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Abstract

Most connectivity mapping techniques for neuroimaging data assume stationarity (i.e., network 

parameters are constant across time), but this assumption does not always hold true. The authors 

provide a description of a new approach for simultaneously detecting time-varying (or dynamic) 

contemporaneous and lagged relations in brain connectivity maps. Specifically, they use a novel 

raw data likelihood estimation technique (involving a second-order extended Kalman filter/

smoother embedded in a nonlinear optimizer) to determine the variances of the random walks 

associated with state space model parameters and their autoregressive components. The authors 

illustrate their approach with simulated and blood oxygen level-dependent functional magnetic 

resonance imaging data from 30 daily cigarette smokers performing a verbal working memory 

task, focusing on seven regions of interest (ROIs). Twelve participants had dynamic directed 

functional connectivity maps: Eleven had one or more time-varying contemporaneous ROI state 

loadings, and one had a time-varying autoregressive parameter. Compared to smokers without 

dynamic maps, smokers with dynamic maps performed the task with greater accuracy. Thus, 

accurate detection of dynamic brain processes is meaningfully related to behavior in a clinical 

sample.
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1. Introduction

1.1. Background and Study Motivation

Advances in connectivity mapping of functional neuroimaging data have significantly 

increased science and society’s understanding of the brain (Behrens & Sporns, 2012; Smith, 

2012). Many of these advances concern data-driven connectivity analyses (Gates & 
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Molenaar, 2012; Smith et al., 2011). One type of connectivity analysis is directed functional 

connectivity mapping, which aims to reveal the direction of relations between brain regions 

of interest (ROIs) based on statistical dependencies in the neural signal (Friston et al., 2013). 

It has been accomplished by means of several analysis techniques, particularly structural 

equation modeling (SEM) involving only contemporaneous directed connections, and vector 

autoregressive modeling (VAR) involving only lagged directed connections. Estimates of 

both contemporaneous and lagged directed connections can be obtained with structural 

VARs (Chen et al., 2011; Smith et al., 2012), and (extended) unified structural equation 

modeling (euSEM, cf. Gates et al., 2010; Gates et al., 2011; Kim et al., 2007). In order to 

streamline computation and aid interpretation, these analysis techniques often assume 

stationarity, implying that connectivity parameters are constant across the neuroimaging 

time series, but emerging evidence suggests that this assumption is not always an appropriate 

one (reviewed in Hutchison et al., 2013).

Researchers have generally used one of two approaches for detecting time-varying relations 

in connectivity maps. First, sliding windows show time-varying, or dynamic, relations in 

these maps. In general, they determine change in connectivity indices between brain regions 

of interest (ROIs) across equally-spaced sections – or windows – of the time series (for a 

description, see Franke et al., 2008). The indices of interest are usually derived from a 

correlation analysis, but parameters from other analyses (e.g., time-frequency and 

independent components) have also been used (Chang & Glover, 2010; Kiviniemi et al., 

2011). This work shows that time-varying relations are present in resting state and task-

related functional connectivity maps, and that some of the variation is systematic (e.g., as 

determined by clustering algorithms) within and between individuals (Allen et al., 2012; 

Betzel et al., 2012; Chang & Glover, 2010; Chang et al., 2013; Handwerker et al., 2012; 

Jones et al., 2012; Kiviniemi et al., 2011; Rack-Gomer & Liu, 2012; Sakoğlu et al., 2010; 

Tagliazucchi et al., 2012; Thompson et al., 2013).

Second, time-varying (structural) VARs and state space models with time-varying 

parameters enable model-based approaches to dynamic connectivity mapping. In general, 

they determine time-varying connectivity parameters (including Granger causality indices) 

between ROIs using sophisticated estimation techniques. Models for blood oxygen level-

dependent (BOLD) functional magnetic resonance imaging (fMRI) data have primarily been 

estimated with recursive least squares (for a description, see Möller et al., 2001). State space 

models with time-varying parameters have been considered in, for instance, Milde et al. 

(2010) and Havlicek et al. (2011), while Primiceri (2005) presents a general discussion of 

time-varying structural VARs. Because of their direct relevance to the present model, these 

approaches will be further discussed below (see section 2.4.2). Models for 

electroencephalography (EEG) and magnetoencephalography (MEG) data have also been 

estimated with Kalman filters and smoothers (for a description, see Bar-Shalom & 

Fortmann, 1988), which provide more noise suppression than sliding windows and more 

stable estimates than recursive least squares (Milde et al., 2010; Vedel-Larsen et al., 2010). 

Importantly, work using time-varying VARs has similarly found that dynamic relations are 

present in task-related effective connectivity maps (Hemmelmann et al., 2009; Hu et al., 

2012; Milde et al., 2010; Wacker et al., 2011).
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Sliding windows and time-varying VARs indicate that the stationarity assumption does not 

hold for data-driven connectivity mapping, but these approaches have limitations. Sliding 

window approaches provide a coarse, piecemeal estimate of dynamic relations, with findings 

varying based on window length; for example, the signal-to-noise ratio is lower in short 

versus long windows (discussed in Hutchison et al., 2013). So far, time-varying VARs have 

only been used to estimate lagged dynamic relations using fixed (i.e., not freely estimated) 

variances for both invariant and time-varying parameters, while only the latter should have 

nonzero variances. Moreover, it is unclear whether Kalman filters similar to those that have 

been applied to EEG and MEG data are appropriate for BOLD data, for which dynamic 

contemporaneous relations are of greatest relevance due to the comparatively low temporal 

resolution of the BOLD signal (Beltz & Molenaar, 2015; Smith et al., 2011). Thus, questions 

remain concerning the presence of time-varying relations in data-driven connectivity maps. 

