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Estimating spatiotemporal models for multi-subject fMRI is computationally challenging. We propose a
mixed model for localization studies with spatial random effects and time-series errors. We develop
method-of-moment estimators that leverage population and spatial information and are scalable to massive
datasets. In simulations, subject-specific estimates of activation are considerablymore accurate than the standard
voxel-wise general linear model. Our mixed model also allows for valid population inference. We apply our
model to cortical data from motor and theory of mind tasks from the Human Connectome Project (HCP). The
proposed method results in subject-specific predictions that appear smoother and less noisy than those from
the popular single-subject univariate approach. In particular, the regions of motor cortex associated with a left-
hand finger-tapping task appear to be more clearly delineated. Subject-specific maps of activation from task
fMRI are increasingly used in pre-surgical planning for tumor removal and in locating targets for transcranial
magnetic stimulation. Our findings suggest that using spatial and population information is a promising avenue
for improving clinical neuroimaging.
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Introduction

The aimof this paper is to develop a spatiotemporalmixedmodel for
activation in task fMRI for improved prediction of subject-specific
activation maps. Prediction of individual patterns of activation is often
a goal in neuroscience studies (e.g., Mitchell et al., 2008). Mapping
brain regions in individuals is important in clinical neuroimaging, and
localization studies with task fMRI are increasingly used for pre-
surgical mapping of motor and language areas in tumor and epileptic
patients (Pillai, 2010). Task fMRI is a non-invasive technique that can
be used in neuronavigational planning to allow the surgeon tominimize
damage to brain tissue in the path of the tumor (Holodny et al., 2011).
Subject-specific activation maps from fMRI can also be used to identify
targets for transcranial magnetic stimulation (tMS) (Neggers et al.,
2004; Wig et al., 2005) and for multifocal transcranial direct current
stimulation (Ruffini et al., 2014).

In this paper, we will address two shortcomings of a typical analysis
of task fMRI: (1) population information is not utilized in subject-level
maps of activation; and (2) spatial information is ignored during
estimation. The most common approach to task fMRI fits a GLM to the
time series for each voxel and each subject (Friston et al., 1995) and
hematical Sciences Institute, 19
ark, NC 27709, USA.
then a secondGLM isfit tofirst-level estimates. This two-stage approach
can be formulated as amixedmodel (Worsley et al., 2002), so called be-
cause it contains fixed population effects and random subject effects.
We call this approach the massive univariate mixed model (MUMM).
Notably, the subject-level estimates of activation are never revisited.
Shrinking predictions towards population estimates improved subject-
specific estimates of functional connectivity in resting-state fMRI
(Shou et al., 2014) and in neurological pain signatures (Lindquist
et al., 2015), but a model-based approach for task-fMRI is lacking. The
MUMM contrasts with the conventional approach to mixed modeling
wherein predictions utilize empirical best linear unbiased estimators
(eBLUPs), which shrink subject-specific effects when the between
subject variability is small (e.g., Searle et al., 1992). Secondly, by fitting
a separate model to each location, the MUMM does not exploit the
spatial structure. This contrasts with spatial statistics in which informa-
tion from nearby locations is leveraged for improved prediction
(e.g., Cressie, 1993).

It is useful to categorize spatial information into two types: 1) spatial
dependence in the correlation structure and 2) spatial smoothness in
the mean structure (Zhu et al., 2014). Most studies in neuroimaging
focus on modeling the spatial dependence in the correlation structure
using random effects, where the random effects are usually generated
from Gaussian random fields (GRFs). The dependence structure of
GRFs can be defined using a covariogram (Kang et al., 2012; Castruccio

https://core.ac.uk/display/304665484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.05.038&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2016.05.038
www.elsevier.com/locate/ynimg


281B.B. Risk et al. / NeuroImage 142 (2016) 280–292
et al., 2016; Bernal-Rusiel et al., 2013) or a spatial autoregressive model
(Hyun et al., 2014). Bowman (2007) used the exponential covariogram
with functionally based distances in a region-of-interest (ROI) analysis
comprising 239 voxels from twelve subjects with four time points
each. This model was applied to a surface-based analysis of cortical
thickness inwhich 149,000 vertices (locations on the FreeSurfer cortical
surface) were classified into 12,000 independent parcels (contiguous
collection of vertices), which was more powerful than the MUMM
(Bernal-Rusiel et al., 2013). In single-subject analysis of fMRI, long-
range correlations have beenmodeled by estimating a correlation struc-
ture between regions of interest (ROIs) (Kang et al., 2012; Castruccio
et al., 2016). Hyun et al. (2014) improved prediction in a surface
model of the left lateral ventricle (approximately 1000 vertices) by
modeling local correlations using a simultaneous autoregressive (AR)
model and long-range correlations using functional PCA (fPCA), which
does not require ROIs. Perhaps the simplest spatial dependence in
correlation assumes an exchangeable covariance structure within a
parcel or ROI, such that the correlation between any two locations is
equal (Derado et al., 2010; Bowman, 2005). Regarding 2), spatial
smoothness in the mean structure can be modeled using local polyno-
mial regression. The multiscale adaptive regression model (MARM) is
a more general approach that allows jump discontinuities, which is
useful when analyzing multiple tissue types (Li et al., 2011). Zhu et al.
(2014) modeled both the mean using MARM and the correlation
structure using fPCA in structural MRI, which increased statistical
power. Note the distinction between the correlation structure and
smoothness in the mean is less relevant in Bayesian approaches in
which population effects are also random variables.

Spatial models for neuroimaging data have improved prediction
and/or statistical power, but their application to multi-subject fMRI
has been limited primarily by computational constraints. In particular,
previous models are either for other imaging modalities with few
timepoints (e.g., structural MRI, PET, or DTI); for a single-subject; or
ignore time series information in the group-level analysis by using the
test statistics from subject-specific analyses. Derado et al. (2013)
improved prediction in longitudinal PET data by fitting a conditional
autoregressive (CAR) model in each brain parcel and modeling the
correlation between parcels. Harrison and Green (2010) developed a
variational Bayes approach for whole-brain analysis of a single subject.
Zhang et al. (2014) developed a single-subject model that clustered
voxels with similar time courses using a Dirichlet process while model-
ing long-range temporal and local spatial dependence. Brown et al.
(2014) applied a Bayesian CAR model to the t-statistics from a single
subject to address the multiple testing problem. Bowman et al. (2008)
developed a Bayesian model that flexibly modeled long-range correla-
tions between regions and assumed correlations within a region were
exchangeable. For a review of Bayesian approaches, see Zhang et al.
(2015). A potential drawback of the spatial AR models is that the
marginal properties can be undesirable. For instance, the variance may
depend on the number of neighbors and boundary effects can be
problematic. Xu et al. (2009) develop an alternative approach in
which activation follows a spatial Poisson process using the t-statistics
from a first-level analysis.

We propose a spatiotemporal mixed model (STMM) that contains
the following features: fixed effects characterizing task activation in
the population for each vertex; regional subject random effects charac-
terizing an individual's activation common to all vertices in a region;
subject-vertex spatial random effects that capture an individual's
activation unique to each vertex; and time-series errors following an
AR(p) model. In the marginal model (integrating out all random
effects), population activation is defined by a separate parameter for
each location, which does not explicitly incorporate spatial smoothness.
The regional subject random effects capture an exchangeable covari-
ance structure within regions, similar to Bowman et al. (2008) and
Derado et al. (2010). We use the functional parcellation defined in
(Gordon et al. (2016), which is based on resting-state correlations and
parcels vertices into groups that are more homogeneous than alterna-
tive parcellations such as Brodmann areas. The subject-vertex random
effects characterize dependence as a function of distance, similar to
Bowman (2007). To overcome issues with volume-based Euclidean
distances, we focus on the cortical surface and use geodesic distances
between vertices within the same parcel. The time-series errors allow
timepoints closer in time to be more similar and can capture periodic
behavior, similar to Worsley et al. (2002). If one conditions on the
regional subject and subject-vertex random effects (integrating
out the time-series errors only), then the regional subject effects allow
for jump discontinuities between parcels and the subject-vertex
random effects capture the spatial smoothness in the conditional
mean for each vertex in the parcel. In this respect, “what is one
person's covariance structure is another person's mean structure
(p. 25, Cressie, 1993).”

