN connectome similarity 

influences daily emotional synchrony between parents and their child, and found that there 

is a significant positive correlation, r (28) = 0.61, p < .05, 95% CI = [0.30, 0.80], suggesting 

that parent-child dyads who showed higher RSN connectome similarity also showed greater 

emotional synchrony (Figure 2B). Next, we ran correlation analyses linking RSN 

connectome similarity and children’s emotional competence. Children who have more 

similar RSN connectome with their parents reported better emotional competence, r (27) = 

0.31, p < .05, 95% CI = [0.04, 0.58] (Figure 2C). Finally, we observed a significant positive 

relationship between daily emotional synchrony and children’s emotional competence, r (27) 

= 0.45, p < .05, 95% CI = [0.11, 0.70] (Figure 2D), suggesting that higher emotional 

synchrony is related to enhanced emotional competence in adolescents. Together, these 

results indicate that parent-child dyads who show more similar brain connectomes exhibit 

more daily-emotional synchrony, each of which is associated with enhanced emotional 

competence.
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Mediation between RSN connectome similarity, daily-emotional synchrony and children’s 
emotional competence

Given that the pairwise relationships between RSN connectome similarity, daily emotional 

synchrony, and adolescents’ emotional competence were statistically meaningful, we 

conducted mediation analyses focusing on whether dyadic connectome similarity (i.e., 

independent variable) was associated with adolescents’ emotional competence (i.e., 

outcome) through daily-emotional synchrony (i.e., mediator) (model 1). The magnitude and 

the significance were calculated based on a robust approach and bias-corrected confidence 

interval with bootstrapping resampling (n = 5000) using the mediation toolbox (Wager et al., 

2008). Results indicate that daily-emotional synchrony significantly mediated the link 

between neural connectome similarity and emotional competence, B = 5.34 (SE = 4.22), p < 

0.05, 95% CI = [0.21, 15.16]. That is, parent-child dyads with more similar brain 

connectomes exhibit better emotional competence via positively biased mood-

synchronization (Figure 2E).

In addition, we tested the possibility that daily emotional synchrony leads to enhanced 

emotional competence through shaping similar brain connectomes, assuming that 

synchronized daily emotions influence emotional competence in adolescents by utilizing the 

same brain connectome. In this model, emotional synchrony was used as the independent 

variable to predict emotional competence via dyadic brain similarity (model 2). We did not 

find a significant indirect effect of emotional synchrony via brain similarity on emotional 

competence (95% CI = [−2.68, 8.90]). Collectively, these mediation analyses indicate that 

dyadic brain similarity plays an important role in children’s emotional competence by 

contributing to more synchronized emotional mood fluctuations between parents and their 

children.

DISCUSSION

Children and their parents are in sync. They frequently share their ideas, feelings, and 

behaviors. Such dyadic synchrony confers emotional benefits and provides the foundation 

for youth to adapt to an increasingly complex social environment. Despite the importance of 

the interpersonal connection between parents and their child, our understanding of how this 

shared process between individuals is represented at the neural systems level remains 

unknown. No prior study has scanned parent–child dyads and related similarities in their 

resting state connectome to interpersonal processes. We provide the first empirical evidence 

unpacking how the brain’s functional organization is shared between individuals and 

influences emotional synchrony, ultimately conferring benefits for youths’ development.

The brain connectome is a rich index to evaluate how the large-scale brain architecture 

within an organism is connected (Barch et al., 2013; Sporns et al., 2005). The connectome 

built on rs-fMRI provides an index of the individual’s unique brain fingerprint (Gabard-

Durnam et al., 2016; Pizoli et al., 2011; Van Dijk et al., 2012; Zuo et al., 2012). While each 

intrinsic RSN corresponds to a different functionality (Cole et al., 2010; Laird et al., 2011; 

Smith et al., 2009; Uddin et al., 2010), patterns of how all network-specific temporal 

dynamics are functionally coupled (i.e., functional connectivity across intrinsic networks) 

leads to individual variability in terms of mind and behavior (Finn et al., 2015; Smith et al., 
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2013; Van Dijk et al., 2012). Evidence suggests that this functional connectome is modified 

and tuned gradually by individuals’ accumulating socio-emotional experiences (Gabard-