Do time-varying relations exist when contemporaneous and lagged connection parameters 

are estimated within the same model? This is a key question because both parameter types 

must be calculated within the same model in order to ensure accurate magnitude and 

direction of ROI relations (Gates et al., 2010; Kim et al., 2007). Furthermore, can arbitrary 
(i.e., freely estimated, without information about which relations are dynamic and how they 

vary in time) contemporaneous and lagged time-varying connection parameters in BOLD 

fMRI data be estimated with an optimized second-order extended Kalman filtering/

smoothing approach? This is a key question because current Kalman filtering approaches do 

not freely estimate the variances of time-varying parameters (Havlicek et al., 2011), 

requiring that all relations be estimated as dynamic (e.g., Milde et al., 2010). This may bias 

results if both constant and dynamic relations are present in the time series.

It is important to address these methodological limitations because converging evidence 

suggests that dynamic relations in functional neuroimaging data reflect meaningful neural 

processes. Time-varying functional relations have been found with multiple neuroimaging 

modalities, including fMRI, EEG, and MEG in human beings and local field potential 

recordings in cats, suggesting that they are not a mere methodological byproduct of one 

signal type in human beings (e.g., Betzel et al., 2012; Chang & Glover, 2010; de Pasquale et 

al., 2010; Hemmelmann et al., 2009; Milde et al., 2010; Popa et al., 2009). In fact, recent 

work has demonstrated correspondence between dynamic brain relations measured by 

BOLD fMRI and EEG (e.g., Chang et al., 2013; Tagliazucchi et al., 2012). Moreover, time-

varying relations have been linked to experimental conditions (e.g., caffeine intake), 

behavior (e.g., vigilance during an attention task), and disease states (e.g., Alzheimer’s 

Disease and schizophrenia), suggesting that they are validly reflecting brain-based processes 

(Jones et al., 2012; Rack-Gomer & Liu, 2012; Sakoğlu et al., 2010; Thompson et al., 2013). 

Finally, time-varying analysis approaches have the potential to increase understanding of 

systematic temporal changes in brain connectivity that were previously detected, but not 

necessarily interpreted in terms of neural network stationarity. For example, past work on the 

neural underpinnings of olfactory habituation implemented unique task paradigms in order 

to overcome the systematic decreases in brain activity that correspond to repeated 

presentations of an odorant (e.g., Karunanayaka et al., 2014), but advances in time-varying 

analyses would permit explicit modeling of such habituation effects.
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1.2. Current Study

The goal of the current study was to validate exploratory state space models (SSMs) in 

simulated data and then to estimate the models for BOLD fMRI data, allowing for explicit 

modeling of both contemporaneous and lagged time-varying connection parameters without 

a priori information about which parameters are dynamic. SSMs, of which VARs are a 

special case (that do not include measurement models), also allow for dimension reduction 

based on principled statistical methods. Last but not least, to the best of our knowledge for 

the first time in neuroimaging an optimal raw data maximum likelihood method (for 

Gaussian series) or quasi-maximum likelihood method (for non-Gaussian series) was used, 

consisting of a second-order extended Kalman filter/smoother (sEKFS) embedded within a 

nonlinear optimizer. The sEKFS can be conceived of as acting as E-step and the nonlinear 

optimizer as M-step in a nonstandard EM-algorithm. This is an extension of our previous 

work (Beltz & Molenaar, 2015; Gates et al., 2010; Gates & Molenaar, 2012; Gates et al., 

2011) regarding innovative connectivity and grouping procedures for BOLD fMRI data, 

procedures that are among the best in the field (as tested in Gates & Molenaar, 2012; Smith 

et al., 2011).

To accomplish our goal, we utilized BOLD fMRI data from nicotine-deprived cigarette 

smokers performing a verbal working memory task. These data are ideal for this 

methodological investigation because the nature of the sample and specificity of the task 

facilitated the interpretation of dynamic relations, when they were found. For instance, past 

work has shown differences between the brain activity of smokers and non-smokers during 

verbal working memory tasks, and the differences were modulated by nicotine deprivation 

(Sutherland et al., 2011; Xu et al., 2006).

2. Methods

2.1. Participants

Participants were 30 cigarette users (22 men, 8 women), aged 19 to 45 years; they were 

randomly selected from a sample of 118 individuals, who participated in one of two fMRI 

studies on smoking cue reactivity (Wilson et al., 2012, 2013). For both studies, participants 

had to report smoking an average of 15 to 40 cigarettes per day for the past 24 months, be 

right-handed, and pass an MRI safety screening.

2.2. Procedures

The testing procedures and task are outlined here and described in detail elsewhere (Nichols 

et al., 2014; Wilson et al., 2012, 2013). Eligible participants (as determined with a phone 

interview) came to the lab for a baseline session that included questionnaire and 

psychological task completion. Participants were cigarette-deprived for 12 hours before the 

neuroimaging session, as confirmed with carbon monoxide (CO) levels. During this session, 

they provided structural MRI data and fMRI data during multiple tasks, including the verbal 

working memory task.
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2.3. Measures

2.3.1. Baseline Assessment—During the baseline assessment, basic demographic 

information and information regarding smoking patterns were assessed with standard forms. 

Participants also completed behavioral working memory tasks and questionnaires assessing 

a variety of constructs, only a subset of which are reported herein (for details, see Wilson et 

al., 2012).

2.3.2. Neuroimaging Assessment—Participants were scanned using a 3-Tesla head-

only Siemens Allegra magnet (Siemens Corporation, New York, NY) equipped with a 

standard transmit/receive head coil. Prior to functional scanning, a 40 slice oblique-axial 

anatomical series (3.125 × 3.125 × 3.0 mm voxels) was acquired parallel to the anterior 

commissure-posterior commissure plane using a standard T2-weighted pulse sequence. 