Our contributions are the following:

• We build upon previous spatial models for single-subject fMRI or
other imaging modalities to develop a model for multi-subject fMRI.
A major obstacle to fitting our proposedmodel is the large covariance
matrix. In our application, the likelihood includes a 500,000 by
500,000 dense covariancematrix (corresponding to the largest parcel
with two runs of fMRI data). In order to fit thismodel to large datasets,
we project the spatiotemporal data to the span of the covariates. For
each region, the projected data then follow a two-factor crossed
design with a fixed factor (vertex) and random factor (subject). This
allows us to derive method-of-moments (ANOVA) estimators of the
variance components.

• Unlike previous methods, we incorporate eBLUPs into estimates of
subject-specific activation that leverage both population and spatial
information. In simulations, subject-specific estimates have much
lower mean squared error (MSE) than the univariate approach.

• We apply ourmodel to themotor task from thirty subjects (a number
representative of fMRI studies) and to the theory of mind task from
ninety-eight subjects (the number of subjects included in the 2014
data sampler) from the Human Connectome Project (HCP). Whereas
the subject-specific maps based on the univariate approach appear
noisy, our approach includes model-based smoothing. In particular,
the regions of motor cortex associated with a left-hand finger-
tapping task appear to be more clearly delineated.
The remainder of this paper is organized as follows. We review the
MUMM in the next section. We then propose our model in the
SpatiotemporalMixedModel (STMM) section. In the Simulations sec-
tion, we conduct simulations examining the accuracy of subject-level
activation maps, type 1 error rates, and statistical power. In the
Analysis of HCP task data, we analyze the HCP motor and theory of
mind tasks for the right cerebral cortex. In the Discussion section,
we conclude that the STMM improves subject-level activation maps
and allows for population-level inference. Formulas for our estimators
are in the Appendix. Derivations and additional tables and figures are
available in the Web Supplement. Matlab code implementing our
method is available at http://www.benjaminrisk.com/software.

Massive univariate mixed model (MUMM)

The great majority of localization studies in fMRI use the MUMM,
and although software may differ in some of the modeling details,
they generally fit a separate univariate model with fixed population-
level and random subject-level vertex effects to each location.

First level (subject effects)

A summary of the notation used in this paper appears in the Web
Supplement Table S.1. Let i∈ {1,… ,N} denote subject, v∈ {1,… ,V}
denote the vertex, and t∈ {1,… ,T} index time. Let yivt denote the

http://www.benjaminrisk.com/software
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BOLD signal. Let q∈ {1,… ,Q} index a task. Let xitq be the covariate
created from the canonical hemodynamic response function (HRF)
(difference of two gamma functions) convolved with task onsets and
durations (Penny et al., 2007). Let xit=[xit1,… ,xitQ]′, where “'” denotes
thematrix transpose. Let aivq denote the magnitude of activation attrib-
uted to the qth task, and let aiv=[aiv1,… ,aivQ]′. In the simplest case, the
same HRF is assumed for all locations. This assumption can be relaxed
by including partial derivatives of parameters of the HRF evaluated
across time, such that coefficients are estimated to allow the HRF to
vary while the covariates remain the same at every location (Penny
et al., 2007). We incorporate time-delay and dispersion derivatives as
nuisance covariates. Let m∈ {1,… ,M} index the nuisance covariates,
which additionally include a spline basis to capture scanner drift and
the parameters used in the affine motion correction.

Let zit∈ℝM denote all nuisance variables. Let γivm denote the coeffi-
cient for the mth nuisance covariate, and define γiv=[γiv1,… ,γivM]′.
Note that the covariates do not change with space. Let eivt be the error
and let eiv=[eiv1,… ,eivT]′. Define the first-level model as

yivt ¼ x0
itaiv þ z0itγiv þ eivt ð1Þ

with

eiv � N 0T ; ξ
2
ivΨiv

� �
ð2Þ

where 0T is a vector of zeros of length T, Ψiv is a positive-definite
Toeplitz matrix that captures the correlation between serial observa-
tions, and eiv are mutually independent for all i=1,… ,N and v=
1,… ,V. We will refer toΨiv as the error correlation.

There is empirical support for the use of a causal stationary
autoregressive (AR) model for the errors in (1) (Worsley et al., 2002).
In our exploratory analysis of task HCP data, we found that an
AR(3) model was preferred for many locations, and thus we will use
an AR(3) model for all vertices (see also Fig. S.2 for the coefficients of
the third AR parameter for a randomly chosen subject). Note that
Lindquist (2008) suggests an AR(2) model. For the HCP dataset, the
time between scans is less than in other fMRI studies (0.72 s versus ap-
proximately 2.5 s), which may be a factor contributing to the increased
support for the AR(3) model.

When there exist multiple sessions for the same subject, we assume
time-series errors are independent between sessions butwith the same
AR parameters. Let B denote the back-shift operator: Byivt=yi ,v , t−1.
Consider yivt such that t−3,… , t−1 are in the same session. Then the
first-level model for the ith subject is.

1−ϕiv1B−ϕiv2B
2−ϕiv3B

3
� �

yivt−x0
itaiv−z0itγiv

� � ¼ ϵivt; ð3Þ

where εivt �iid Nð0; τ2ivÞ . Here, ϵivt are independent and identically
distributed errors with innovation variance τiv2 whereas in (2), eivt are
the correlated errors with unconditional variance ξiv2 .

Second level (population effects)

In the second-level, the subject-specific effects are generated from a
fixed population effect plus a random effect. For each q, we define task
activation.

aivq ¼ βvq þ bivq; ð4Þ

where βvq are arbitrary but fixed, bivq�iidNð0;σ2
bvq

Þ for i=1,… ,N and

v=1,… ,V. Wewill also assume bivq and bivq′ aremutually independent
for all q≠q′∈{1,… ,Q}.
The two-level model can be formalized in a single mixed model by
substituting (4) into (3):

1−ϕiv1B−ϕiv2B
2−ϕiv3B

3
� �

yivt−x0
it βv þ bivð Þ−z0itγiv

� � ¼ ϵivt ð5Þ

where βv=[βv1,… ,βvQ]′ and biv=[biv1,… ,bivQ]′. Additionally, we
assume all bivq and ϵivt are mutually independent.

In this paper, we define subject-specific activation according to
aivq in (4), and we will focus on estimates âivq . Other studies use
t-statistics from a fixed-effects treatment of the first-level analysis
to define statistical parametric maps (a scaled version of âivq )
(Friston et al., 1995). Note that for any tasks q and q′, aivq and aivq′
are on the same scale because the covariates of interest in (5) are
defined by convolving the same HRF with functions taking only
zero and one as values.

Estimating the MUMM

Different estimators include the “summary statistics” option in
SPM (Penny et al., 2007), REML using the EM algorithm (Worsley
et al., 2002), and a “hybrid” generalized least squares (GLS) and
Bayesian approach used in FSL (Beckmann et al., 2003; Woolrich
et al., 2004). In a survey of ninety fMRI papers, Mumford and
Nichols (2009) found that 92% used the summary statistics
approach. The summary statistics approach uses OLS (ordinary
least squares) with temporally pre-whitened yivt to estimate
subject-specific coefficients and then averages the subject-specific
coefficients to obtain estimates of the population parameters βv.
Such estimates are the default in Statistical Parametric Mapping
(SPM) software (Penny et al., 2007). When subject data are
pre-whitened using the covariance matrix of the errors, it is equiva-
lent to GLS (Worsley et al., 2002).

