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Abstract

Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that 

different brain regions still actively interact with each other while a subject is at rest, and such 

functional interaction is not stationary but changes over time. In terms of a large-scale brain 

network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional 

dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network 

modelling. Specifically, we propose a novel methodological architecture that combines deep 

learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment 

(MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear 

functional relations among regions, by which we transform the regional features into an 

embedding space, whose bases are complex functional networks. Given the embedded functional 

features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of 

functional networks inherent in rs-fMRI via internal states, which are unobservable but can be 

inferred from observations statistically. By building a generative model with an HMM, we 

estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, 

i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing 

subject. In order to validate the effectiveness of the proposed method, we performed experiments 

on two different datasets and compared with state-of-the-art methods in the literature. We also 

analyzed the functional networks learned by DAE, estimated the functional connectivities by 

decoding hidden states in HMM, and investigated the estimated functional connectivities by means 

of a graph-theoretic approach.
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Introduction

A human brain can be understood as a complex system with different structural regions 

dedicated for different functions, which are locally segregated but globally integrated to 

process various types of information. Over the last decades, it has been one of the major 

concerns to investigate the underlying functional mechanism of a human brain in the fields 

of basic and clinical neuroscience. The functional Magnetic Resonance Imaging (fMRI) that 

measures the changes of Blood Oxygen Level-Dependent (BOLD) signal in a non-invasive 

manner has become one of the most successful investigative tools to explore the functional 

characteristics or properties of a brain.

In the meantime, ever since Biswal et al. (1995) discovered that different brain regions still 

actively interact with each other while a subject is at rest, i.e., not performing any cognitive 

task, resting-state fMRI (rs-fMRI) has been widely used as one of the major tools to 

investigate regional associations or brain networks (Rombouts et al., 2005; Fox et al., 2005; 

Buckner et al., 2008). The rs-fMRI provides insights to explore the brain’s functional 

organization and to examine altered or aberrant functional networks possibly caused by 

brain disorders such as Alzheimer’s Disease (AD) (Greicius et al., 2004; Li et al., 2002), 

Mild Cognitive Impairment (MCI) (Rombouts et al., 2005; Sorg et al., 2007; Wang et al., 

2007; Zhang et al., 2012; Chase, 2014), autism spectrum disorder (Monk et al., 2009; Khan 

et al., 2013), schizophrenia (Liang et al., 2006; Zhou et al., 2007; Garrity et al., 2007; Lynall 

et al., 2010), and depression (Anand et al., 2005; Greicius et al., 2007; Craddock et al., 

2009). In this work, we focus on the early diagnosis of MCI based on the computational 

analysis of rs-fMRI. Due to a high rate of progression from MCI to AD in one year, 

approximately 10 to 15% according to Alzheimer’s Association’s’s (2012)), it has been of 

great importance for early detection or diagnosis of MCI and seeking a proper treatment to 

prevent from progressing to AD. From a clinical point of view, it is advantageous to use rs-

fMRI to investigate functional characteristics in the rs-fMRI of patients, who may not be 

able to perform complicated cognitive tasks during scanning. In these regards, the analysis 

of functional characteristics inherent in rs-fMRI is playing a core role for brain disease 

diagnosis or prognosis (Handwerker et al., 2012; Li et al., 2012; Leonardi et al., 2013; Hjelm 

et al., 2014; Wee et al., 2014; Suk et al., 2015c).

To date, the functional characteristics in a brain have been studied in two different 

approaches. The effective connectivity (Friston et al., 1993) investigates the causal relations 

between regions, e.g., one region exerts over another. The functional connectivity (Van Dijk 

et al., 2010), the other type of approach, measures functional associations between regions 

by means of temporal coherence or correlation. In this paper, we mainly consider the 

functional connectivity, which is computationally less intensive for whole-brain network 

analysis. It is worth noting that recent studies investigating the complex brain functions have 

observed the phenomenon that functional connectivity spontaneously changes over time 

(Chang and Glover, 2010; Bassett et al., 2011; Hutchison et al., 2013), i.e., dynamic rather 

than stationary. Functional dynamics include changes in the strength of connection between 

regions, and also the number of connections linked to regions. Motivated by those studies, 

there have been efforts to estimate temporal changes in functional connectivities and then 
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use functional properties extracted from the estimated dynamic functional connectivities for 

disease diagnosis.

To our best knowledge, many existing methods for MCI diagnosis with rs-fMRI typically 

assumed stationarity on a functional network over time and explicitly modelled it by 

different methods such as Pearson’s correlation, partial correlation (Liang et al., 2012), 

independent component analysis (Jafri et al., 2008; Li et al., 2012), and sparse linear 

regression (Wee et al., 2014). Recently, (Faisan et al., 2007; Hutchinson et al., 2009), and 

(Janoos et al., 2011) independently devised different types of state-space models to explore 

the dynamic characteristics of functional activation and applied for event-related fMRI data 

analysis. Due to the use of variables related to external stimulus, i.e., event, those models are 

not suitable for rs-fMRI data analysis. Meanwhile, Leonardi et al. devised an Eigen-

decomposition based method to model functional dynamics with a sliding-window technique 

(Leonardi et al., 2013) and Eavani et al. proposed to model sparse basis learning within a 

Hidden Markov Model (HMM) framework (Eavani et al., 2013).

In this paper, we propose a novel method of modelling functional dynamics inherent in rs-

fMRI by means of probabilistic models. Specifically, rather than computing correlation 

matrices and extracting graph-theoretic features (Rubinov and Sporns, 2010) such as 

clustering coefficients and modularity as commonly performed in the literature, we 

explicitly model dynamic changes of functional characteristics obtained from regional mean 

time series of rs-fMRI. In a testing phase, our model estimates the likelihood of a testing 

sample as MCI and Normal healthy Control (NC), based on which we diagnose MCI. Note 

that, compared to Eavani et al.’s work, where they utilized the original high-dimensional 

features, in our method, we devise a Deep Auto-Encoder (DAE) that hierarchically discovers 

non-linear relations among regional features and helps circumvent the problem of high 

dimensionality, a common in neuroimaging analysis, and then train a dynamic state-space 

model, i.e., HMM. While Leonardi et al.’s method fails to reflect the spontaneous changes 

due to the use of a sliding window strategy, the proposed method probabilistically 

determines the spontaneous changes based on an observation.

It should be noted that the preliminary version of this work was presented in (Suk et al., 

2015a). Compared to the preliminary version of this manuscript, we have extended our work 

by: 1) carrying out more extensive experiments with an additional dataset from the ADNI2 

cohort and 2) analyzing the learned models and the estimated functional connectivities in 

various perspectives. Although, in this paper, we deal with MCI data only, our method can 

be also used to understand the functional characteristics of other diseases such as autism, 

schizophrenia, and depression. In addition, thanks to its capability of estimating dynamic 

functional connectivities from rs-fMRI, our method can be used for neuroscientific studies 

on functional organization in a brain.