Additionally, a high-resolution (1 × 1 × 1 mm voxels) three-dimensional structural volume 

was collected using a magnetization-prepared rapid gradient-echo sequence. Next, 

functional images were acquired in the same plane as the 40-slice anatomical series with 

coverage limited to the 38 center slices using a one-shot echo-planar imaging pulse sequence 

(TR = 2000 ms, TE = 25 ms, FOV = 20 cm, flip angle = 79°).

The functional images were acquired during an n-back task, which assesses verbal working 

memory. The task design is depicted in Figure 1 (see also Nichols et al., 2014). Participants 

completed several 36-s task blocks during which 12 (of 18) randomly-selected English 

letters individually appeared (each 500 ms) between fixation crosses (each 2500 ms). 

Participants completed control (0-back) and experimental (3-back) versions of the task. In 

the control version, participants pressed a button each time they saw the letter X. In the 

experimental version, participants pressed a button each time the current letter they saw 

matched a letter they saw exactly three items ago. In both versions, the letter the participants 

saw was a target (required a button press) 33% of the time. Each participant completed three 

0-back task blocks, three 3-back task blocks, and two rest blocks (fixation cross appeared for 

36 s).

2.3.3. Task Performance—Task performance was assessed by accuracy and reaction 

time. Accuracy was the percent of correct responses, and reaction time was acquired for all 

responses. Both measures were collapsed across task conditions.

2.4. Data Analysis Plan

2.4.1. Data Preparation—Standard preprocessing for BOLD fMRI data was conducted. 

Functional images were corrected for head motion and slice timing, adjusted for drift within 

and between runs, and aligned to standard space using a transformation matrix generated 

from the co-registration of the structural images to Montreal Neurologic Institute (MNI) 

space with a six-parameter rigid-body automated registration algorithm. Functional images 

were then globally mean-normalized and smoothed using a three-dimensional Gaussian filter 

(8-mm full width at half maximum).

To identify regions of interest, a standard two-level random-effects general linear model 

(GLM) approach was implemented on a voxel-wise basis using the AFNI program 
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3dDeconvolve (Cox, 1996). For each participant, parameter estimates for each version of the 

n-back task were obtained from the GLM. A second-level paired t-test was then used to 

determine which brain regions exhibited an effect of memory load (i.e., 3-back > 0-back) 

using a voxel-wise significance threshold of p < 1 × 10−18 and a spatial extent threshold of 

10 contiguous voxels; this yielded a corrected map-wise false positive rate of p < 0.001 

according to Monte Carlo simulations conducted in AFNI AlphaSim (Cox, 1996). BOLD 

time series data for further analyses were extracted from each of these brain regions: dorsal 

anterior cingulate cortex (ACC), right and left dorsolateral prefrontal cortex (DLPFC), right 

and left lateral premotor cortex (LPM), and right and left inferior parietal lobule (IPL).

2.4.2. Model Specification—In what follows, matrices and column vectors are denoted 

by, respectively, upper case and lower case bold letters. Latent variables are denoted by 

Greek symbols. The apostrophe (‘) denotes transposition. The SSM with time-varying 

parameters for a p-variate observed BOLD time series y(t) with p-variate mean level μ is:

(1)

η(t), ε(t), z(t), and θ(t) are, respectively, a latent q-variate state process, a p-variate residual 

measurement noise process, an s-variate measured fixed input sequence, and an r-variate 

vector process containing all unknown parameters. The q-variate process ζ(t) and the r-

variate process ξ(t) are process noise series. It is minimally assumed that ε(t), ζ(t) and ξ(t) 

are zero mean, weakly stationary white noise processes (lacking sequential dependencies) 

that are mutually independent and have finite moments up to fourth order, thus guaranteeing 

that parameter estimates have minimum mean-squared error. To obtain maximum likelihood 

estimates it is additionally assumed that ε(t), ζ(t) and ξ(t) are Gaussian.

The first equation of (1) shows that the mapping of η(t) on y(t) given by the (p,q)-

dimensional sequence of matrices Λ[θ(t)], t=1,…,T, depend upon the time-varying 

parameter-vector θ(t). The second equation describes the time evolution of the state process 

η(t); the (q,q)-dimensional autoregressive weights in B[θ(t)] depend upon θ(t) and therefore 

can be arbitrarily time-varying. Γ[θ(t)] is a sequence of (q,s)-dimensional matrices 

containing the arbitrarily time-varying regression coefficients of the state process on the 

external input. The third equation in (1) describes the time-dependent variation of the 

unknown parameters. The r-variate parameter process θ(t) obeys a random walk with 

Gaussian white noise innovations ξ(t).

2.4.2.1. Choice of additional assumptions: Several distinct additional assumptions can be 

entertained to arrive at identifiable instances of (1). Presently a so-called exploratory version 

of (1) is considered in which a) the matrix sequence Λ[θ(t)] has no a priori structure (save 

for the minimal possible constraints to arrive at identifiable exploratory models); b) the 

sequence of autoregressive weights B[θ(t)] consists of diagonal matrices; c) the covariance 

function of ζ(t) is diagonal: cov[ζ(t), ζ(t-u)′] = δ(u)diag-Ψ, where δ(u) is the Kronecker 

delta being zero except if u=0. The definition of the model is completed by assumptions 
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about the covariance functions of ε(t) and ξ(t): cov[ε (t), ε (t-u)′] = δ(u)diag-Ξ and cov[ξ(t), 

ξ(t-u)′] = δ(u)diag-Φ. The assumption that ε(t) has diagonal covariance matrix is mandatory 

in order to obey the standard definition of measurement noise as being conditionally 

independent.