Other approaches incorporate information on the subject-specific
error variance, ξiv2 , into second-level estimates. Then the GLS estimator
of the fixed effects becomes a linear combination of the subject-
specific coefficients, with weights determined by an estimate of the
subject-specific error variance (Beckmann et al., 2003). Studies have
found the summary statistics estimators are nearly as powerful as esti-
mators from a single-stage REML (Friston et al., 2005) or estimators
from the weighted approach when one group of subjects is being
analyzed (e.g., healthy subjects) (Mumford and Nichols, 2009). Our
data application contains healthy young adults. Thus we use the sum-
mary statistics approach with first-level GLS estimators as in (a.1) and
second-level t-statistics from (a.4), see Appendix A. For the first-level,
we calculate reduced-bias estimators of the AR parameters as devel-
oped in Worsley et al. (2002), which we have found are very accurate
and fast to calculate. We provide a detailed account of the biasedness
of the OLS estimator of the error variance in the Web Supplement Sec-
tion 2 and a derivation of the reduced biased estimator in Web
Supplement Section 3.

A spatiotemporal mixed effects model (STMM)

Defining the STMM

We will assume there exists a parcellation such that the
random effects between regions are independent. Then we can
treat each region as a separate estimation problem, which makes
model estimation computationally feasible. In this framework,
information from one region does not provide any information
on another region. Note this is also a convenient method to allow
for different strengths of spatial dependence in different regions
(local stationarity).

Let Yir=[yir11, … ,yir21, … ,yirVrT]′ denote observations from the
rth region (parcel) containing vertices 1 , … ,Vr for r=1, … ,R.
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Let Xi∈ℝT×Q (covariates of interest for all timepoints). Let βr ⋅=
[βr ⋅1,… ,βr ⋅Q]′ denote the region-level fixed effects. Define the vertex-
level fixed effects βrv=[βrv1, … ,βrvQ]′ and βr=[βr1′, … ,βrV′]′.
Let sir=[sir1, … , sirQ]′ denote the subject-specific regional random
slopes of the covariates of interest (tasks convolved with HRF).
Define the interaction between the fixed vertex and random
regional subject effects: birv=[birv1,… ,birvQ]′ and bir=[bir1′,… ,birVr′]′.

Let bir
q =[bir1q,… ,birVrq]′ denote an ordering of the interaction effects

that will be convenient for defining the covariance structure. Let
Zi∈ℝT×M (nuisance covariates) and γirv=[γirv1,… ,γirvM]′ denote the
fixed effects associated with the nuisance terms. Finally define the
errors eirv=[eirv1,… ,eirvT]′ and eir=[eir1′,… ,eirVr′]′.

We define the spatiotemporal mixed model (STMM) as.

Yir ¼ 1Vr⊗Xiβr� þ IVr⊗Xið Þβr þ 1Vr⊗Xisir þ IVr⊗Xið Þbir
þ IVr⊗Zið Þγir þ eir; ð6Þ

where

sir �iidN 0Q ; Sr
� � ð7Þ

with Sr=diag(σsr1
2 ,… ,σsrQ

2 );

bq
ir �

iidN 0Vr ;σ
2
brqΩrq

� �
ð8Þ

and define Br=diag(σbr1
2 ,… ,σbrQ

2 ); and

er � N 0NVrT ;diag ξ21r1Ψ1r1;…; ξ2NrVΨNrV

� �n o
; ð9Þ

where diag(ξ1r12 Ψ1r1, … , ξNrV2 ΨNrV) is the block diagonal matrix
formed from the error covariance matrices from all subjects and all
vertices. The spatial correlation matrix Ωrq corresponds to a station-
ary and isotropic process from the exponential covariogram,
discussed below. We allow this correlation matrix to vary across
parcels, creating locally stationary processes. We use the geodesic
distance between vertices on the FreeSurfer 32 K spherical template.
As in the MUMM and (2), Ψirv is the autocorrelation matrix of an
AR(3) process in which time-series errors from different sessions of
the same subject are independent but have the same AR parameters.
We assume birq , sir, and eir for i=1,… ,N and q=1,… ,Q are mutually
independent.

For an observation yirvt such that t−3,… , t are in the same session,
the model is

1−ϕirv1B−ϕirv2B
2−ϕirv3B

3
� �

yirvt ¼ x0
it βr� þ βrv þ sir þ birvð Þ þ z0irtγirv

þ ϵirvt :

The subject-level activation for the qth task is

airvq ¼ βr�q þ βrvq þ sirq þ birvq: ð10Þ

Insight into this model can be gained by considering the marginal
and conditional formulations. The marginal model characterizes the
BOLD signal due to population task activation and subject-specific nui-
sance terms: E yirvt=xit′(βr ⋅+βrv)+zit′γirv. The regional subject ran-
dom effects sir capture a baseline correlation in the BOLD signal
between vertices within the same region; this is equivalent to the ex-
changeable covariance structure used for local correlations in Bowman
et al. (2008) andDerado et al. (2010). The subject-vertex randomeffects
bir capture dependence that is a function of distance; this is similar to
Bowman (2007). Additionally, the AR(3) errors capture correlations
that are a function of distance in time. Let ψt , t'

(irv) be equal to the
corresponding element of Ψirv. Let Ωr ,v ,v′=diag(Ωr1;v ,v′,… ,ΩrQ ;v ,v′).
In the marginal model, we have.

Cov yirvt;yi0r0v0t0 ¼
x0
it Sr þ Brð Þxit0 þ ξ2irvψ

irvð Þ
t;t0

x0
it Sr þ BrΩr;v;v0
� �

xit0

0

i0 ¼ i; r0 ¼ r; v0 ¼ v; any t; t0;
i0 ¼ i; r0 ¼ r; v0≠v; any t; t0;
i0≠iorr0≠r:

8><>:
The conditional model characterizes a subject's BOLD signal:

E(yirvt | sir,birv)=xit′(βr ⋅+βrv+ sir+birv)+zit′γirv. In the conditional
model, sir represents the deviation of the ith subject from the popula-
tion regional activation βr ⋅, while birv represents the deviation of the
ith subject from the vertex-specific activation βrv. Given the regional
subject and subject-vertex randomeffects, the BOLD signal for two loca-
tions, yirvt and yirv′t, are conditionally independent.

Bowman (2007) examined a variety of variograms for volume-based
fMRI data and found that the exponential variogramwasmost support-
ed. Our exploration of the HCP data on the cortical surface for the
Gordon networks also indicate this dependence is appropriate (see
also Analysis of HCP task data section). For some random variables zv,
zv′, the exponential covariogram is defined as

Cov zv; zv0 ¼ λ0 þ λ1 v ¼ v0

λ1e−θ v−v0k k v≠v0:

�

where λ0 is the nugget effect, which is equal to themicro-scale variance
plus the variance due to measurement error. Our hierarchical model in
fact includes a spatially varying micro-scale and measurement error
variance component via ξirv2 (see (2)), so we assume the nugget effect
is equal to zero. Then.

Ωrq;v;v0 ¼ e−θrq v−v0k k; ð11Þ

where θrqN0.