Materials and preprocessing

In this work, we use two independent rs-fMRI datasets, namely, an ADNI2 dataset publicly 

available online1 and an in-house dataset.
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ADNI2 cohort

We used a cohort of 31 early MCI subjects (14F/17M) and 31 age-matched NC subjects 

(17F/14M) from ADNI22. The mean ages of MCI and NC groups are 73.9 ± 4.9 and 73.8 

± 5.5, respectively. All subjects were scanned at different centers using 3.0 T Philips 

Achieva scanners with the same scanning protocol and parameters of Repetition Time (TR) 

= 3000 ms, Echo Time (TE) = 30 ms, flip angle = 80°, acquisition matrix size = 64 × 64, 48 

slices, 140 volumes, and a voxel thickness = 3.3 mm.

In-house cohort

It is recruited for 37 participants of 12 MCI subjects (6F/6M) and socio-demographically 

matched 25 NC subjects (16F/9M). The mean ages of MCI and NC are 75.0 ± 8.0 and 72.9 

± 7.9, respectively. The data were acquired on a 3.0 T GE scanner (Signa EXCITE, GE 

Healthcare) using a SENSE inverse-spiral pulse sequence with the parameters of TR = 2000 

ms, TE = 32 ms, flip angle = 77°, acquisition matrix size = 64 × 64, 34 slices, 180 volumes, 

and a voxel thickness = 4 mm.

Preprocessing

The prevalent preprocessing procedure for rs-fMRI was performed using the SPM8 software 

package3. Specifically, we discarded the first 10 rs-fMRI volumes of each subject prior to 

further processing to ensure magnetization equilibrium. The remaining volumes were then 

corrected for the staggered order of slice acquisition that was used during echo-planar 

scanning so that the data on each slice correspond to the same point in time. The images 

were realigned with the image at the time point of TR/2 as reference to minimize relative 

errors across each TR. After correcting acquisition time delay, the rs-fMRI volumes of each 

subject were realigned by means of a least squares technique and a rigid body spatial 

transformation. The first volume of each subject was used as the reference to which all 

subsequent volumes were realigned for the purpose of head-motion artifact removal in the 

rs-fMRI time-series. We assessed the rotation and translation of every subject and found that 

all the participants showed no excessive head motion with a displacement of less than 1.5 

mm or an angular rotation of less than 1.5° in any direction. There were no significant group 

differences in head-motion for all subjects4. To further minimize the effects of head motion, 

we also applied Friston 24-parameter model (6 head motion parameters, 6 head motion 

parameters from the previous time point, and 12 corresponding squared items). After 

realignment, the volumes were resliced such that they match the first volume voxel-by-

voxel. We then normalized rs-fMRI images to the MNI space with a voxel size of 3 × 3 × 3 

mm3.

To further reduce the effects of nuisance signals and focus on the signals of gray matter, we 

regressed out ventricle and white matter signals as well as six head-motion profiles based on 

1Available at ‘http://www.loni.ucla.edu/ADNI’.
2There are 3 different subtypes of MCI subjects in ADNI2 dataset, i.e., early MCI, normal MCI, and late MCI. In this study, to 
minimize the effect of different image sizes and resolutions, we selected images from early MCI and healthy normal subjects with the 
same image dimension and image resolution.
3Available at ‘http://www.fil.ion.ucl.ac.uk/spm/software/spm8/’.
4The smallest p-value for 6 head motion parameters between patient and healthy subjects was 0.218.
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(Van Dijk et al., 2010). Due to the ongoing controversy of removing the global signal in the 

processing of rs-fMRI data (Fox et al., 2009; Murphy et al., 2009), we omitted the process of 

global signal regression (Supekar et al., 2008; Lynall et al., 2010). The regressed rs-fMRI 

images were then parcellated into 116 Regions-Of-Interest (ROIs) according to the 

Automated Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al., 2002), 45 ROIs 

per hemisphere and 26 cerebellar ROIs (refer to the B1 for details), and calculated the 

representative mean time series of each ROI by averaging the intensities of all voxels within 

an ROI. Therefore, we had a set of time series , where N is the 

number of samples5 and R and T denote, respectively, the number of ROIs (=116) and the 

number of volumes.

It has been shown that a frequency range between 0.025 and 0.06 or 0.07 is reliable for test–

retest experiment (Malinen et al., 2010). In this regard, we bandpass-filtered the mean time 

series I with a frequency band of 0.01≤f≤0.08 Hz to better utilize the characteristics of low 

frequency fluctuation in rs-fMRI (Biswal et al., 1995). The bandpass-filtered regional rs-

fMRI time series  were used for the following 

procedures that are circumstantiated below.

Proposed method

In this section, we propose a novel probabilistic method of modelling functional dynamics 

inherent in rs-fMRI and estimating the data likelihood of a test subject as NC and MCI for 

diagnosis. Fig. 1 illustrates the overall framework of our method for MCI identification. 

Given rs-fMRI images, we first extract mean time series of ROIs, preceded by preprocessing 

images as described in Preprocessing section. We then train a Deep Auto-Encoder (DAE), 

which takes the mean intensities of ROIs in a volume at one time point as input and finds the 

non-linear associations among ROIs in an unsupervised and hierarchical manner. 

Structurally, our DAE is composed of two parts, namely, deep encoder and deep decoder. 
After learning the optimal parameters of both encoder and decoder, we use only the lower 

part of the trained DAE, i.e., deep encoder, to encode the mean intensities of ROIs in a 

volume at each time point into an embedding low-dimensional space. Thus, we obtain an 

encoded time series of the rs-fMRI. Based on these encoded time series of ROIs, we then 

train two state-space models with HMM for functional dynamics in rs-fMRI of NC and 

MCI, respectively. In a testing phase, we perform the procedures of preprocessing, 

computing mean time series of ROIs, encoding mean time series of ROIs via deep encoder, 

and finally estimating the likelihood as NC and MCI with the trained HMMs, based on 

which we make a clinical decision.

Deep Auto-Encoder (DAE)

Recently, Hjelm et al. demonstrated that Restricted Boltzmann Machines (RBMs) can be 

used to identify functional networks from fMRI (Hjelm et al., 2014) and supported its use as 

a building block for deeper network models in neuroimaging researches. Justified by their 

5In this work, each sample is from one subject.
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work along with recent successes in various application domains including neuroimaging 

analysis (Hjelm et al., 2014; Plis et al., 2014; Wu et al., 2015; Suk et al., 2014, 2015b; Kim 

et al., 2016), we devise a deep architecture by stacking multiple RBMs to transform the 

input features of an fMRI at a time point, i.e., mean intensities of ROIs in a volume in our 

case, into an embedding low-dimensional space by discovering non-linear relations among 

ROIs, i.e., functional patterns inherent in rs-fMRI.