2.4.2.2. Model transformation: The exploratory model considered in this paper can a 
posteriori (after having been fitted to the data) be transformed into an equivalent 

confirmatory model by means of the following transformations: Λ[θ(t)]* = Λ[θ(t)]T, 

B[θ(t)]* = T−1B[θ(t)]T, ζ(t)* = T−1ζ(t), where T is an arbitrary nonsingular (q,q)-

dimensional matrix (e.g., Goodwin & Sin, 1984). For instance, T can be chosen in such a 

way that Λ[θ(t)]* has simple structure, that is, each univariate component series of y(t) has a 

high (absolute value) regression coefficient on one component of η(t)* and vanishing 

regression coefficients on the remaining components. Notice that such transformations 

destroy the independence of the components of η(t)* in that B[θ(t)]* is no longer diagonal 

and ζ(t)* has non-diagonal covariance matrix.

2.4.2.3. Model interpretation: The state space model (1) is a causal model involving 

directed functional connectivity. It contains contemporaneous connections directed from the 

latent state process η(t) to the ROIs in y(t). Also, the evolution of the latent state process is 

described by a VAR and hence involves lagged directed functional connections. The 

difference with the definition of directed functional connectivity given by Friston et al. 

(2013), however, is that the state process involved in these directed connections is latent. To 

fully comply with Friston’s definition it is required to interpret the q-variate latent state 

process as the output of q indirectly measured ROIs. Such realistic interpretation of latent 

state processes now is the norm in psychometrics (cf. Borsboom, 2009). Further conjectures 

about the identity of each of the indirectly measured ROIs then are based on the pattern of 

its contemporaneous and lagged directed connections, either in the original state space 

model or in an equivalent transformed analogue thereof. In what follows we will interpret 

latent state processes in this realistic sense. In contrast, if a latent state process is not 

interpreted as the output of indirectly measured ROIs then the Friston et al. (2013) definition 

of directed functional connectivity may not apply.

2.4.2.4. Statistical analysis: To fit the state-space model with time-varying parameters to an 

observed multivariate time series, an augmented state process is defined, which consists of 

the original latent state process and the time-varying parameter process: x(t)′ = [η(t)′, θ(t)

′]. (Implementation of the model fitting steps is presented below in section 2.4.3.) Then, 

using the augmented state process x(t), (1) is rewritten as the following nonlinear state-space 

model:

(2)

The vector-valued nonlinear functions h[x(t),t] and f[x(t),t] consist of products of the entries 

of x(t). The (q+r)-dimensional innovations process w(t) is defined as the composition of the 

innovation processes ζ(t) and ξ(t): w(t)′ = [ζ(t)′, ξ(t)′]. That is, the form of h[x(t),t] in (2) 
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is the p-dimensional column vector Λ[θ(t)]η(t). The corresponding form of f[x(t),t] is the (q

+r)-dimensional column vector [η(t)′[B[θ(t)]′, θ(t)′]′. To illustrate with a simple model in 

which p=3 and q=1, and using simplified notation: x1(t) = η(t), x2(t)=λ1(t), x3(t)=λ2(t), 

x4(t)=λ3(t), x5(t)=b1(t). Then h[x(t),t] = [x2(t)x1(t), x3(t)x1(t), x4(t)x1(t)]′, and f[x(t),t] = 

[x5(t)x1(t), x2(t), x3(t), x4(t), x5(t)]′.

In addition to the assumptions concerning Eq. (1) it is assumed that the initial condition in 

Eq. (2) is: x(0)′ = [η(0)′, θ(0)′] is Gaussian with zero mean for η(0) and means equal to the 

estimates obtained in the preliminary block-Toeplitz analysis (see below) for θ(0). The 

covariance matrix of x(0) is diagonal with large values for η(0) and the estimated standard 

errors obtained in the preliminary block-Toeplitz analysis for θ(0). Initial conditions also can 

be estimated according to the approach presented in Durbin and Koopman (2001). However, 

the effects of initial conditions decay exponentially and therefore are small for series of 

sufficient length. Moreover, we use the smoother which re-estimates the initial condition in 

the backward sweep.

Model (2) is fitted by means of the raw data likelihood method consisting of a new variant of 

the expectation maximization (EM) algorithm. The E-step is implemented by the sEKFS for 

estimation of the latent state process x(t), using filtering equations that are augmented by 

appropriate tensor terms (Eqs. 10.3.2-4 and 10.3.2-7 in Bar-Shalom et al., 2001). Because 

the nonlinearities in (2) are confined to products of the entries of x(t), the sEKFS is locally 
exact (derivatives with respect to the local state process of order higher than two are zero). 

The M-step consists of estimation of the variances of ε(t) and w(t) by maximizing the 

likelihood using constrained sequential quadratic optimization (Gill et al., 1998). The 

equations underlying the implementation of both the E- and M-steps are detailed in the 

Appendix, and the listing of a beta version of the implementation can be obtained from the 

Supplementary Materials.

Identification of time-varying parameters then proceeds as follows. If an estimated variance 

along the diagonal of cov[ξ(t), ξ(t-u)′] = δ(u)diag-Φ is zero, then the associated parameter 

is constant in time. In contrast, if an estimated variance of diag-Φ is relatively large then the 

associated parameter may vary substantially in time. The relation between process noise and 

temporal variation of parameters is, however, indirect (see NiedŸwiecki, 2000). It therefore 

is tested whether the time-dependent trajectory of each estimated parameter contains 

stretches which differ significantly from each other. That is, significant differences should 

not be limited to a single pair of nonadjacent time points but should involve distinct stretches 

each covering more than one adjacent time point. In this test the actual estimated time-

varying standard errors are used as obtained from the sEKFS, together with the stringent 

criterion that pairs of stretches should differ from each other at least 3.1 standard errors.