Fitting the STMM

Fitting themodel usingmaximum likelihood or restrictedmaximum
likelihood is difficult at best. For the largest parcelwith two sessions, the
covariancematrix is greater than 500,000 × 500,000. For computational
feasibility, we first project the data to the span of the covariates. We
then make the observation that the projected data follow a two-
factorial crossed design. This allows us to define expectedmean squares,
which in turn allows us to create method of moment estimators for the
variance components. The steps are summarized below and in Fig. 1.
Equations and additional details are provided in Appendix B.

1. Project each subject's data onto the space spanned by the covariates,
(a.6), and retain the covariates of interest. This converts the data
from an N×V×T array to N×V×Q. This is equivalent to retaining
the coefficients from a first-level analysis using OLS and in that
respect is similar in spirit to approaches that use the output from a
first-level analysis. However, in contrast to other spatial studies, we
also retain the AR parameters, which will play a role in the subject-
specific predictions. For each region, the projected data, dirv=
[dirv1,… ,dirvQ], then follow a two-factor crossed design with a fixed
factor (vertex) and random factor (subject).

2. For each subject and vertex, estimate the AR(p) parameters from the
OLS residuals using reduced-bias estimators in Worsley et al. (2002)
as in the MUMM.

3. For each subject, regularize these estimates using a biweight
kernel with bandwidth determined using generalized cross valida-
tion (GCV), (a.5). This step utilizes the geodesic distance between
vertices in the FreeSurfer 32 k spherical template. The use of the
spherical template is discussed below. Calculate the mean square
residual for the projected data from the AR parameter estimates as
defined in (a.9).



Fig. 1. Schematic overview of the model fitting steps in the STMM.
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4. For each region and pooling all subjects, estimate the spatial depen-
dence in the projected data. We create empirical covariograms from
the covariance between projected data at different locations, (a.8),
and estimate the spatial correlation from the empirical covariogram.
We used the geodesic distance on the FreeSurfer 32 k spherical
template because it represents a common coordinate system for all
subjects (Fischl et al., 1999), and it was also used in Bernal-Rusiel
et al. (2013). This results in a single covariance matrix for the
subject-vertex random effects (rather than subject-specific). Practi-
cally, this assumes that the correlation between two nodes in one
subject is the same as the correlation between two nodes in another
subject. We provide evidence of appropriateness in Analysis of HCP
task data section.

5. For each region and pooling all subjects, calculate the mean square
from the subject-vertex random effect, (a.10), and the regional
subject random effect, (a.13).

6. By equating the expectations of the mean squares to their empirical
estimates, we derive estimators of the variance components. For
each region, calculate estimates of the variance due to subject-
vertex, (a.12), and the variance due to subject, (a.14).

7. Calculate population coefficients using generalized least squares.
Note the GLS estimator in (a.16) includes the variances from the
time-series errors, i.e., the within subject variance, allowing for
heteroscedasticity across subjects. If the time-series errors of a sub-
ject are highly variable, the subject will have a smaller effect on the
estimated population activation than subjects with comparably
small variances,which can be seen by inspecting (a.16). If the region-
al subject and subject-vertex variances are equal to zero, this aspect
is similar to Beckmannet al. (2003). Finally, use the estimated covari-
ance to generate approximate z-statistics, (a.18).

8. Calculate eBLUPs for the regional subject random effect, (a.19), and
subject-vertex random effect, (a.20), and then calculate subject-
level predictions of activation. An inspection of (a.22) reveals that
when the within-subject variation from Ψ̂ir is large relative to the
between-subject variation from the subject and subject-vertex ran-
dom effects, the eBLUPs are “shrunk” towards zero. Consequently,
the population information dominates the subject-level estimate of
activation, (a.21). Intuitively, the model leverages more population
information when the measurement error is large and/or there is a
small contribution of the subject and subject-vertex effects to the
overall variance in the BOLD signal. Additionally, the subject-vertex
random effects for a given vertex can be thought of as a weighted
average of nearby vertices with more vertices contributing to a
focal vertex under high spatial dependence, (a.20).

Simulations

We performed a simulation study to compare the performance of
the MUMM and STMM in terms of subject-level prediction accuracy,
power, and type 1 error rates. We created a 2×2×2 full factorial
design with low and high values for Sr, Br, and θr for thirty subjects
with 250 simulations each. We based the simulation study design
on the theory of mind task from the HCP with parameter values
based on a parcel with a representative number of vertices (parcel
82 with 215 vertices; see Analysis of HCP task data section) and
two runs. We used the theory of mind experiment because it in-
volved two tasks, which was convenient for simulations examining
both power and type 1 errors.

The values for parameters that varied across scenarios were σs1
2=

σs2
2∈{423,1700} (as defined in (7)), σb1

2=σb2
2∈{9,2346} (see (8)), and

θ1=θ2∈{0.75,0.23} (see (11)). The low and high values were equal to
the 0.10 and 0.90 quantiles, respectively, from the estimated variance
components pooled across tasks and regions from the theory of mind
experiment. We set βv1=31 and βv2=0 for all vertices because their
difference equals the 0.95 quantile of the contrast in the theory of
mind analysis (see Appendix A for the definition of a contrast). The AR
parameters and innovation variance were set equal to their smoothed
estimates and thuswere vertex- and subject-specific. Theirmeanvalues
were 0.14, 0.08, 0.07, and 29,376, respectively. The subject design ma-
trices were equivalent to those used in the theory of mind analysis
and included the tasks convolved with the canonical HRF from SPM12
plus twenty-six nuisance covariates (time-delay and dispersion deriva-
tives for each task, piecewise linear spline with five basis functions for
each session, six motion parameters from the affine registration and
the interaction between each motion parameter and session; see
Table S.2). Parameters for nuisance covariates were set equal to their
empirical estimates. We generated the task covariates and their deriva-
tives with respect to the temporal delay parameter and the dispersion
parameter by convolving task onsets and durations with the canonical
HRF in SPM12. We also included the affine registration parameters
to correct for motion-induced activation. This resulted in a total of
forty covariates.

Estimates of subject-level activation were much more accurate
(lower MSE) in the STMM than the MUMM for all scenarios, while the



Table 1
Prediction accuracy, power, and type 1 error rates from the STMM and MUMM for the 2×2×2 design from 250 simulations for each scenario.

Scenario Model MSE Rejection rate

σsrq
2 σbrq

2 θrq airv1 airv2 airv1−airv2 βrv1=31
(Power)

βrv2=0
(Type 1)

βrv1−βrv2

(Power)

lo lo lo STMM 85.6 87.0 116.8 0.880 0.041 0.685
MUMM 2093.9 2232.9 3445.3 0.903 0.050 0.715

hi lo lo STMM 115.2 115.6 125.6 0.756 0.057 0.482
MUMM 2092.0 2233.1 3432.3 0.759 0.051 0.503

lo hi lo STMM 1026.1 945.5 1598.0 0.709 0.055 0.456
MUMM 2091.7 2227.3 3427.0 0.663 0.054 0.421

lo lo hi STMM 96.3 86.0 133.8 0.898 0.043 0.691
MUMM 2094.6 2226.2 3438.1 0.904 0.049 0.708

hi hi lo STMM 1031.4 980.3 1613.4 0.602 0.053 0.355
MUMM 2092.1 2233.9 3439.7 0.560 0.053 0.326

hi lo hi STMM 109.4 105.3 133.5 0.734 0.052 0.438
MUMM 2094.9 2232.1 3435.7 0.738 0.054 0.459

lo hi hi STMM 706.5 617.0 855.8 0.726 0.047 0.474
MUMM 2089.1 2229.6 3435.5 0.673 0.048 0.434

hi hi hi STMM 691.1 619.1 849.2 0.603 0.042 0.365
MUMM 2095.3 2234.2 3450.2 0.557 0.042 0.334