Restricted Boltzmann Machine (RBM)

An RBM is an undirected probabilistic graphical model, composed of a number D of units in 

a visible layer and a number F of units in a hidden layer. It can be fully specified with a 

parameter set Θ of inter-layer connection weights W=[Wij] ∈ ℝD×F, a visible layer’s bias 

z=[zi] ∈ ℝD, and a hidden layer’s bias q=[qj] ∈ ℝF, i.e., Θ={W,z,q}. In a model 

architecture, it assumes symmetric inter-layer connections, but no intra-layer connections as 

illustrated in Fig. 2, where the one on the left presents a fully specified architecture of an 

RBM and the other one on the right presents its simplified graphical representation. For 

uncluttered illustration, the parameters of z and q are omitted in Fig. 2.

In an RBM, according to the value types of visible units and hidden units, two different 

energy functions can be considered. Specifically, when both visible and hidden units are 

binary random variables, it is common to utilize a Bernoulli–Bernoulli energy function 

defined as follows:

(1)

Meanwhile, if visible units are continuous-valued and hidden units are binary-valued, we 

can use a Gaussian-Bernoulli energy function (Hinton et al., 2006) defined as follows:

(2)

where σi denotes a standard deviation of the i-th visible unit.

The conditional distribution of binary hidden variables given the binary visible variables and 

the conditional distribution of binary visible variables given the binary hidden variables are, 

respectively, computed by utilizing a logistic sigmoid function sigm(⋅) as follows:

(3)
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(4)

When the visible units take continuous values, the conditional distribution of hidden units 

and visible units are, respectively, computed as follows:

(5)

(6)

In both cases, i.e., binary and continuous visible units, due to the unobservable hidden 

variables, the objective function is defined as the marginal distribution of the visible 

variables by summing out hidden variable as follows:

(7)

where Z(Θ) is a normalizing factor. In order to learn the parameters Θ= {W,q,z} of an RBM, 

we can use a contrastive divergence algorithm (Hinton, 2002), which maximizes the log-

likelihood of the marginal distribution of the visible variables, i.e., Θ = argmaxΘP(v; Θ).

Deep architecture by stacking multiple RBMs

In our method, the visible units of an RBM take the mean intensities of ROIs in an fMRI 

volume as input and each hidden unit models different relations among ROIs in a 

probabilistic manner. Hence, the connection weights between visible units and hidden units 

can be regarded as functional networks (Hjelm et al., 2014). In other words, an RBM finds 

relational information among input variables, i.e., mean value of ROIs, and the relational 

information among ROIs can be interpreted as functional networks as Hjeml et al. did.

Further, due to the structural characteristics of an RBM, i.e., symmetric connection between 

visible and hidden layers and the probabilistic nature of the units in both layers, given the 

values of input units, i.e., mean intensities of ROIs, we can infer the values of hidden units 

via Eq. (3) and vice versa. In this regard, an RBM is also called as an auto-encoder (Hinton 

and Salakhutdinov, 2006) and thanks to this favourable characteristic, the parameter learning 

can be performed in an unsupervised manner, allowing to use a large number of unlabelled 
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samples. Thus, the values of hidden units can be used as a different representation of an 

observation.

Interestingly, when the number of hidden units is smaller than the number of visible units, 

the representation with the values of hidden units has the effect of reducing the 

dimensionality of the input, but still preserving the original information. In this work, we 

utilize this favorable characteristic of an RBM to find functional patterns inherent in rs-

fMRI. However, due to the shallow architectural nature of an RBM, it discovers only the 

simple associations among ROIs. To circumvent this limitation, we design a deep 

architecture by stacking multiple RBMs to discover more complex relations among ROIs, by 

which we can better investigate the functional characteristics in rs-fMRI.

Specifically, we stack the number L of RBMs in a hierarchical manner by setting the outputs 

of the hidden units in a lower RBM as the input to the neighbouring upper RBM in 

hierarchy, computed as follows:

(8)

where h(0)=v and  for a binary random vector h(l−1). Thus, our model has one 

visible layer v and a series of hidden layers h(1),⋯,h(L) as shown in Fig. 3. Between any two 

consecutive layers, we have the corresponding RBM parameters, denoted by . 

However, once we stack multiple RBMs, then the resulting model loses a generative 

characteristic, becoming a deep neural network (Hinton and Salakhutdinov, 2006), which 

means that the deep model is not an auto-encoder any longer. In this regard, we build our 

model deeper by unfolding the stacked RBMs (Fig. 3) to be structured with deep encoder 

and deep decoder, each of which has a number (L+1) of layers. By training the structurally 

augmented model with a backpropagation algorithm (LeCun et al., 1998), we finally 

construct a ‘Deep Auto-Encoder’ (DAE) (Fig. 3). Note that the lower part of DAE, i.e., deep 

encoder, is used to find an embedded representation of an observation, i.e., mean intensities 

of ROIs in an rs-fMRI volume.

In our work, the units of the bottom input layer, i.e., v in Fig. 3, is modelled with a Gaussian 

function, while the units of hidden layers remain binary except for those of the L-th hidden 

layer h(L), whose output becomes an encoded representation of an input. Specifically, we use 

linear continuous units for the L-th hidden layer with Gaussian noises to obtain continuous 

values for better representational power of the encoded representations (Hinton and 

Salakhutdinov, 2006).

In regard to learning the parameter sets {Θ(1),…,Θ(2L)}, we perform the following three 

steps sequentially with a set of mean time series G as training samples:
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1.
Pre-train the parameters  of a deep encoder as shown in Fig. 3, in a 

greedy layer-wise manner via a contrastive divergence algorithm (Hinton et al., 

2006). Note that the mean intensities of ROIs in the t-th fMRI volume of a 

subject n, i.e., , becomes the input to v.

2. Unfold the pre-trained deep encoder to build a deeper network of encoder and 

decoder as shown in Fig. 3. For the decoder, we initially use the pre-trained 

weights of the encoder in the first step, i.e., Θ(L+k)←Θ(L−k+1), k=1,…,L.

3. Fine-tune the parameter sets {Θ(1),…,Θ(2L)} of the whole deep neural network, 

i.e., DAE in Fig. 3, jointly by using a back-propagation algorithm (Hinton and 

Salakhutdinov, 2006) with the inputs v and target outputs v′ kept identical.

Hereafter, we omit the subject index (n) for uncluttered. After training our DAE, we use the 

deep encoder, i.e., the lower half of our DAE, to transform the rs-fMRI feature vectors, i.e., 

G = [g1,⋯, gt,⋯, gT] into encoded representations X = [x1,⋯, xt,⋯, xT], which are further 

fed into HMMs to estimate the data likelihood of a subject as NC and MCI to identify a 

clinical status. Note that by setting the number of hidden units in the top hidden layer h(L) of 

a deep encoder smaller than the dimension of the original input, i.e., D, we can naturally 

embed into a low-dimensional space, but still having rich information necessary to 

reproduce the input in a non-linear way through the deep decoder. However, a DAE finds 

non-linear relations among ROIs at one time point, without considering the temporal 

changes of mean intensities of ROIs, which is also important in discriminating MCI from 

NC. We handle such temporal information or dynamics in rs-fMRI with HMM as described 

below.