2.4.2.5. Comparison with related approaches: Our estimation approach differs in a 

number of important respects from similar approaches (in, for instance, Havlicek et al., 

2011; Hu et al., 2012; Milde et al., 2010). Firstly, use is made of the sEKFS instead of the 

first-order extended Kalman filter (Milde et al., 2010) or the cubature Kalman filter 

(Havlicek et al., 2011; Hu et al., 2012). The sEKFS is optimal in the sense that it provides an 

exact local approximation for the estimation of the extended state x(t) in (2). This is because 
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all third- and higher-order derivatives in the sEKFS for (2) are zero. Direct comparison of 

the sEKFS with the first-order extended Kalman filter and the unscented filter (cf. Simon, 

2006) shows that it outperforms the latter two approaches. Secondly, the variances of the 

process noise ξ(t+1) in the random walk for the parameter process θ(t), that is, the diagonal 

elements of Φ, are estimated by means of likelihood maximization. Each of these process 

noise variances is related to the estimation memory of the filter: the larger this variance is, 

the smaller is the estimation memory for this parameter (NiedŸwiecki, 2000). For constant 

parameters the estimation memory covers all data. Therefore the estimated innovation 

variances can be regarded as greatest lower bounds on the estimation memory. Previously 

these variances have been fixed at a small constant (Milde et al., 2010) or are derived from 

the local filtering results depending upon a fixed forgetting factor (Havlicek et al., 2011; Hu 

et al., 2012) as well as a fixed coefficient determining the degree of annealing (covariance 

resetting; Havlicek et al., 2011). Our approach allows for the possibility that variances 

associated with particular parameters are zero, indicating that these parameters are constant. 

Thirdly, time-varying structural VARs (Primiceri, 2005) also enable decompositions of 

contemporaneous and lagged dynamic connections. However, results thus obtained depend 

upon the ordering of univariate component series in the vector-valued observed series 

(Lütkepohl, 2005; Primiceri, 2005). In contrast, our approach to estimate contemporaneous 

and lagged dynamic connections is invariant under permutations of the order of the entries in 

y(t). Fourthly, regime shifting models (Olier et al., 2013) are optimal for tracking sudden 

transitions between otherwise stationary regimes (Chow & Zhang, 2013). Hence regime 

shifting state space models have different domains of application in comparison with our 

approach in which time-dependent parameter changes are assumed to be smooth (e.g., due to 

habituation).

In sum, our approach is optimal and timely, as it appears to be the first exploratory (data-

driven) state space modeling approach to estimate smooth time-varying contemporaneous 

and lagged parameters simultaneously. This is important because brain networks measured 

by BOLD are best quantified with contemporaneous relations (Beltz & Molenaar, 2015; 

Smith et al., 2011), but the estimation of contemporaneous relations is biased without 

estimation of lagged connection parameters in the same network model (Gates et al., 2010).

2.4.3. Model Fitting—For each participant the dimension of the latent state process η(t) in 

(1) has been determined in a purely data-driven, exploratory way by means of the block-

Toeplitz method described in Molenaar (1985). The dimensionality of each individual’s 

model was automatically determined by stepwise increases until the model had good fit to 

the data, according to the following criteria: the Confirmatory Fit Index (CFI), which had to 

be larger than .90, and the Non-Normed Fit Index (NNFI), which also had to be larger than .

90 (cf. Brown, 2006). Both indices are derived from the likelihood ratio penalized for 

number of free parameters and were found to perform well in simulation studies (Gates & 

Molenaar, 2012). Estimates of the parameter vector thus obtained serve as starting values in 

the raw data likelihood fit of (1). The Expectation step in the likelihood maximization is 

obtained by means of the sEKFS; the Maximization step is obtained by means of NPSOLã 

(Gill et al., 2001), serving as a nonlinear optimizer of δ(u)diag-Ξ, δ(u)diag-Φ, and δ(u)diag-

Ψ in (1). NPSOL maximizes the likelihood using a sequential quadratic programming 
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method. Linear and/or nonlinear (in-)equality constraints are handled by a combination of 

penalty and Lagrange multiplier methods as described in Bertsekas (1999). In the present 

application only the soft inequality constraints are used that estimated variances should be 

non-negative. See also the Supplementary Materials.

2.4.4. Some Simulation Studies—As a preliminary test of the new EM algorithm, the 

results of some small-scale simulation studies are reported. The simulations are small-scale 

because the beta version of the implementation (obtainable from the additional materials) 

has not been optimized with respect to speed. Data were generated according to (1) with p=6 

(six ROIs) and q=2 (bivariate state process). All parameter values in the simulation program 

correspond to the general pattern of parameter estimates obtained in our empirical 

application (presented below). In particular, the first column of Λ[θ(t)] has relatively high 

positive loadings on all ROIs while the second column only has loadings on the fourth, fifth 

and sixth ROI, the values of which are lower in absolute value than in the first column. 

Three data sets were generated, each consisting of 100 replications for T=200 TRs. 

Application of the EM algorithm is blind with respect to whether there are time-varying 

parameters and, if so, how these vary in time.

In the first data set there is no external input z(t). The loading (1,1) in Λ[θ(t)] linearly 

decreases from 1.0 at t=1 to 0.1 at t=200; all other parameters are constant. All parameter 

estimates are close to their true values (never exceeding the 95% confidence intervals about 

their true values). The algorithm correctly identifies that the loading (1,1) in Λ[θ(t)] is time-

varying; Figure 2A depicts its average estimate across replications.

In the second data set there is no external input z(t). The autoregressive parameter associated 

with the first component of the latent state process (element (1,1) of B[θ(t)]) decreases from 

0.8 at t=75 to 0.1 at t=200; all other parameters are constant. Notice that at t=75 a kind of 

regime shift occurs involving a transition from a constant to a time-varying regime. The 

constant parameter estimates are close to their true values (never exceeding the 95% 

confidence intervals about their true values). The algorithm correctly detects that it is 

element (1,1) of B[θ(t)] that is partly time-varying. Figure 2B depicts its average estimate 

across replications.

In the third data set there is univariate external input z(t). The direct effect of the input on the 

first state process (element (1,1) of γ[θ(t)]) decreases from 0.7 at t=1 to 0.1 at t=50, after 

which it increases to 1.2 at t=200. The algorithm correctly identifies that element (1,1) of 

γ[θ(t)] is nonlinearly time-varying; Figure 2C depicts its average estimate across 

replications.