All scenarios STMM 482.7 444.5 678.3 0.738 0.049 0.493
MUMM 2093.0 2231.1 3438.0 0.720 0.050 0.487
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power for testing population-level hypotheses was similar and type 1
error rates near nominal α=0.05 for both models (Table 1). The MSE
for MUMM estimates were approximately equivalent across scenarios.
The STMM estimates were least accurate when the subject and
subject-vertex random effect variances were high and the spatial
dependence low (hi hi lo), although still considerably more accurate
than the MUMM. Intuitively, the mixed model subject-specific esti-
mates from the STMMbecomemore similar to the fixed effect estimates
from the MUMM as the subject-vertex variance increases. When
the subject-vertex random effects are small, the mixed modeling ap-

proach gains predictive power by shrinking b̂irvq towards zero, resulting

in âirvq shrunk towards β̂rvq. When the subject-vertex variancewas high,
prediction from the simulationswith smaller values of θq (higher spatial
correlation) were more accurate than those with high θq (lower
spatial correlation) (lo hi lo versus lo hi hi; hi hi lo versus hi hi hi).
When there exists sufficient variation in the subject-random effects
(e.g., σbq

2=2346 but not σbq
2=9), spatial dependence can be leveraged

for improved prediction by incorporating information from nearby ver-
tices into the eBLUPs. Overall, the type-1 error rates are approximately
equivalent to their nominal levels for both the STMM and MUMM and
the models' powers are similar.

Analysis of HCP task data

We applied the MUMM and STMM to data from a motor task
involving thirty subjects in the HCP. The aim of the HCP is to character-
ize brain function, connectivity, and variability in healthy adults. To
further this goal, the HCP is making large amounts of their unprocessed
and preprocessed data publicly available (Van Essen et al., 2012). We
used the minimally preprocessed data from the 100 unrelated
(i.e., non-siblings) data sampler released August 5, 2014. In our analysis
of the motor task, we used thirty subjects because it is a typical sample
size in an fMRI experiment. This task was chosen because motor tasks
are used in pre-surgical mapping (Holodny et al., 2011). Participants
were presented visual cues to move their tongue, squeeze their right
or left toes, tap their left or right fingers, or a generic cue. For details
see Barch et al. (2013). Whole-brain data were acquired from two ses-
sions with 284 volumes, 2×2×2 mm voxels, and 0.72 s repetition
time. The minimally preprocessed data include fMRI data registered to
the FreeSurfer 32 k spherical templatewith 2mmfullwidth at halfmax-
imum (FWHM) Gaussian smoothing on the surface, the end result of
which is a set of approximately 30,000 time series for each cortical
hemisphere and each session and each subject on a standard mesh
where the vertex indices correspond to spatially matched locations
(Glasser et al., 2013). We modeled the right cerebral cortex. We
concatenated the two sessions and assume the AR errors between the
two sessions are independent but generated from processes with the
same AR parameters. We built design matrices with the same nuisance
covariates described in Simulations section. The complete motor task
analysis for thirty subjects took approximately 2.5 h on a quad-core
3.60 GHz computer.

GCV resulted in a very modest amount of smoothing of the AR
parameters. A bandwidth of 1.5 mm was selected, which resulted in a
median of six neighbors with positive weights, see Fig. S.1, and the
smoothed and unsmoothed parameters are very similar (an example
is provided in Fig. S.2).

We defined spatially distinct regions according to the cortical
parcellation in Gordon et al. (2016), which is based on correlations
between the BOLD signal at each vertex in resting-state fMRI data.
The Gordon parcellation for the right cerebral cortex comprises 172
spatially disjoint networks defined in the FreeSurfer 32 k template.
A total of 8509 out of 29,716 vertices are unclassified. Each unclassi-
fied vertex was assigned to the parcel containing the closest classi-
fied vertex. When a vertex was equidistant from classified vertices
in two different parcels, then the vertex was assigned based on
which parcel contained the second closest vertex. This resulted in a
unique classification of all vertices. The revised parcels range in
size from 29 to 986 vertices. This expansion of the Gordon parcels
was necessary to allow predictions at all locations. Fig. 2 depicts
the empirical and fitted covariograms for a typical parcel (324
vertices, median size from parcels with non-zero subject-vertex
random effect for all tasks). The exponential covariogram provides
a good fit to the empirical covariograms.

In a randomly chosen subject, the STMM estimate of activation
has an overall smoother appearance than the MUMM with more
clearly delineated areas of activation (Fig. 3). Note that b̂irvq is
smoothed by Ω̂rq according to θ̂rq , see (11) and (a.20). The MUMM
map has a speckled appearance as small areas not associated with
the motor cortex also appear to be active, whereas activated regions
appear to be better delineated in the STMM. This is due to higher
variability in the estimates from the MUMM, since the MUMM does
not incorporate population or spatial information. In addition to
portions of the motor cortex typically associated with the left hand,
this subject also has activation in the retrosplenial cortex (Brodmann
areas 29 and 30), which is absent from the population. Thus the
STMM utilizes population information while also incorporating
subject-specific features.



Fig. 2. Empirical covariogram (black line) and its 95% CI bootstrapped on subject (gray) and the fitted exponential covariogram (dashed red) for an example parcel (median size from
parcels with σ2

brq
N0 for all q=1,… ,6). Here, θrq = 0.41, 0.39, 0.38, 0.36, 0.41, and 0.39 for the cue, left foot, left hand, right foot, right hand, and tongue tasks.
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In contrast to the subject-specific estimates of activation,
the test statistics of the population contrasts are very similar
between the MUMM and the STMM (Fig. 4). Both models clearly
delineate the motor cortex associated with the left-hand (e.g., Meier
et al., 2008).

We also conducted an analysis of the theory of mind task from the
HCP for the ninety-eight subjects included in the unrelated 100 data
sampler released August 5, 2014. Theory of mind refers to the ability
to intuit another person's actions or feelings. In the HCP experiment,
subjects in an fMRI scanner viewed cartoons that either depicted
shapes acting in human-like ways (e.g., a large triangle leading a
smaller triangle out of a maze) or in random ways, which were the
“mentalizing” (hereafter, xMental) and “random” (xRandom) tasks,
respectively. For details of the experimental paradigm see Barch
et al. (2013). Whole-brain data were acquired from two sessions
with 274 volumes. The analysis was conducted in the same manner
as the motor task, with the exception that we used all ninety-eight
subjects contained in the sampler to demonstrate the scalability of
the STMM. In a randomly chosen subject, the STMM estimate of acti-
vation again has a smoother appearance than the MUMM (Fig. S.3).
Note that the population effect sizes are much smaller than the
single-subject effect sizes, which is likely due to high variation in
the locations of activation between subjects. In the population-
level analysis, we found the surprising result that the standard errors
for the MUMM tended to be smaller than the STMM, such that the
MUMM had higher test statistics (Fig. S.4). Since our simulation
studies indicate the MUMM preserves the nominal type-1 error
rate, this likely reflects a situation in which the MUMM is more
powerful than the STMM for group analysis.

Even in cases in which there is high variability between subjects, the
STMM may still improve estimation by leveraging the spatial informa-
tion. An extreme example is provided in Fig. S.5, in which we chose a
subject whose activation patterns differed markedly from the popula-
tion. The STMM activation map appears to be a smoothed version of
the MUMM. In Fig. S.5, one can see that the subject's nearby points are
used to inform estimates of a given vertex.
Discussion

We present a unified model for multi-subject fMRI studies that
utilizes spatial eBLUPs to improve prediction of subject-level activation.
The model accounts for spatial dependence in two ways: with the re-
gional subject random effect, which creates a baseline correlation
between all vertices in a parcel, and the subject-vertex random effect,
which includes a covariance function based on geodesic distance. The
model also leverages population information as the subject-specific
activation is shrunk towards the population coefficients when the
variance between subjects decreases and/or the variancewithin subject
increases. The STMM is scalable to multi-subject fMRI because we
project the data to the span of the covariates, develop method-of-
moments estimators that account for both spatial and temporal depen-
dence, and model parcels independently. Compared with the MUMM,
subject activation maps from the STMM have lower MSE in simulations
and appear smoother and less noisy in the HCP tasks.