Hidden Markov models (HMMs)

Recent studies that reported network changes in neurological and psychiatric diseases 

(Handwerker et al., 2012), (Leonardi et al., 2013), (Stam, 2014) inspired us to hypothesize 

that MCIs may exhibit different dynamic functional characteristics from NCs (Greicius, 

2008), depending on the unobservable functional states that spontaneously change over time. 

It would be reasonable to model different functional dynamics for different clinical labels, 

i.e., NC and MCI. In this paper, we model such dynamics inherent in rs-fMRI by the first-

order Markov chain in HMMs (Rabiner, 1989) for NC and MCI, separately.

An HMM is a state-space model with doubly embedded stochastic models, namely, 1) a 

hidden process that is unobservable but can be estimated from observations indirectly and 2) 

an observable process. Let st and ot denote random variables of a hidden state and an 

observation at time t, respectively. Then, the hidden and observable processes over T time-

length can be denoted by {s1,⋯,st,⋯,sT} and {o1,⋯,ot,⋯,oT}, respectively. As for the hidden 

process, we model it with a first-order Markov chain, while for the observable process, we 

define a state-dependent probability distribution. Fig. 4 illustrates the graphical 

representation of an HMM, where the arrows denote dependencies between variables 

attached in both ends. Specifically, the hidden state at time t, i.e., st, is dependent on the 

hidden state at time (t−1), i.e., st−1, because of the assumption of a first-order Markov chain. 
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Meanwhile, the observable variable at time t, i.e., ot, is dependent on the hidden state at the 

same time, i.e., st.

Formally, when we consider a number K of hidden states, a hidden process is defined by two 

probability distributions, namely, a state transition probability A=[aij]i,j={1,…,K}, where 

aij≡P(st=j|st−1=i) denotes the probability of changing from one hidden state (st−1=i) to 

another hidden state (st=j), and an initial state probability Π=[πi]i={1, …,K}, where 

πi≡P(s1=i) models the probability of starting from a specific hidden state at time t=1. As for 

the state transition, we define an ergodic topology as illustrated in Fig. 4, where four 

different states are considered as an example, allowing a functional network to change from 

one to any other state. The observable process is depicted by so-called an emission 

probability density function (pdf) B={bi}i={1, …,K}, where bi≡p(ot=xt|st=i) denotes the 

likelihood of observing the specific observation xt when residing at the hidden state of i. In 

this work, we use a mixture of Gaussians for an emission pdf bi. Thus, an HMM is 

completely defined by the parameter set of λ=(A,B,Π). For simplicity, we denote, hereafter, 

HMMs for NC and MCI with λNC and λMCI, respectively.

In this work, a sequence of the encoded representations of the mean intensities of ROIs 

becomes the observations for HMMs, i.e., [o1=x1,⋯,ot=xt,⋯,oT=xT], and the unobservable 

inherent dynamics in rs-fMRI is modelled by the hidden process, i.e., a state transition 

probability A and an initial state probability Π. After learning the parameters for each class, 

i.e., MCI and NC, the likelihoods from HMMs can be used as the evaluation of the goodness 

of fit of models on a testing sample.

By training HMMs with a Baum–Welch algorithm (Rabiner, 1989) for NC and MCI 

individually, they can be used as a way to represent the functional characteristics of the 

respective groups in a probabilistic manner. In other words, given a sequence of functional 

features, i.e., encoded representation X=[x1, ⋯,xt, ⋯,xT] in our work, we infer that how 

likely the sequence of functional features X is generated from HMMs of NC (λNC) and MCI 

(λMCI), respectively, as follows:

(9)

where c∈{NC,MCI}, S=[s1, ⋯,st, ⋯,sT], st={1, …,K}, and t={1, ⋯,T}. Eq. (9) can be 

efficiently computed by the forward algorithm (Rabiner, 1989). Based on the data 

likelihoods, we identify the clinical label of an input rs-fMRI with the higher likelihood.

Experimental settings and results

In this section, we validate the effectiveness of the proposed method for MCI diagnosis with 

rs-fMRI by comparing with the state-of-the-art methods in the literature, which assume 

stationarity or non-stationarity (i.e., dynamic) in functional connectivity. As described in 

Materials and preprocessing section, we conducted experiments on two different datasets, 

i.e., ADNI2 and in-house cohorts.
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Experimental settings

With regard to the structure of a deep model, i.e., the number of layers and the number of 

units in each layer, there are no golden rules or general guidelines. In this work, we set four 

hidden layers, i.e., L=4, by following (Hinton and Salakhutdinov, 2006) and performed a 

grid search for the number of hidden units in the space of |h(1)| ∈ {100,200,300}–|h(2)| ∈ 
{100,150,200}–|h(3)| ∈ {10,30,50}–|h(4)| ∈ {2,3}, where |·| denotes a cardinality operator. 

Empirically, the architecture with 200(|h(1)|)−100(|h(2)|)−50(|h(3)|)−2(|h(4)|) achieved the best 

performance in both datasets. Hence, our deep decoder was structured as 2(|h(4)|)−50(|h(5)|)

−100(|h(6)|)−200(|h(7)|)−116(|v′|).6

A Gaussian-Bernoulli energy function was used for the visible units v and the units in the 

first hidden layer h(1) in Fig. 1, while a Bernoulli–Bernoulli energy function was exploited 

for the other hidden layers by taking the outputs of the lower layer as inputs. But the units of 

the top hidden layer in the encoder, i.e., h(4) in Fig. 1, had stochastic real-values, allowing 

the low-dimensional codes to distribute in a continuous feature space (Hinton and 

Salakhutdinov, 2006).

It should be noted that in our DAE learning, it takes features of one fMRI volume as input, 

rather than the sequence of volumes. Although our dataset is composed of rs-fMRIs from 62 

subjects in the ADNI2 cohort, note that there are 130 volumes per subject (since we 

discarded the first 10 volumes for magnetization equilibrium). By regarding ROI features of 

a volume at one time point as one sample, in our experiments with leave-one-subject-out 

cross-validation, we could utilize 62 × 130 = 8060 samples to learn the model parameters, 

thus with no concern of over-fitting. Due to high computational complexity and long training 

time with a Gaussian-Bernoulli energy function, we normalized each feature of the data to 

have zero mean and unit variance by subtracting the mean of the training samples and 

dividing with the respective variance, and then used noise free reconstructions (Hinton, 

2012) by setting the variance parameters set to 1, i.e.,  in Eq. (8).