2.4.5. Task Performance—We also explored links between time-varying parameters and 

performance on the verbal working memory task. Specifically, we compared individuals 

with and without dynamic parameters on task accuracy and reaction time, using independent 

samples t-tests and Type I error of .05.
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3. Results

3.1. General Characteristics of State Space Models (SSMs): Contemporaneous and Lagged 
Parameters

All participants had state space models of excellent fit, with CFIs and NNFIs equaling or 

exceeding .90. As stated above, Λ[θ(t)] had no a priori structure, so we determined its 

dimension for each participant by systematically increasing the number of states by one until 

both alternative fit indices were greater than or equal to .90. This resulted in models with 

three states for all participants, where states reflect independent patterns of dynamic 

coordination among ROIs.

Generally, all ROIs had substantial loadings (in Λ[θ(t)]) on the first state for all participants, 

and some ROIs had substantial loadings on the second and third states for subsets of 

participants. Table 1 shows the mean ROI loadings across participants on each state. All ROI 

loadings on the first state were significant and greater than or equal to .76. No ROI loadings 

on the second and third states were significant across all participants, even though loadings 

were significant for some individuals. Notice that the bilateral IPL had the highest average 

loadings on both the second and third states. Also, notice that the ACC and right LPM have 

some fixed loadings in order to attain an identifiable model solution. In sum, the first latent 

state process explained the most variance in the SSMs and constituted the dominant 

common network in this study, whereas the second and third states reflected participant-

specific neural networks (that are discussed in greater detail below).

Each state also has an autoregressive weight (in B[θ(t)]), reflecting its evolution over time. 

Table 1 shows the means for these weights across participants. The average lagged 

parameter for each state was large and significant, but it was largest and least variable for the 

first state. Thus, the first state had the most slowly varying evolution over time, but the 

second and third states also had substantial lagged effects.

3.2. External Input Effects in SSMs

None of the parameters in γ[θ(t)], quantifying the direct lagged effects of external input on 

state processes, are time-varying. The external input had a significant direct effect on one or 

more state processes for 13 participants, with 11 participants showing significant effects on a 

single state process, and 2 participants showing significant effects on 2 state processes. It is 

particularly noteworthy that all these significant direct effects were only on the second and 

third states; the external input did not significantly impact the first state. Moreover, 

significant external input effects were primarily on states predominantly loading on the 

bilateral IPL, with 38% of the detected effects on a state loading on the left IPL and 27% of 

the effects on a state loading on the right IPL. Thus, the second and third states can be 

interpreted in terms of the lagged task effects they reflect for nearly half the sample.

3.3. Time-Varying SSM Parameters

Time-varying parameters were present in the SSMs of 12 participants. Table 2 lists the time-

varying effects for each participant and defines the states containing time-varying 

parameters in terms of their ROI loadings and implications for brain function, with the 
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bilateral LPM presumably contributing to task-related motor responses, the bilateral DLPFC 

to decision-making, and the bilateral IPL to language interpretation. Figure 3 shows plots of 

the time courses of all participants’ time-varying parameters listed in Table 2. Figure 4 

integrates the information contained in Table 2 and Figure 3 by displaying dynamic brain 

networks for two exemplar participants.

Several conclusions can be drawn from these results. First, most time-varying parameters 

were contemporaneous (only participant G has a time-varying autoregressive parameter). 

Second, the left LPM was the ROI most often identified as time-varying. In fact, it was 

identified as time-varying twice as often – accounting for 30% of the dynamic parameters – 

as the next closest ROIs; the ACC, right DLPFC, and left IPL each accounted for 15% of the 

dynamic parameters. Third, the right IPL did not have time-varying loadings for any 

participant. Fourth, although there were similarities across participants, there were also 

marked individual differences in the presence and patterns of time-varying parameters. For 

instance, all 4 time-varying parameters for participant D markedly decreased across the time 

course, the 2 time-varying parameters for participant F spiked around time point 60 before 

plummeting, and the single time-varying parameter for participant K showed a slow, but 

steady increase across the time course until dropping off after time point 120. Moreover, the 

majority of the participants (7 of 12) had SSMs with a single time-varying parameter, but 3 

participants had SSMs with 2 time-varying parameters, and 2 participants had SSMs with 3 

and 4 time-varying parameters.

Fifth, time-varying parameters were present on all states. When a time-varying loading in 

Λ[θ(t)] is on the first state process then its interpretation is straight-forward because the first 

state represents a general, common network for all participants (see section 3.1). When a 

time-varying loading is on the second or third state, however, its interpretation depends upon 

the participation-specific pattern of loadings of those states. This is exemplified in Figure 4. 

For participant B (Figure 4A), the bilateral LPM and DLPFC significantly loaded on the 

second state, indicating that the state represents a decision-making and response network, 

and both left hemisphere ROIs have time-varying loadings in this network. For participant I 

(Figure 4B), the right DLPFC, left LPM, and left IPL have time-varying loadings on the 

third state, which also contains a notable right IPL loading, and thus, represents a language 

interpretation, decision-making, and response network. Furthermore, most participants had 

time-varying loadings associated with a single state, with only one (participant A) showing 

time-varying loadings on multiple states (i.e., a dynamic left IPL in the first, general state 

and a dynamic left LPM in the left language interpretation and response state).