Our modeling approach may allow for higher spatial precision than
typical in group studies because we utilize cortical sheet registration
with aminimal amount of smoothing (2mm), and then our predictions
contain spatial smoothing inwhich the smoothing parameter is allowed
to adapt to each parcel. In volume-based analyses, one rule-of-thumb
recommends smoothing with a Gaussian kernel with FWHM equal to
at least three times the voxel size (Petersson et al., 1999). Volume-
based group studies often use a large amount of smoothing to increase
the overlap between subjects. This could result in too much smoothing
and render individual subject maps less useful. In general, cortical sur-
face analyses can be conducted with higher resolution than volume-
based analyses (Fischl et al., 1999) and less smoothing is required
(Glasser et al., 2013). The Freesurfer 32k template offers a convenient
space in which to conduct group analysis, and then the vertices can be
mapped back to a subject's coordinate space (Fig. 3). In our model, the
subject-vertex random effects are equivalent to kriging predictors
(e.g., (4.28) in Cressie and Wikle, 2011). Thus the subject-vertex
random effect predictions are spatially smoothed according to the
exponential covariogram estimated from the data rather than a



Fig. 3.MUMM (top) and STMM (middle) estimates of the contrast between the left-hand finger tap versus other tasks for a randomly selected subject (123,925) (overlaid on the subject's
midthickness cortical surface) and the population contrast of the STMM from thirty subjects (bottom) (overlaid on the midthickness group average surface) in the right cerebral cortex.

Fig. 4. Point-wise t-statistics (df = 29) (a.4) and approximate z-statistics (a.18) of the population contrast for the MUMM (left) and STMM (right), respectively, between the left-hand
versus other motor tasks in the right cerebral cortex from thirty subjects (thresholded at pb0.001 uncorrected for multiple comparisons) (overlaid on inflated group average surface).
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rule-of-thumb. Additionally, the covariograms are estimated for each
region, allowing the smoothing to adapt to regional differences. A recent
study explored optimizing pre-processing for pre-surgical mapping in
fMRI, including spatial smoothing (Stevens et al., 2010). The STMM of-
fers an alternative approach that includes data-based smoothing for
each region and each task, where information across subjects is pooled
under the assumption that the spatial dependence for a region and task
is equivalent for all subjects.

Our findings suggest that the STMMmay be useful in clinical neuro-
imaging, although for some applications additional complicationswould
need to be addressed. The proposed method could be applied without
modification when predicting activation maps for subjects from a rela-
tively homogeneous population, which may be the case for identifying
targets for tMS or transcranial direct current stimulation. In studies in-
volving a mixture of control and treatment groups, the STMM could be
extended by including an indicator variable for treatment, its interaction
with the fixed effects, and its interaction with the random effects. In ap-
plications to pre-surgical mapping for tumor patients, applying the
STMM to amixture of controls and patientsmay be problematic because
the underlying population model may not apply (namely, that the re-
gional subject random effects as well as the subject-vertex random ef-
fects are equal in distribution across subjects). One direction to
investigate is combining a single patient's data with baseline control
subjects for a given site and scanner. This information could be used to
decrease damage to healthy tissue in the path of the abnormal region.
Even for an individual's abnormal region, Fig. 3 as well as Figs. S.3 and
S.5 indicate that the STMM captures unique individual features. More-
over, the Gordon parcellation provides a framework in which popula-
tion information can be leveraged for regions that are homogeneous
across control and patient populations, whereas subject variation is gen-
erally preserved for regions with high variability across subjects.

Three potential issues are our choice of parcellation including
assigning unclassified vertices (nearly 1/3 of all vertices), accuracy of
registration across subjects, and the assumption that random effects
are independent between parcels. A poor parcellation would result in
greater heterogeneity in the activation of vertices within each parcel,
which would tend to increase B̂r . Poor registration would tend to
increase the variance between subjects, resulting in increases in Ŝr
and/or B̂r. As Ŝr and B̂r increase, the STMMestimate becomes more sim-
ilar to the OLS estimate of subject-specific activation, as seen in (a.22).
Thus the accuracy of the parcellation and registration affects how
much we gain from the STMM relative to first-level OLS. Overall, a
poor parcellation and/or poor registration would result in estimates
more similar to the MUMM, since the MUMM estimators in (a.1) are
generally similar to OLS. Note population inference is robust to the
parcellation, since β̂vr and the vertex-wise z-statistics from the STMM
are very similar to the MUMM, which does not use the parcellation.
Regarding the independence of random effects across parcels, it should
be noted that this assumption does not affect the type-1 error rate of
vertex-wise tests (Table 1). However, incorporating correlations
between regions could result in additional improvements in the accura-
cy of subject-level predictions. Future research should look at incorpo-
rating a model for regional or long-range correlations, although this
would involve new computational challenges.

We did not find an increase in the statistical power of tests of popu-
lation fixed effects at the vertex-level of analysis, and our results suggest
that there is little reason to use the STMM if a researcher is exclusively
interested in vertex-level group inference. This was initially surprising
to us because it appears to be contrary to the spatial models in Bernal-
Rusiel et al. (2013) and Bowman (2007). However, Hyun et al. (2014)
noted that when a separate activation parameter is estimated for every
location and the covariates are constant across space, spatial modeling
may not improve estimation of population effects. This is easy to see
for the special case of a block designwhere all subjects have the samede-
sign matrix and the data are temporally pre-whitened. In this case, the
GLS estimator of the populationfixed effects is equal to theOLS estimator
that is naive to spatial dependence; hence the test statistics are equal, see
(a.23). Surprisingly, we actually found the STMMgroup analysis resulted
in smaller test statistics than the MUMM for the theory of mind study
(Fig. S.4). The theory ofmind experiment involves smaller population ef-
fect sizes than the motor task or simulation studies. Note the subject
maps from the theory ofmind experiment incorporate spatial smoothing
(Figs. S.3 and S.4) which should generally result in a lower MSE. This in-
terpretation is supported by the results of our simulations in which the
subject-level predictions from the STMM were still considerably more
accurate than the MUMM when the between subject variance was
high, and additionally, high spatial dependence decreased the MSE in
the STMM (e.g., “hi hi lo” versus “hi hi hi” scenarios, Table 1). With re-
spect to the vertex-level tests of group activation, future research could
examine whether eliminating the dimension reduction step, see (a.6),
and using maximum likelihood estimation could substantively improve
the power of vertex-level tests. However, as previously noted, ML esti-
mators are problematic for our large data application because the likeli-
hood includes a 500,000 × 500,000 dense covariance matrix. A more
promising avenue may be to develop estimation techniques that utilize
spatial information in the mean structure. In structural MRI, the weight-
ed likelihood approach in theMARM led to increases in statistical power,
since the spatial information from nearby points is explicitly part of
estimating the effect at a location (Zhu et al., 2014).

Although power was not increased at the vertex level, a separate
question is whether the STMM may improve power in a group
analysis of a region of interest. A common approach to ROI analysis
is to average the signal within the region for each subject and then
conduct the traditional two-level analysis (Brett et al., 2002).
Averaging the signal within an ROI allows one to test the hypothesis
that the activation across the ROI is non-zero. This may result in a
loss of information when the signal varies across the ROI. In the
STMM, one can estimate activation at a Gordon parcel using a differ-
ent parameterization of the STMM (e.g., estimating βr and using
sum-to-zero contrasts on βvr, then testing whether βr=0), or more
generally, one can test the significance of any region by approximat-
ing the distribution of a linear combination of the fixed effects using
the covariance matrix constructed in the STMM. Since activation is
allowed to vary by vertex, this may be more powerful than averaging
when the signal is heterogeneous across the ROI.