For the HMMs of NC and MCI classes, we varied the number of hidden states K from 2 to 7 

with different numbers of Gaussians for emission pdfs, varying between 1 and 3. An ergodic 

topology in Fig. 4, where the transition from one functional state to any other functional 

state is allowed, was used for state transition modelling. We set the initial values of the 

parameters (A,B,Π) in random and learned them via a Baum–Welch algorithm by using a 

BNT toolbox.7

To validate the effectiveness of the proposed method, we compared our method with a 

baseline method with Pearson correlation and also three competing methods in the literature, 

namely, group Sparse Representation (gSR) (Wee et al., 2014), joint framework of HMM 

and Sparse Dictionary Learning (HMM + SDL) (Eavani et al., 2013), and sliding window-

based Dynamic Functional Network (sDFN) (Leonardi et al., 2013):

6Therefore, the complete architecture of our DAE was 116-200-100-50-2-50-100-200-116.
7Available at ‘https://github.com/bayesnet/bnt’.
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• Baseline: We first computed the Pearson correlation for inter-regional 

connectivity and then applied Fisher’s z-transformation, which produces a so-

called z-map, to improve the normality of correlation coefficients. It is common 

to convert the z-map into a graph by considering each ROI as a node and the 

signed correlation coefficient as an edge weight. We extracted features utilizing a 

graph theory. Specifically, the weighted local clustering coefficient (ω), which 

quantifies the cliqueness of the nodes in a graph, was considered.

(10)

where cr is the number of ROIs connected to the r-th ROI in a z-map,  is a sub-

network composed of nodes directly connected to the r-th ROI, and er,q is the 

connection coefficient between the r-th and the q-th ROIs. A feature vector was 

then constructed by concatenating the clustering coefficients over all ROIs, i.e., 

f=[ω(1), ⋯,ω(R)]T.

• gSR: This method models functional connectivity by means of sparse linear 

regression with a group sparsity regularization. For the regularization control 

parameter, we applied a grid search technique in the space of 

{0.01,0.05,0.1,0.15,0.2,0.5}. By following Wee et al.’s work and also same as 

the baseline, we computed weighted clustering coefficients from a z-map of the 

estimated functional connectivity and used them as features.

• HMM + SDL8: Similar to our method, this method models functional dynamics 

with HMM, but explicitly learns the functional connectivity in each state by 

considering coefficients of a functional connectivity, i.e., covariance matrices, as 

parameters. As for the number of hidden states, we varied it from 2 to 7, same as 

our method. We set the weighting parameters to the priors of the covariance 

matrices to 1 by following the original work.

• sDFN9: This method utilizes a sliding-window to take care of time-varying 

functional patterns and applies principal component analysis for latent functional 

information learning. We used a window size of 30 time points and a stride of 5 

time points between consecutive windows, which resulted in m=20 functional 

networks from an rs-fMRI sequence of 130 volumes per subject in the case of 

ADNI2 cohort. Each of those m functional networks were then projected into 

eigen-networks, the number of which, denoted by ε, was determined based on 

the eigenvalues. Thus, an ε-dimensional feature vector represented a functional 

network, and we had m such feature vectors. Therefore, we had a (ε×m)-

dimensional feature vector for an rs-fMRI sequence.

8The codes were provided by the author of the original paper (Eavani et al., 2013).
9The codes are available at ‘http://miplab.epfl.ch/leonardi/’.
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For Baseline, gSR, and sDFN, we further applied p-value based thresholding10 and 

minimum redundancy maximum relevance (Peng et al., 2005) sequentially for feature 

selection and used a linear support vector machine as classifier. To evaluate the performance, 

we conducted a leave-one-subject-out cross-valuation technique because of a limited number 

of available samples.

Performance comparison

Let TP, TN, FP, and FN denote, respectively, True Positive, True Negative, False Positive, 

and False Negative. For quantitative evaluation and comparison among the competing 

methods, we considered the metrics of accuracy = (TP + TN)/(TP + TN + FP + FN), 

sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), Positive Predictive Value (PPV) = 

TP/(TP + FP), and Negative Predictive Value (NPV) = TN/(TN + FN).

ADNI2 cohort

Table 1 summarizes the performance of all competing methods on the ADNI2 cohort. In 

terms of the diagnostic accuracy, the proposed method achieved the maximal accuracy of 

72.58% with a sensitivity of 70.59% and a specificity of 75%. Compared to the methods of 

Baseline and gSR, which both assume functional stationarity in rs-fMRI, our method 

improved by 11.29% (Baseline) and 6.45% (gSR). In the meantime, the other two methods 

of HMM + SDL and sDFN, which consider functional dynamics in rs-fMRI, achieved 

62.90% and 70.97%, respectively, which were lower than the accuracy of our method as 

much as 9.86% (HMM + SDL) and 1.61% (sDFN).

As for the sensitivity and specificity, the proposed method outperformed the other competing 

methods with 70.59% of sensitivity and 75.00% of specificity. Specifically, our method 

improved the sensitivity by 9.3% (vs. Baseline), 8.69% (vs. gSR), 3.92% (vs. HMM + SDL), 

and 2.02% (vs. sDFN), and the specificity by 15.00% (vs. Baseline), 14.47% (vs. HMM + 

SDL), and 0.93% (vs. sDFN).

Regarding the predictive values, the proposed method achieved the PPV of 77.42% by 

showing the highest performance with the improvement of 22.58% (vs. Baseline), 12.9% 

(vs. gSR), and 25.81 (vs. HMM + SDL). In the mean time, HMM + SDL showed the highest 

NPV value of 74.19%, while the proposed method achieved the NPV of 67.84%, which is 

still higher than the other competing methods, i.e., Baseline, gSR, and sDFN.

In-house cohort

The experimental results on the in-house cohort are summarized in Table 2. The proposed 

method achieved the maximal accuracy of 81.08% with the sensitivity of 77.78% and the 

specificity of 82.14%. Compared to the competing methods of Baseline, sGR, HMM + SDL, 

and sDFN, our method enhanced the accuracy by 16.22%, 5.4%, 10.81%, and 5.4%, 

respectively.

10In our experiment, the threshold was set to 0.05.
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As for the predictive values, the proposed method achieved the highest PPV of 58.33% by 

improving 25.00% (vs. Baseline), 25.00% (vs. gSR), 50.00% (vs. HMM + SDL), and 

16.66% (vs. DFN). Meanwhile, the NPV value of the proposed method was 92.00% and that 

of the other competing methods were 80.00% (Baseline), 96.00% (gSR), 100.00% (HMM + 

SDL), and 76.67% (sDFN).

Discussions

Performance interpretation

In our experiments on the ADNI2 and in-house datasets, the proposed method achieved the 

best diagnostic accuracy of 72.58% (ADNI2) and 81.08% (in-house), respectively.

It is noteworthy that the methods of sDFN and our method considering the potential 

dynamics inherent in rs-fMRI showed better performance than the methods of Baseline and 

gSR that ignored the functional dynamics. As for HMM + SDL, it achieved the lowest 

performance among the competing methods except for Baseline on both datasets. As 

described above, since HMM + SDL explicitly model the functional connectivities within 

the model by regarding the connectivity weights as parameters, it may suffer from the lack 

of training samples during parameter learning.

Since it is important to consider the prevalence of the disease in clinic, we also considered 

the metrics of PPV and NPV. Statistically, PPV and NPV measure, respectively, the 

proportion of subjects with MCI who are correctly diagnosed as patients and the proportion 

of subjects without MCI who are correctly diagnosed as cognitive normal. The proposed 

method obtained the PPV of 77.42% and the NPV of 67.84% on ADNI2 dataset and the 

PPV of 58.33% and the NPV of 92.00% on in-house dataset. It is noticeable that our method 

overwhelmed the competing methods except for HMM + SDL on both datasets in terms of 

both PPV and NPV. As for HMM + SDL, it reported the abnormally high values of NPV, 

100.00% (ADNI2) and 74.19% (in-house), and the abnormally low values of PPV, 8.33% 

(ADNI2) and 51.61% (in-house), which can be another phenomenon making us suspect the 

problem of data in-sufficiency for parameter learning in HMM + SDL.