3.4. Task Performance

Finally, we examined whether participants with and without time-varying parameters 

differed in verbal working memory task performance, focusing on task accuracy and 

reaction time. The groups differed on task accuracy, t(28) = −2.60, p = .02, with participants 

who had dynamic SSMs (M = .91, SD = .05) outperforming those who did not (M = .84, SD 
= .08). The groups did not differ in reaction time, though, t(28) = .07, p = .95, with both 

participants who had dynamic SSMs (M = 730ms, SD = 167ms) and those who did not (M = 

725ms, SD = 223ms) responding in similar amounts of time.
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4. Discussion

4.1. Interpretation and Significance of Findings

In this paper, we provided a description and first illustration of a new state space model 

(SSM)-based approach for detecting smoothly time-varying network connections in brain 

connectivity maps. The approach is exploratory and can be applied in a data-driven way 

without any a priori information. The obtained network connections are contemporaneous 

and lagged directed functional connections among directly and indirectly measured ROIs. 

This work fills three knowledge gaps concerning the presence and nature of time-varying 

connectivities. First, the model fit is innovative in at least one important respect: the process 

variances of random walks modeling the evolution of model parameters are estimated. In 

previous approaches these variances were fixed a priori at some small value, which leads to 

sub-optimal performance. Second, arbitrary time-varying parameters in BOLD fMRI data 

can be estimated by means of optimal (quasi-) maximum likelihood techniques involving 

locally exact second-order extended Kalman filtering/smoothing. Third, time-varying 

contemporaneous connections can be determined within the same model as lagged 

connections in a way that is independent of the ordering of univariate components in the 

vector-valued observed series. We provided technical details regarding these general 

conclusions, a listing of the beta version of the Fortran implementation that produced the 

results (see the Supplementary Materials), results from small simulation studies, and an 

application demonstrating feasibility to cigarette smokers’ verbal working memory BOLD 

data.

Alongside these general conclusions, there were several specific and novel findings. First, 

SSMs with three states were identified for all participants. The first state represented a 

general neural network, explaining the most variance in participants’ models and displaying 

a consistent pattern of loadings, with all seven ROIs contributing to it substantially and with 

similar orders of magnitude. The second and third states varied across participants, and thus, 

require participant-specific interpretations. For example, a state consisting of significant 

bilateral IPL loadings likely represents a language interpretation network in the context of 

the verbal working memory task participants were completing during data collection (see, 

e.g., participant G in Table 2). In fact, the bilateral IPL were the two ROIs with the greatest 

contributions to the second and third states of participants. Moreover, all three states had 

large autoregressive components, with the component for the first state being largest.

Second, the external input was related to brain function, with 43% of participants showing 

task-related effects in their SSMs. The external input consisted of the 3-back (most difficult) 

condition of the verbal working memory task, convolved with a double gamma function to 

approximate the hemodynamic response function. Effects of the external input were 

exclusively on participants’ second and third states. This is consistent with the large second 

and third state loadings on the bilateral IPL, and suggests that the bilateral IPL are hubs for 

neural networks underlying verbal working memory task performance in smokers.

Third, 40% of participants had time-varying parameters, and they were primarily associated 

with contemporaneous connections on the latent state processes. The loading on the left 

LPM was most frequently identified as being time-varying, a logical result because all 
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participants were right-handed and the LPM subserves the motor responses that were 

variably elicited by the verbal working memory task. Because our estimation approach 

allows for arbitrary detection of time-varying parameters associated with both 

contemporaneous and lagged connections, it is particularly compelling that we found little 

evidence of dynamic lagged parameters. Thus, our work calls into question the use of time-

varying vector autoregressive models (e.g., Hu et al., 2012; Milde et al., 2010), which do not 

permit estimation of time-varying contemporaneous relationships.

Fourth, the presence and pattern of time-varying ROIs showcases individual differences in 

the neural processes underlying behavior. Participants differed in the number of time-varying 

parameters in their maps, the specific ROIs or autoregressive components that were 

dynamic, the time course of the time-varying parameters, and the interpretation of the 

parameters based upon the state processes on which the parameters loaded. This highlights 

the importance of grouping procedures in connectivity mapping that allow for individual-

level nuances in the maps (as presented in Gates & Molenaar, 2012).

Fifth, compared to those without dynamic relations, smokers with dynamic relations 

performed better on the verbal working memory task. Specifically, regular cigarette users 

who had dynamic patterns of brain connectivity provided more correct responses when 

identifying the letter X (0-back condition) and when the letter they were viewing was 

presented three items ago (3-back condition) than users who had stationary patterns of brain 

connectivity. This group difference likely reflects an important neural process because it is 

consistent with past work showing links between time-varying parameters and behavior 

(Rack-Gomer & Liu, 2012; Thompson et al., 2013), and it cannot be attributed to strategy 

use (e.g., as would be implied by a speed accuracy trade-off), since both smokers with and 

without dynamic patterns of brain connectivity had similar reaction times.

4.2. Suggestions for Future Research

Our approach can be straightforwardly generalized to multi-subject applications. In this way, 

loadings of latent state processes can be constrained to be equal or proportional across 

participants. For example, we could have forced participants to have equal right and left 

DLPFC loadings on the second latent state process in order to test its interpretation in terms 

of a “decision-making” network. Also the model can be implemented in a semi-confirmatory 

or confirmatory way instead of in an exploratory, data-driven way, as presented in this paper.

The meaning of dynamic connectivity maps for understanding brain processes underlying 

smoking behavior requires further investigation. Evidence reviewed above (section 1.1) 

suggests that dynamic processes are generally meaningful for behavior, but work within the 

domain of smoking – a model system for drug addiction – is lacking. We found that smokers 

with time-varying SSMs outperformed those without time-varying SSMs in verbal working 

memory task accuracy, but it is unclear how this is related to cigarette use. Are individuals 

with time-varying relations more likely to quit smoking? Do our findings generalize to tasks 

beyond working memory? Our study of cigarette users completing a well-characterized task 

provided valuable context for interpreting time-varying parameters, but future work could 

extend these methods to new samples and tasks in an attempt to predict smoking behavior.
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4.3. Conclusions

We presented an innovative approach for estimating dynamic connectivity maps. 