Conclusion

We present a spatiotemporal model for multisubject fMRI that im-
proves subject-specific prediction by leveraging population information
(utilizing similarities across subjects) and leveraging spatial informa-
tion (utilizing similarities between a subject's nearby locations). In
general, the predictive gains from the STMM should be greater when
activation patterns are similar across subjects and/or when there is
high spatial dependence between vertices. Matlab code implementing
the model for the HCP motor task and simulated data is available at
http://www.benjaminrisk.com/software.
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Appendix A. Additional information on estimating the MUMM

Let ξ̂
2
iv and Ψ̂iv denote estimates of the unconditional variance and

correlation matrix from (2) (in this section these are the non-
smoothed estimators). Let Xi=[xi1,… ,xiT]', Zi=[zi1,… ,ziT]', and define
Xi
⁎=[Xi,Zi]. Let âiv be an estimate of aiv=[aiv1,… ,aivq]'. Similarly define

γ̂iv . Then define the MUMM estimator of subject-level activation and
nuisance coefficients:

âMUMM
iv

γ̂MUMM
iv

" #
¼ X�0

i Ψ̂−1
iv X�

i

� �−1
X�0
i Ψ̂−1

iv Yiv: ða:1Þ

Next, define the estimator of the population coefficients as

β̂
MUMM
v ¼ 1

N

XN
i¼1

âMUMM
iv : ða:2Þ

An estimator of the variance of (a.2) is

dCovβ̂MUMM
v ¼ 1

N N−1ð Þ
XN
i¼1

âMUMM
iv −β̂

MUMM
v

� �
âMUMM
iv −β̂

MUMM
v

� �0
: ða:3Þ

We are typically interested in whether vertices are differentially ac-
tivated in one task versus others. Contrasts are used to test hypotheses

of these types. Let β̂v∈ℝ
Q , and let c=[c1,… ,cQ]. Suppose there are Qj

tasks for which we are interested in positive activation and Qk tasks
that are being used to control for unwanted activation. Then we might
consider defining a contrast as cq=1/Qj for q corresponding to tasks of
interest and cq=−1/Qk for q corresponding to control tasks. For exam-
ple, in analyzing activation by a left-handfinger-tapping task in theHCP
motor task experiment, we have cq=1 for the left finger-tapping task
and cq=−1/5 for the cue, left foot, right foot, right hand, and tongue
tasks. Then define

tv ¼ c0β̂vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 dCov β̂v

� �
c

r : ða:4Þ

Under the null hypothesis that the contrast is equal to zero and
normality assumptions, this statistic is t-distributed with N−1 degrees
of freedom.

Appendix B. Estimating the STMM

B.1. Smoothing the AR(p) parameters

Estimation of the subject- and vertex-specific variance and AR
parameters results in 4NV parameters. We regularize these parameters
using a single bandwidth chosen using a modified GCV in which the
estimates are treated as data. GCV approximates leave-one-out cross-
validation using effective degrees of freedom (Hastie et al., 2009). We

use the biweight kernel:KihðxÞ ¼ 15
16hi

f1−ðx=hiÞ2g
2
1jxjbhi. Let ξ̂

�2
irv be stan-

dardized estimates (mean zero and unit variance across voxels) and

similarly define ϕ̂
�
irv‘, ‘=1,… ,3. Let ∥v−v '∥ denote the geodesic dis-

tance between the two vertices on the FreeSurfer 32 k spherical tem-
plate. This is equivalent to the great circle distance using spherical
coordinates. For each subject, we find the bandwidth that minimizes

MSEi hð Þ ¼

XV

v¼1
ξ̂
�2
irv−ξ̂

†2
irv


 �2

þ
X3

‘¼1
ϕ̂
�
irv‘−ϕ̂

†
irv‘

� �2
( )

1− 1
V

XV

v¼1
Kih 0ð Þ=wih vð Þ

� �2 ða:5Þ
where ξ̂
†2
irv ¼ ∑V

v0¼1Kihð∥v−v0∥Þξ̂�2irv0=wihðvÞ with wihðvÞ ¼ ∑V
v0¼1Kihð∥v−

v0∥Þ and similarly define ϕ̂
†
irv‘.

B.2. Hierarchical formulation of the STMM

For computational reasons, we project the data Y∈ℝNVT onto
the space spanned by the covariates. Define Xi⁎=[Xi,Zi] and
Ki
⁎=Xi

⁎(Xi
⁎ 'Xi

⁎)−1. Then let Ki comprise the first Q columns of
Ki⁎. Then define

dirv ¼ K0
iYirv: ða:6Þ

Let dir=[dir1′,… ,dirV′]′; let dr=[d1r′,… ,dNr′]′; let sr=[s1r′,… ,sNr′]′;
let br=[b1r′,… ,bNr′]′; let kirv=Ki′eirv. Let {ckirv}v=1

Vr indicate stacked
kir1 ,… ,kirVr

. Then

dr ¼ 1N⊗1Vr⊗IQ
� �

βr� þ 1N⊗IVr⊗IQ
� �

βr:

þ IN⊗1Vr⊗IQ
� �

sr þ IN⊗IVr⊗IQ
� �

br þ c ckirvf gVr
v¼1

n oN

i¼1
:

Note that dirv is equivalent to the OLS estimate of subject-level
activation. Here, we are treating dirv as a dimension-reducing transfor-
mation of Yirv, and we are keeping track of the transformed error eirv.
Put another way, consider the hierarchical formulation of the STMM:

yirvt ¼ x0
itairv þ z0itγirv þ eirvt

and

airvq ¼ βr�q þ βrvq þ sirq þ birvq; q ¼ 1;…;Q : ða:7Þ

Then airvq is different from dirvq=βr ⋅q+βrvq+ sirq+birvq+kirvq
where kirvq is the qth element of the transformed error, kirv.

B.3. Estimating the spatial dependence

Now we consider estimating the spatial dependence of bir. Let zv,
v=1,… ,V be arbitrary, spatially indexed random variables. Define
the population variogram

ν zv; zv0ð Þ ¼ E zv−E zvð Þ− zv0−E zv0ð Þf g2:

Under stationarity, ν(zvi,zvj)=ν(zvk,zvl) for ∥vi−vj∥= ∥vk−vl∥.
Assume for the moment that E zv is known. Then the empirical
variogram is

ν̂ hð Þ ¼ 1
Nh

X
v;v0f g: ∥v−v0∥∈ h−η;hþηð �

zv−Ezvð Þ− zv0−Ezv0ð Þf g2;

where 2η represents the bin width and Nh is the number of pairs with
distance in (h−η,h+η].