Concretely, from a clinical standpoint, out of the five metrics (i.e., accuracy, sensitivity, 

specificity, PPV, and NPV) considered in this work, sensitivity and PPV are the most critical 

ones. Specifically, the higher the sensitivity, the lower the chance of mis-diagnosing MCI 

patients; also, the higher the PPV, the larger the proportion of correctly diagnosed subjects 

with MCI. In these regards, we believe that the proposed method is superior to the 

competing methods.

Effects of the DAE and HMM

Based on the performances summarized in Tables 1 and 2, the proposed method of 

combining DAE and HMM to model functional dynamics presented better performance than 

the state-of-the-art methods, considered in this work. Although it would be helpful to 

conduct a statistical significance test, unfortunately, it is hindered for us from conducting 

such test due to the use of our leave-one-out cross-validation strategy. However, from a 

methodological standpoint, since our method combines two machine learning methods of 

Suk et al. Page 14

Neuroimage. Author manuscript; available in PMC 2017 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DAE and HMM, it may wonder whether the performance enhancement is caused by the use 

of DAE or HMM. In this regard, we additionally performed experiments by replacing each 

method of DAE and HMM with linear Principal Component Analysis (PCA), kernel PCA 

(kPCA), and Mixture of Gaussians (MoG), respectively, as follows:

• PCA + HMM: We used a classical linear PCA for dimension reduction and 

HMM for modelling pattern dynamics. The dimensionality of a new space was 

determined based on the eigenvalues, i.e., reflecting more than 85% of the total 

variance.

• kPCA + HMM: In order to see the effect of our deep architecture to discover an 

embedded space, to which we project functional features in a non-linear way, we 

also conducted an experiment by replacing the part of DAE with a kernel PCA. 

In this way, we could also find a non-linear projection function, similar to DAE. 

As for the kernel, we used a 5th-order polynomial kernel, and, for the dimension 

selection, we used the same strategy with PCA + HMM.

• DAE + MoG: The mean time series were transformed into the low-dimensional 

space via our DAE, trained with the same architecture of the proposed method, 

and then the embedded features were then modelled with MoG, based on which 

the clinical label of the test rs-fMRI images of a subject was determined. 

Basically, this method corresponds to a special case of the proposed DAE + 

HMM with a single hidden state, thus not considering dynamic characteristics 

inherent in rs-fMRI.

The diagnostic accuracy of PCA + HMM, kPCA + HMM, and DAE + MoG as well as the 

proposed method is shown in Fig. 5. From the results, it is apparent that the proposed 

method of combining DAE and HMM outperforms the counterpart methods.

Analysis of DAE weights

Our deep auto-encoder is composed of multiple Restricted Boltzmann Machines (RBMs) in 

a hierarchical manner, and the lowest two layers in our deep model, i.e., visible layer v and 

the first hidden layer h(1) corresponds to an RBM. Note that an RBM finds relational 

information among input variables, i.e., mean value of ROIs in this work. While there is no 

temporal information involved in our DAE, the features of different ROIs are time-locked 

and our model finds the relation among ROIs based on the time-locked features. Thus, the 

learned weights or relations can be interpreted as functional networks, similar to the 

correlation-based methods (Liang et al., 2012). In the meantime, the second hidden layer 

h(2) in our deep model finds relations among the functional networks learned in the first 

hidden layer h(1). Concretely, upper hidden layers (i.e., beyond the first hidden layer) in our 

deep architecture learn relational patterns of the variables in the neighboring lower layer, 

which can thus be interpreted as ‘network of networks’.

In order to investigate the role of our DAE, we visualized the learned weights of the units of 

the first hidden layer,11 i.e., W(1), in Figs. 6, 7, and 8, where each row represents a 

11Although the interpretation of weights in the upper layers is also informative, it is very challenging due to their high complexity. For 
better use of deep models in neuroimaging data analysis, more efforts should be devoted to this problem in the future.
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functional network in three different views (sagittal, axial, and coronal). We used the 

BrainNet Viewer (Xia et al., 2013) to generate these images. For uncluttered, we showed 

regions whose absolute weight is larger than 0.3 only.12 As stated in Deep Auto-Encoder 

(DAE) section, the main role of our DAE is to find the latent associations among regions 

under consideration, based on which we can learn an embedding low-dimensional space. 

Remarkably, our DAE discovered interesting relations, which can be neurologically 

understood. First, as visualized in Fig. 6, the learned weights decomposed ROIs into regions 

involved in Default-Mode Network (DMN) (Broyd et al., 2009), Executive Attention 

Network (EAN) (Rueda et al., 2005), visual cortex, subcortical regions, and cerebellum. 

Second, it detected regions of different networks as related with subcortical regions in Fig. 7 

and with cerebellar regions in Fig. 7. Third, it learned the joint relations among regions of 

multiple networks in Fig. 8. In a nutshell, the units of the first hidden layer of our DAE 

discovered the latent relations among regions of the same network (i.e., DMN and EAN), 

visual cortex, subcortex, or cerebellum and among regions of different networks, cortices, 

and cerebellum. Based on these relations, the units of the second hidden layer further 

discover the non-linear relations among these networks discovered in the first hidden layer, 

and so on. In this manner, our DAE could learn the complicated relations among regions of 

networks, cortices, or cerebellum, based on which an embedding low-dimensional space was 

learned at the end.

It is also noteworthy that the fine-tuning step in our DAE training was conducted in a 

supervised manner for class-discriminative pattern discovery. Hence, the learned patterns, 

e.g., functional networks presented in Figs. 6, 7, and 8, can be understood to contribute for 

clinical label discrimination.

Our DAE found the well-known DMN, EAN, visual network, subcortical regions, cerebellar 

regions, and their inter-relations, solely from data in a ‘self-taught learning’ manner. While 

there were many other functional networks (in total 200, one for each hidden unit in the first 

hidden layer) learned in our DAE, we presented only some of them in Figs. 6, 7, and 8, 

which show some relatively simple and interpretable relations.