Durnam et al., 2016), suggesting that the brain’s functional connectome is flexible and 

functionally plastic. Thus, we propose that children’s neural connectome is a psychological 

representation at the neural systems level, resulting from shared experiences with their 

primary caregiver. Children, therefore, exhibit a more tuned functional connectome to their 

parents resulting in more shared emotional experiences between them, and ultimately 

conferring more optimal emotional adjustment. These findings are consistent with recent 

theoretical work suggesting that more similar neural states allow individuals to connect and 

be attuned to their environment in a more harmonious way (Wheatley et al., 2012). 

Importantly, we also found that the degree of neural similarity in parent-child dyads 

promotes youths’ psychological adjustment, consistent with previous evidence showing that 

dyadic similarity and synchrony is a key factor in promoting youths’ positive adjustment 

throughout development (Barber et al., 2001; Boyum and Parke, 1995; Carson and Parke, 

1996; Feldman, 2007b; Feng et al., 2007; Harrist and Waugh, 2002; Lindsey et al., 2008). 

Our findings indicate that children and parents’ emotional connection occurs at the neural 

systems level, and highlights the brain’s functional plasticity (i.e., tuned functional 

architecture of brain) derived from interpersonal experiences in supporting youths’ positive 

adjustment.

While we propose that experience tunes the neural functional architecture shared by parents 

and their child, it is also possible that genes play an important role in shared neural 

processes. Although previous studies have shown that parent-child dyads are more likely to 

be synchronized at the psychological and behavioral level (Eisenberg et al., 1998; Harrist 

and Waugh, 2002; Morris et al., 2007), evidence also indicates that the quality of their 

relationships matters significantly for this shared dyadic process (Peterson and Rollins, 

1987; Siegel, 1999 ; Smetana et al., 2006). Indeed, the observed neural similarity in the 

current study varies across parent-child dyads (M similarity = 0.47, SD = 0.23, range = 0.07 – 

1.05). In addition, there was significant variability in daily emotional synchrony (M

emotion synchrony index = −0.10, SD = 0.66, range = −1.25 – 0.66). That is, not all parent-child 

dyads are necessarily in-tuned at the neural systems level or emotional level. Therefore, 

genetic similarity likely does not explain the observed effects in the current study. Future 

research should examine how experience shapes neural similarity patterns in parent-child 

dyads. Moreover, to unpack genetic effects, future research should examine neural similarity 

in genetically unrelated dyads (e.g., adopted children) and other important relationships 

(e.g., married couples). Although our findings contribute to our understanding of the neural 

underpinnings of dyadic synchrony, our data could not examine developmental trajectories 

of this interpersonal brain tuning process. As noted above, the formation of functional 

connectome can be fluid according to accumulating experiences. Thus, future research 

focusing on longitudinal changes in brain similarity will shed light on how our brains adapt 

in a complex social environment and on what basis interpersonal neural similarity occurs.

In the current study, we examined neural concordance between parents and their child by 

focusing on the large-scale functional connectome using ICA. We were interested in 

examining large-scale brain concordance (i.e., connectome similarity) across the entire brain 

in parent-child dyads without focusing on a specific network-based-hypothesis. ICA is a 
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data-driven approach that focuses more on defining networks of covariant activity instead of 

investigating a specific functionality of each sub-intrinsic network (e.g., default-mode 

network). ICA identifies each intrinsic network by estimating the temporal coherences with 

consideration of spatial independence of the signal regardless of possible structural 

differences in boundary or size of core regions in each intrinsic network between adolescent 

children and adults. Therefore, we adopted the ICA to evaluate the brain’s functional system 

because it focuses more on the functionality represented by time-domain coherence and 

spatial independence rather than predetermined structural location (e.g., seed-based). Future 

research can further specify functional connectome similarity by focusing on a specific 

functionality of a certain network and link it to a specific psychosocial behavior. For 

example, given the major role of the right-frontoparietal network (RFPN) in cognitive 

control (e.g., Fair et al., 2007), it is possible to evaluate how dyadic similarity of the RFPN-

centered-connectome could index the maturity of self-control. Indeed, we have found that 

connectivity between the RFPN and limbic system predicts more optimal self-control and 

later substance use in adolescents (Lee and Telzer, 2016). In future research, our approach 

could be extended to examine specific networks (e.g., RFPN) as they relate to parental 

influence on neural development and behavior such as self-control.