Methodologically, we demonstrated for the first time that a novel data estimation technique 

embedded within second-order extended Kalman filtering/smoothing can be used to identify 

arbitrary time-varying contemporaneous and lagged relations in BOLD fMRI data. 

Substantively, we revealed a link between working memory and dynamic brain activity that 

has implications for smoking research. Future applications of this approach have the 

potential to provide insight into basic questions regarding brain function and applied 

questions regarding intervention.
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Appendix

The nonlinear state-space model (2) in the main text to be fitted to the p-variate observed 

series y(t), t=1,2,…,T is:

where x(t) is (q+r)-dimensional and consists of a concatenation of the state process η(t) and 

the parameter process θ(t) in the linear model (1) in the main text. The initial values θ(0) 

and var[θ(0)] are obtained by fitting the stationary version of the linear state-space model (1) 

in the text by means of either the block-Toeplitz approach (Molenaar, 1985) or the prediction 

error decomposition (Hamaker et al., 2005).

Let x(t|t′) denote the expectation of x(t) conditional on x(t′), where t′ = t or t-1. Define the 

following partial derivatives at x(t|t-1):

Define the following partial derivatives at x(t|t):

Let x(0|0)′ = [0′, θ(0)′] and P(0|0) = diag{I, var[θ(0)}. Let ei have 1 at the i-th row and 

zeroes elsewhere and let Tr[.] denote the trace.

E-step. For t=1,…,T do:

M-step. Maximize the log-likelihood L[w(t|t), t=1,…,T] with respect to var[ε (t), ε (t)′] = 

Ξ, var[ζ(t), ζ(t)′] = Ψ and var[ξ(t), ξ(t)′] = Φ:
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Figure 1. 
Control (0-back) and experimental (3-back) versions of the verbal working memory (n-back) 

task.
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Figure 2. 
SSM results of simulation studies, with each simulation containing 6 ROIs, 2 states, 200 

measurements, and 100 replications. (A.) The SSM accurately recovered the time-varying 

contemporaneous loading for the first ROI on the first state (i.e., (1,1) in Λ[θ(t)]); the 

average across replicates is plotted, and estimates were within the 95% confidence intervals 

of the simulated values. (B.) The SSM accurately recovered the time-varying autoregressive 

component for the first state (i.e., (1,1) of B[θ(t)]); the average across replicates is plotted, 

and estimates were within the 95% confidence intervals of the simulated values. (C.) The 

SSM accurately recovered the time-varying direct effect of the external input on the first 

state (i.e., (1,1) of γ[θ(t)]); the average across replicates is plotted, and estimates were 

within the 95% confidence intervals of the simulated values.
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Figure 3. 
Time-varying parameters for all participants with dynamic SSMs, plotted across time; see 

also Table 2. The time courses of different parameters are depicted in different colors: black 

is the ACC, yellow is the R LPM, magenta is the L DLPFC, red is the R DLPFC, green is 

the L LPM, and blue is the L IPL. The time courses of different states are depicted in 

different line styles: solid lines are first state parameters, dashed lines are second state 

parameters, and dotted lines are third state parameters. Black lines with circles show the 

time course of a second state autoregression. The thick black line parallel to the y-axis 

represents the average standard deviation of the plotted parameters. The scale of the y-axis 

differs across participants to highlight dynamic parameters. ROI acronyms are defined in the 

Table 1 note.
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Figure 4. 
Time-varying state network maps for two exemplary participants. ROIs are orange and 

overlaid on a standard template brain; see also Nichols et al. (2014). Lines show which ROIs 

contribute to the latent state: Gray lines depict ROIs with stationary loadings, black lines 

depict ROIs with time-varying loadings, and line width reflects the magnitude of the 

loadings. (A.) Participant B (from Table 2) had a decision-making and response state (i.e., 

state 2) consisting of the bilateral LPM and bilateral DLPFC, with the both left hemisphere 

ROIs having time-varying loadings. (B.) Participant I (from Table 2) had a language 

interpretation, decision-making, and response state (i.e., state 3) consisting of the bilateral 

IPL, left LPM, and right DLPFC, with the left hemisphere ROIs and right DLPFC having 

time-varying loadings. ROI acronyms are defined in the Table 1 note.
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Table 1

SSM results averaged across participants: Contemporaneous ROI loadings on each state and lagged weights 

describing each state’s evolution over time

State 1 State 2 State 3

Contemporaneous loading (λ) ACC .85* -- --

R LPM .85* .17 --

L DLPFC .86* .03 .14

R IPL .82* .25 .22

R DLPFC .83* .11 .10

L LPM .80* .12 -.04

L IPL .76* .19 .26

Autoregressive weight (β) .79* .63* .60*

Note. ACC: anterior cingulate cortex; R LPM: right lateral premotor cortex; L DLPFC: left dorsolateral prefrontal cortex; R IPL: right inferior 
parietal lobule; R DLPFC: right dorsolateral prefrontal cortex; L LPM: left lateral premotor cortex; L IPL: left inferior parietal lobule.

*
p < .05
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Table 2

Identification and interpretation of time-varying states

Participant State Time-varying parameters
Additional ROIs defining the 
state Network identification

A 1 L IPL All General

2 L LPM L IPL Left language interpretation & response

B 2 L DLPFC R LPM Decision-making & response

L LPM R DLPFC

C 1 ACC All General

D 1 ACC All but R IPL General

R LPM

R DLPFC

L LPM

E 2 R DLPFC L DLPFC Language interpretation & decision-making

R IPL

F 2 R LPM R IPL Language interpretation & response

L LPM L IPL

G 2 autoregression R IPL Language interpretation

L IPL

H 3 L IPL Left language interpretation

I 3 R DLPFC R IPL Language interpretation, decision-making, & response

L LPM

L IPL

J 1 L DLPFC All General

K 2 L LPM L IPL Left language interpretation & response

L 1 ACC All General

Note. ROI acronyms are defined in the Table 1 note.
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