Estimation and analysis of dynamic functional connectivity

In the following, we analyzed our experimental results on the ADNI2 cohort obtained with 

the number of hidden states equal to 5 for both classes, with which the best classification 

accuracy of 72.58% was obtained. The visual illustration of our trained HMM is given in 

Appendix A. Although we achieved a high performance with the proposed method for MCI 

identification in various metrics, it should be noted that they do not manifest anything about 

the internal characteristics of dynamic functional connectivity, which is the main concern in 

neuroscience and clinics. Fortunately, however, we could estimate the latent functional 

dynamics probabilistically from the trained HMMs by decoding the best state sequence of an 

observation with a Viterbi algorithm (Rabiner, 1989). Here, the best state sequence 

corresponds to a complete state sequence, one for each hidden node, from time 1 to T that 

produces the maximum likelihood of the given encoded representations, i.e., X=[x1, ⋯,xt, 

12The trained weights of the units of the first hidden layer were in the range of −0.79 and 1.04.
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⋯,xT]. That is, instead of summing over all possible state sequences in Eq. (9), we find a 

single state sequence that maximizes the likelihood of an encoded representation X by 

means of dynamic programming. Fig. 9 presents examples of state decoding for rs-fMRIs of 

NC and MCI. From the figure, we can see that the state transition occurs spontaneously, and 

thus different samples show different dynamic patterns. It is also noteworthy that not all 

samples involve all the functional states during functional state changes as exemplified at the 

bottom of Fig. 9.

Based on the decoded state sequence, we could further investigate the functional 

characteristics by constructing a functional connectivity (FC) map per state. Specifically, in 

constructing a functional connectivity map of the rs-fMRI in the k-th state, we used the 

bandpass-filtered regional rs-fMRI time series G=[g1, ⋯,gT], out of which those were 

assigned to the state k in our state decoding as follows: FCk = Corr (∪∀t;st=kgt).

Where Corr(·) denotes an operator of calculating the Pearson correlation coefficients among 

the input variables, i.e., ROIs. We showed a set of functional connectivities of NC and MCI 

in Fig. 10, calculated in a groupwise manner. Note that the number of functional 

connectivities for each class, i.e., NC and MCI, is equal to the number of states, with which 

we achieved the maximal diagnostic accuracy on the ADNI2 cohort.

These maps reflect the functional connectivities inherent in rs-fMRI and a subject’s 

functional states spontaneously change among those over time.

It should be emphasized that, compared to the previous work that mostly used a sliding 

window technique (Leonardi et al., 2013) to estimate dynamic functional connectivity, our 

method could estimate the functional dynamics in rs-fMRI, where a varying number of time 

points can be involved in different states, by means of a generative state-space model, i.e., 

HMM.

One interesting observation in Fig. 10, where the functional connectivities with the absolute 

correlation values larger than 0.65 are presented only, is that the functional connectivities of 

NC seems to be sparser than the functional connectivities of MCI. Specifically, we 

hypothesize the following distributional characteristics in functional connectivities, 

supporting the previous studies: increased number of connections as well as correlations in 

temporal lobe (Das et al., 2013), increased correlations within the prefrontal lobe, and 

parietal lobe (Wang et al., 2007), (Supekar et al., 2008), (Yao et al., 2010). These can be 

interpreted as the compensation of the cognitive functional losses caused by pathologies of 

brain disorder (Grady et al., 2003), (Celone et al., 2006), (Bai et al., 2009). It should be also 

noted that there is no correspondence between states of NC and MCI, i.e., the i-th state in 

NC is not necessarily corresponding to the i-th state in MCI. In Fig. 11, we also illustrated 

the number of positive and negative connections and the sum of the absolute magnitude of 

the connectivities in each lobe, averaged over 5 states. In regards to positive connections, 

i.e., connections with positive correlation (Fig. 11), there was no significant difference 

between NC and MCI. Meanwhile, in negative connections, i.e., connections with negative 

correlation (Fig. 11), compared to NC, MCI showed a tendency of increased connections in 
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frontal, insula, temporal, parietal, subcortical, cerebral, and vermis, where MCI also reported 

higher absolute magnitudes than NC (Fig. 11).

To further investigate the functional connectivities estimated by decoding the hidden states, 

we analyzed them by means of a graph theory, which is the natural framework for the exact 

mathematical representation of complex networks, like functional connectivities. Formally, a 

complex network can be represented as a graph by , with V denoting the set of 

nodes and E the set of edges in the graph  quantitative interpretation of a graph or network, 

i.e., functional Gconnectivity, in this work, we considered degree, clustering coefficient, and 

local efficiency. The degree is a simple measurement for the connectivity of a node with the 

rest of the nodes in a network. The clustering coefficient is the number of connections 

between a node’s neighbors divided by the number of possible such connections, or the 

probability that a node’s neighbors are also connected to each other, indicating how close 

they are to forming a clique. The local efficiency is the inverse of the average shortest path, 

which reflects the level of global integration in the network, connecting all neighbors of a 

node.

Fig. 12 compares the graph theoretic characteristics of the estimated functional 

connectivities of NC and MCI. First, we could see an aspect that the degree of regions in 

insula and subcortical cortex (Fig. 12) are increased, which presumably reflect the increased 

connectivity to those regions. This can be linked with the previous studies (Grady et al., 

2003), (Celone et al., 2006), (Bai et al., 2009), (Das et al., 2013) that suggested the 

compensation of the cognitive functional losses caused by pathologies of brain disorder. 

Second, regarding the clustering coefficient, it showed a feature of increase for the regions 

of insula and subcortical cortex, but decrease for the regions of the limbic system (Fig. 12). 

Third, in local efficiency, similar to the measurements of degree and clustering coefficient, 

regions of insula and subcortical cortex also seemed to be increased, while those of temporal 

cortex and limbic system presented decreased local efficiency (Fig. 12).

Model complexity

As for a model’s complexity, our method requires more computational time and resources 

than the competing methods. However, the computational burden of our method is mostly 

involved in the computation during a training phase, which can be performed offline. In 

other words, the high computational burden or complexity affects only the learning step, 

while the required computation for testing is matrix–vector multiplication and simple non-

linear function operations. Hence, from a clinical perspective, we believe that it deserves to 

sacrifice more computational time and resources (only for a training phase) for higher 

diagnostic accuracy.

For reference, all our experiments were performed on a desktop with an Intel Core i7 CPU 

(3.4 GHz) and 16 GB DDR3 memory. It took approximately 4 min for DAE training and 

given a model parameter pair, i.e., the number of hidden states and the number of Gaussians, 

and it took less than 1 min for HMM training.
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Conclusion

In this paper, we focused on computational modelling of functional dynamics inherent in rs-

fMRI. Specifically, we proposed a novel method of combining a deep architecture model, 

i.e., deep-auto encoder, with a state-space model, i.e., hidden Markov model, in a unified 

framework to investigate the underlying functional dynamics in rs-fMRI and ultimately to 

identify subjects with MCI. The rationale of using DAE is to discover the latent non-linear 

relations among brain regions, which are spatially apart but functionally integrated, in the 

form of functional networks, and thus to better understand the functional characteristics of 

NC and MCI subjects. Meanwhile, the HMM estimates spontaneous functional changes over 

time in a probabilistic manner. In order to validate the effectiveness of the proposed method, 

we evaluated the performance of the proposed method and compared with the state-of-the-

art methods in the literature on two different datasets, namely, ADNI2 cohort and in-house 

cohort. The proposed method achieved the maximal diagnostic accuracies of 72.58% 

(ADNI2) and 81.08% (in-house) overwhelming the competing methods. Our analysis on the 

functional networks learned by DAE and the estimated functional connectivities by decoding 

hidden states in HMM further validated the effectiveness of the proposed method.