In our model, the variance of dirvq is not stationary due
to ξirv2 Ki′ΨirvKi and hence ∥vi− vj ∥ = ∥ vk− vl ∥ does not imply
ν(dirviq,dirvjq)=ν(dirvkq,dirvlq). We propose

δ̂r hð Þ ¼ 1
N−1ð ÞNh

XN
i¼1

X
v;v0f g: ∥v−v0∥∈ h−η;hþηð �

dirvqdirv0q−d�rvqd�rv0q
n o

ða:8Þ
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where d�rvq ¼ ∑N
i¼1dirvq=N. Then note

Eδ̂r hð Þ ¼ 1
N−1ð ÞNh

XN
i¼1

X
v;v0f g: ∥v−v0∥∈ h−η;hþηð �

�
σ2

srq þ σ2
brqΩrq;vv0

þ βr�q þ βrv0q
� �

βr�q þ βrv0q
� �

−
1
N
σ2

srq þ
1
N
σ2

brqΩrq;vv0 þ βr�q þ βrvq
� �ðβr�q þ βrv0q


 ��

¼ σ2
srq þ σ2

brq

1
Nh

X
v;v0f g: ∥v−v0∥∈ h−η;hþηð �

e−θrq∥v−v0∥:

We evaluate δ̂rðhÞ over a suitable range of h and find the parameters
that minimize the sum of squared errors with the function

λ0q+λ1qexp(−θrqh) using fmincon inMatlabwhere only θ̂rq is retained
for additional analysis (estimates of variance components described
below).Weuse the geodesic distance between vertices in the FreeSurfer
32 k spherical template in our simulations and data analyses.

B.4. Estimating the variance of the subject-vertex random effect

Let ξ̂
2
irv and Ψ̂irv correspond to the smoothed estimates of the AR

parameters. To develop estimators for the variance components, it is
convenient to define the Q×Q matrix

MSRr ¼ 1
NVr

XN
i¼1

XVr

v¼1

ξ̂
2
irvK

0
iΨ̂

irv

Ki; ða:9Þ

which will serve a role similar to the mean square residual in ANOVA
decompositions. Then define

d �rv ¼
1
N

XN
i¼1

dirv dir� ¼ 1
Vr

XVr

v¼1

dirv d�r� ¼ 1
NVr

XN
i¼1

XVr

v¼1

dirv:

Towards estimating Br, consider a measure of the mean square due
to the interaction between subject and vertex:

MSBr ¼ 1
N−1ð Þ Vr−1ð Þ

XN
i¼1

XVr

v¼1

dirv−dir�−d�rv þ d�r�
� �

dirv−dir�−d�rv þ d�r�
� �0

:

ða:10Þ

Here,MSBr is aQ×Qmatrix.We assume the randomeffects associat-
ed with each task are independent and thus only calculate the diagonal
elements.

Let

wrq ¼
XVr

v¼1

XVr

v0¼1

Ωrq;v;v0

and Wr=diag(wr1,… ,wrQ). It can be shown (Web Supplement
Section 4) that

EMSBr ¼ Vr

Vr−1
IQ−

1
Vr Vr−1ð ÞWr


 �
Br þ 1

NVr

XN
i¼1

XVr

v¼1

ξ2irvK
0
iΨirvKi: ða:11Þ

In the univariate case under zero spatial and temporal depen-
dence with Zi=0, Xi=1T for all i, and ξirv2 =σa

2 for all i , v, we
have EMSBr ¼ σ2

b þ 1
T σa

2 . Then the model resembles the classic
two-way crossed mixed effects model (e.g., p.123, Searle et al., 1992).
We define the estimator

B̂r ¼ Vr

Vr−1
IQ−

1
Vr Vr−1ð Þ Ŵr


 �−1

MSBr−MSRrð Þ: ða:12Þ

As is the case for method of moments estimators in other mixed

models, σ̂2
brq can be negative, in which case we replace it with 1e-06.

This introduces a slight bias into our estimator but decreases its mean
squared error (p.130, Searle et al., 1992).

Estimators of the subject variance components are described in
Appendix B.5.

B.5. Estimating the variance of the regional subject random effect

Towards estimating Sr, consider the mean square due to subject:

MSSr ¼ 1
N−1

XN
i¼1

XVr

v¼1

dir�−d�r�
� �

dir�−d�r�
� �0

: ða:13Þ

It can be shown

E MSSr ¼ VrSr þ 1
Vr

WrBr þ 1
NVr

XN
i¼1

XVr

v¼1

ξ2irvK
0
iΨirvKi:

In the univariate case under no spatial or temporal dependence, the
result again parallels the expected mean square of a mixed effects

model for a two-factorial crossed design. Namely, if Ωr= IVr
and ξ2irvK

0
iΨirvKi ¼ 1

T σ
2
a , then EMSSr ¼ Vrσ2

sr þ σ2
br
þ 1

T σ
2
ar .

We propose the estimator

Ŝr ¼ 1
Vr

MSSr−
1

V2
r

ŴrB̂r−
1
Vr

MSRr : ða:14Þ

As in the case of B̂r , if some σ̂2
srqb0, then we replace it with 1e-06.

B.6. Estimators of population activation

We parameterize the model with βr ⋅=0Q such that the
estimates of the vertex effects incorporate the mean activation of
the region. Define

Σ̂ir ¼ 1Vr1
0
Vr
⊗Ŝr þ Ω̂r þ diag K0

iΨ̂i1rKi;…;K0
iΨ̂iVrKi

� �
: ða:15Þ

Let Σ̂r ¼ diagðΣ̂1r;…; Σ̂NrÞ . Define the eBLUEs (empirical best
linear unbiased estimators) of the fixed effects given the transformed
data dr as

β̂r ¼ 10
N⊗IVr⊗IQ

� �Σ̂−1
r 1N⊗IVr⊗IQ

� �� �−1

10
N⊗IVr⊗IQ

� �Σ̂−1
r dr

which is equivalent to

β̂r ¼
XN
i¼1

Σ̂−1
ir

( )−1XN
i¼1

Σ̂−1
ir dir ða:16Þ

and we have

dCovβ̂r ¼
XN
i¼1

Σ̂−1
ir

( )−1

: ða:17Þ
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For inference, we construct z-statistics from

β̂r diag dCov β̂r

� �� �−1=2
; ða:18Þ

which is approximately multivariate normal with unit variances.

B.7. Estimating activation

The best linear unbiased predictor (BLUP) for a random effect is
equal to its conditional mean given the data (e.g., p.315 of McCulloch

et al., 2008). Using the parameterization β̂�rq ¼ 0 (Appendix B.6), define
the eBLUPs for the transformed data dir as

ŝir ¼ Ŝr 10
Vr
⊗IQ

� �Σ̂−1
ir dir−β̂r

� �
ða:19Þ

and

b̂ir ¼ Ω̂rΣ̂−1
ir dir−β̂r

� �
: ða:20Þ

Finally we define the predictors of subject-level activation as

âSTMM
irv ¼ β̂rv þ ŝir þ b̂irv: ða:21Þ

Intuition into the behavior of this estimator can be gained by rewrit-
ing (a.21) for the region as

â STMM
ir ¼ β̂r þ 1Vr1

0
Vr
⊗Ŝr þ Ω̂r

� �
� 1Vr1

0
Vr
⊗Ŝþ Ω̂r þ diagðK0

iΨ̂i1rKi;…;K0
iΨ̂iVrKi

n o−1
dir−β̂r

� �
:

ða:22Þ

Holding the within-subject variance fixed and letting 1Vr1
0
Vr
⊗Ŝr þ

Ω̂r grow, note that this estimator approaches dir, i.e., the OLS estimator.

Appendix C. An example when the GLS and OLS estimators of
population activation are equivalent

Consider the special case of a block design where all subjects have
the same design matrix and the data are temporally pre-whitened. Let

the spatial covariance, Ω, be given. The GLS estimator of β̂∈ℝVQ is

β̂ ¼ 10
N⊗I⊗X0

T

� �
I⊗Ω⊗ξ2I

� �−1
1N⊗I⊗XTð Þ

� �−1

10
N⊗I⊗X0

T

� �
I⊗Ω⊗ξ2I

� �−1
Y

¼ 1
N
10
N⊗IV⊗ X0

TXT
� �−1X0

T

� �
Y;

ða:23Þ

which is equivalent to the OLS estimator.

Appendix D. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.05.038.
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