The current findings suggest that static-but-attuned brain architecture has a fundamental role 

in conferring the benefits of shared and synchronized emotional experiences to some of the 

most important people in our social network. The most novel features of the current study 

are the use of dyadic brain scans combined with the daily diaries to link brain concordance 

to individuals’ interpersonal emotional experiences. Most importantly, we examined the 

brain’s functional connectome similarity between individuals instead of focusing on a single 

brain. To our knowledge, this is the first empirical evidence comparing the brain’s functional 

connectome pattern similarity across two individuals. Consequently, our study expands the 

scope and scale of brain connectome research beyond a single brain to understand the neural 

underpinnings of human mind-to-mind coupling. Furthermore, we adopted a diary method to 

monitor how affect changes day-by-day, a method that captures real life experience as it is 

lived (Bolger et al., 2003) and does not rely on retrospective accounts. Because we 

administered this diary measurement to both parents and their child, we could assess how 

real-life emotional experiences fluctuate together (i.e., dyadic emotional synchrony). This 

interdisciplinary technique of linking dyadic neural responses to interpersonal emotional 

experiences provides us with a robust and integrated understanding of brain-behavior 

associations. This novel approach significantly contributes to brain science by understanding 

how the human brain and mind are wired interpersonally.
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HIGHLIGHTS

• Examined a link between neural and behavioral concordance in parent-child 

dyads

• Parent-child dyads with more neural concordance show higher behavioral 

concordance

• Dyadic concordance enhances children’s emotional competence

• Being in-tune with parents confers developmental benefits for youth
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Figure 1. 
(A) Group-level intrinsic resting state network (RSN) maps used in the current analysis. 

These 13 network maps were identified and adopted from a paper published previously on 

the larger sample in which the current participant sample was included(Lee and Telzer, 

2016). Each “r” indicates spatially cross-correlation coefficient value with canonical RSN 

templates acquired from previous studies (Laird et al., 2011; Shirer et al., 2012; Smith et al., 

2009; see also Clewett et al., 2014). (B) Schematic of analytical approach to characterize 

individual RSN connectome and calculate the connectome similarity for each parent-child 

dyad. In step 1, individual-specific time courses were estimated based on the RSN maps 

from Fig. 1A using spatial regression approach(Filippini et al., 2009). In step 2, the 

estimated individual time-courses for each RSN were then were correlated to create a 

functional resting-state connectome matrix. In this phase, correlation values (Pearson-r) 

between all possible pairs of time-courses among 13 RSNs were calculated. Finally, the 

connectome matrix values for each individual was Fisher-Z transformed, vectorized and 

correlated between each pair of parent-child dyads to calculate connectome similarity. Note 

that only the upper half of the connectome matrix excluding the diagonal is shown in the 

figure.
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Figure 2. 
(A) The averaged RSN connectomes for each parent and child groups. Scatter plots between 

the degree of dyadic RSN connectome similarity and (B) daily emotional synchrony score 

(C) emotional competence score (D) between of emotional competence score and daily 

emotional synchrony score and (E) mediation path. Note that Fisher’s z-transformed 

connectome similarity values were used for statistical analyses. The Colored-dash line 

indicates 95% confidence interval of regression lines. The gray dotted-line indicates zero 

point at each axis. *p < 0.05 at 95% CI after bootstrapping resampling (n=50,000). The 

squares were bivariate outliers identified and deweighted by robust-method but note that all 

significant effects remained significant when the outlieres were included (correlation r 

=0.34, p < 0.05, CI=[0.07, 0.65]; mediation effect ab=5.47, p < 0.05, CI=[0.05 14.50].
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