Clinically, it is also important to build a computational model to predict whether a subject 

with MCI will progress to AD or not. As it is one of the major issues in neuroimaging-based 

AD diagnosis, the extension of our method for MCI conversion prediction will be our 

forthcoming research topic. Last but not least, it is noteworthy that although we considered 

only MCI diagnosis in this work, the proposed method can also be applied to diagnosis of 

other brain disorders such as autism spectral disorder, schizophrenia, and depression.
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Appendix A. Visualization of our trained HMMs

We visualized an example of the trained HMM models, i.e., state transition matrices, 

observation distributions, mean observations, and average state durations, in Fig. A1. For the 

mean observation per state and the state durations, we first decoded the rs-fMRI time series 

of the training samples and took the average of the bandpass-filtered regional rs-fMRI time 

series assigned to each state, and then computed the average duration for each state, 

respectively.
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Fig. A1. 
Visualization of our trained HMMs: (from left to right) transition matrix, observation 

distributions, mean observations, and average state durations.
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Appendix B. Names of the ROIs in the AAL template

Table B1

The indices and names of the ROIs in the AAL template. The odd and even indices refer, 

respectively, to the left- and right-hemispheric regions.

Index ROI label Index ROI label

1,2 PReCentral cyrus (PReCG) 3,4 Superior frontal gyrus (dorsal) (SFGdor)

5,6 ORBitofrontal cortex (superior) (ORBsupb) 7,8 Middle frontal gyrus (MFG)

9,10 ORBitofrontal cortext (middle) (ORBmid) 11,12 Inferior frontal gyrus (opercular) (IFGoperc)

13,14 Inferior frontal gyrus (triangular) (IFGtrang) 15,16 ORBitofrontal cortex (inferior) (ORBinf)

17,18 ROLandic operculum (ROL) 19,20 Supplementary motor area (SMA)

21,22 OLFactory (OLF) 23,24 Superior frontal gyrus (middle) (SFGmed)

25,26 ORBitofrontal cortex (medial) (ORBmed) 27,28 RECtus gyrus (REC)

29,30 INSula (INS) 31,32 Anterior cingulate gyrus (ACG)

33,34 Middel cingulate gyrus (MCG) 35,36 Posterior cingulate gyrus (PCG)

37,38 Hippocampus (HIP) 39,40 Parahippocampal gyrus (PHG)

41,42 AMYGdala (AMYG) 43,44 CALcarine cortex (CAL)

45,46 CUNeus (CUN) 47,48 LINGual gyrus (LING)

49,50 Superior occipital gyrus (SOG) 51,52 Middle occipital gyrus (MOG)

53,54 Inferior occipital gyrus (IOG) 55,56 FusiForm gyrus (FFG)

57,58 PostCentral gyrus (PoCG) 59,60 Superior parietal gyrus (SPG)

61,62 Inferior parietal lobule (IPL) 63,64 SupraMarginal gyrus (SMG)

65,66 ANGular gyrus (ANG) 67,68 PreCUNeus (PCUN)

69,70 ParaCentral lobule (PCL) 71,72 CAUdate (CAU)

73,74 PUTamen (PUT) 75,76 PALlidum (PAL)

77,78 THAlamus (THA) 79,80 HEShl gyrus (HES)

81,82 Superior temporal gyrus (STG) 83,84 Temporal POle (superior) (TPOsup)

85,86 Middel temporal gyrus (MTG) 87,88 Temporal POle (middle) (TPOmid)

89,90 Inferior temporal gyrus (ITG) 91–94 Crus I–II of cerebellar hemisphere (Crus)

107–108 Lobule III-X of cerebellar hemisphere (Lobule) 109–116 Lobule I–X of vermis (vermis)

Frontal = (1–16, 19–28, 69–70); insula = (29:30); temporal = (79–90); parietal = (17–18, 57–68); occipital = (43–56);
limbic = (31–40); subcortical = (41–42, 71–78); cerebellum = (91–108); vermis = (109–116)
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Fig. 1. 
Illustration of the proposed method for modelling functional dynamics in rs-fMRI.
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Fig. 2. 
Graphical illustration of a restricted Boltzmann machine: (left) inter-layer fully connected 

bipartite graph, (right) simplified illustration. Here, the bias parameters are omitted for 

uncluttered.
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Fig. 3. 
Three steps to learn a deep auto-encoder.
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Fig. 4. 
Graphical representation of an HMM and an ergodic topology for transition among states, 

e.g., 4 states in this case, to model functional dynamics in rs-fMRI.
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Fig. 5. 
Changes of diagnostic accuracy with the replacement of DAE and HMM by their 

counterparts, i.e., PCA, kPCA, and MoG.
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Fig. 6. 
Visualization of the trained weights of units in the first hidden layer of our DAE, i.e., W(1), 

which decomposed ROIs into regions involved in different types of functional networks. 

Here, we denoted only the regions whose absolution value is greater than 0.3. Each network 

corresponds to weights of one hidden unit. For better legibility, see the figures in an online 

version.
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Fig. 7. 
Visualization of the learned weights of units in the first hidden layer of our DAE, i.e., W(1), 

which found relations with subcortical and cerebellar regions (cyan: default-mode network; 

blue: regions of the subcortical nuclei; red: regions of the sensorimotor cortex; yellow: 

regions of the visual cortex; green: regions involved in the executive attention network; pink: 

regions in the cerebellum). Here, we denoted only the regions whose absolution value is 

greater than 0.3. Each relational network corresponds to weights of one hidden unit. For 

better legibility, see the figures in an online version.ω.
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Fig. 8. 
Visualization of the learned weights of units in the first hidden layer of our DAE, i.e., W(1), 

which found relations among regions of networks, cortices, and cerebellum (cyan: default-

mode network; blue: regions of the subcortical nuclei; red: regions of the sensorimotor 

cortex; yellow: regions of the visual cortex; green: regions involved in the executive 

attention network; pink: regions in the cerebellum). Here, we denoted only the regions 

whose absolution value is greater than 0.3. Each relational network corresponds to weights 

of one hidden unit. For better legibility, see the figures in an online version.
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Fig. 9. 
Examples of state decoding for each class. Note that the state transition occurs 

spontaneously and not all samples involve all the functional states during functional state 

changes (e.g., the bottom cases of each class).
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Fig. 10. 
Comparison of functional connectivities of NC and MCI on the ADNI2 cohort. Note that 

connections whose absolute weights are higher than 0.65 are presented only and there is no 

correspondence between states of NC and MCI, i.e., the i-th state in NC is not necessarily 

related with the i-th state in MCI.
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Fig. 11. 
Comparison of the number of positive and negative connections and the sum of the 

absolution magnitudes in each lobe, averaged over all the estimated states on the ADNI2 

cohort.
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Fig. 12. 
Graph theoretic characteristics of the estimated functional connectivities. Note that there is 

no correspondence between states of NC and MCI.
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