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Abstract

Noise artifacts in magnetic resonance (MR) images increase the complexity of image processing 

workflows and decrease the reliability of inferences drawn from the images. It is thus often 

desirable to remove such artifacts beforehand for more robust and effective quantitative analysis. 

It is important to preserve the integrity of relevant image information while removing noise in MR 

images. A variety of approaches have been developed for this purpose, and the non-local means 

(NLM) filter has been shown to be able to achieve state-of-the-art denoising performance. For 

effective denoising, NLM relies heavily on the existence of repeating structural patterns, which 

however might not always be present within a single image. This is especially true when one 

considers the fact that the human brain is complex and contains a lot of unique structures. In this 

paper we propose to leverage the repeating structures from multiple images to collaboratively 

denoise an image. The underlying assumption is that it is more likely to find repeating structures 

from multiple scans than from a single scan. Specifically, to denoise a target image, multiple 

images, which may be acquired from different subjects, are spatially aligned to the target image, 

and an NLM-like block matching is performed on these aligned images with the target image as 

the reference. This will significantly increase the number of matching structures and thus boost the 

denoising performance. Experiments on both synthetic and real data show that the proposed 

approach, collaborative non-local means (CNLM), outperforms the classic NLM and yields results 

with markedly improved structural details.
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1. Introduction

Due to thermal noise, magnetic resonance (MR) images are susceptible to noise artifacts 

resulting from random fluctuation of the MR signal. Such artifacts cause uncertainty in 
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signal measurements and unreliability in quantitative analyses performed using these 

images. It is thus critical to denoise these images to improve the robustness and reliability of 

subsequent analysis.

There are in general two kinds of approaches to noise removal in images. One is the 

hardware approach [1], which involves scanning an object of interest multiple times and 

averaging the resulting signals to increase signal-to-noise ratio (SNR). This approach is not 

always practical due to the long acquisition time. The other is the software approach [2, 3, 4, 

5, 6, 7, 8, 9], which uses computer algorithms to extract the true signals from noisy 

measurements. In this work, we focus on the second approach because it can be applied to 

existing data without requiring expensive equipment upgrades.

Among the large number of algorithms developed for noise removal, a frequently used 

approach is to attempt to recover the true intensity value of a voxel by averaging the 

intensity values of neighboring voxels [10]. A popular example is the Gaussian smoothing 

filter. However, this kind of local averaging technique will remove not only noise but also 

structural details such as anatomical boundaries. The loss of such details is undesirable due 

to their potential clinical diagnostic value, such as in characterizing small pathological 

changes in the brain. To deal with this issue, patch-based approaches have been shown to 

obtain considerable improvements. Especially notable patch-based methods are the non-

local means (NLM) algorithm [11] and the block matching and 3D filtering (BM3D) 

algorithm [12]. Instead of relying on voxels that are spatially close to each other, the NLM 

filter averages across (potentially distant) voxels that capture similar structures and thus 

avoids blurring structural details. The assumption is that real images often have many self-

similar structures that are not necessarily spatially close to each other and that these 

repeating patterns may be used for effective noise removal. Similar to the NLM filter, the 

BM3D filter utilizes redundant information distributed throughout the whole image for 

effective denoising. It arranges similar patches into groups and then carries out denoising by 

shrinkage of the transform coefficients of the group of patches. We mainly focus on the 

NLM filter in this work because of its simplicity.

Although the NLM filter has been successfully applied to MR image denoising [2, 3, 4], it 

fails when self-repeating structures cannot be located. A natural solution to this problem is 

to extend the spatial search range to increase the chance of finding similar structures. 

However, this will increase computation time dramatically and there is no guarantee of 

success in finding similar structures. In fact, small weights given to a large number of 

dissimilar structures will often overwhelm the weights of a few true matching structures. To 

increase the number of matching structures, Prima and Commowick [3] proposed to 

capitalize on the bilateral symmetry of the human brain to double the chance of finding 

matching structures. This is achieved by using information from both ipsilateral and 

contralateral hemispheres. Despite the promising results, this approach only increases 

moderately the chance of finding matching structures because only information from one 

single image is used.

An alternative approach is to borrow information across multiple images for denoising [13]. 

For example, VBM3D [14] utilizes redundant information found within a frame as well as 
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other frames to carry out efficient video denoising. Foi [15] combines VBM3D and a 

variance-stabilization approach for multi-image denoising [16]. Note however that all of the 

above methods require repeatedly acquired images of the same object and are hence not 

applicable to MRI denoising. Repeated acquisition in MRI increases scan times and is hence 

clinically prohibitive.

To solve the above problem we propose to harness repeating structures from MR images of 

different individuals to boost image denoising performance. This is a generalization of the 

classic NLM filter. The underlying idea is that although human brains differ from each 

other, they all have many common structures that may be used for effective denoising. To 

increase the probability of finding matching structures, we spatially align a group of images, 

called co-denoising images, to a target noisy image and use them to improve denoising. 

NLM-like block matching is performed to locate matching blocks, not only in the target 

image itself, but also in the co-denoising images, significantly increasing the number of 

matching blocks. Such technique has been applied in multi-atlas segmentation [17], but its 

application in image denoising has not been investigated. Extensive experiments on both 

simulated and real datasets show that the proposed approach, called collaborative non-local 

means (CNLM), yields results with markedly improved structural details when compared 

with the classic NLM filter.

The rest of the paper is organized as follows. In Section 2, we will describe the proposed 

method. In Section 3, we will then describe the datasets used for evaluation. In Section 4, we 

will demonstrate the effectiveness of the proposed algorithm for both synthetic and real data. 

In Section 5, we will provide additional discussion and conclude the paper.

2. Method

2.1. Non-Local Means Filter

We first introduce the classic NLM filter. Let NL(u)(xi) be a restored value of a given voxel 

at location xi ∈ ℝ3. It can be computed as the weighted average of all voxels within a search 

volume V(xi), i.e.

where V(xi) is a cubic volume centered at xi, u(xj) is the intensity value of the voxel at xj and 

w(xi, xj) is the weight. The size of V(xi) is (2M + 1)3, where M is a search radius. For 

structural matching, we define a smaller local cubic neighborhood N(xi) around xi. The size 

of N(xi) is (2d + 1)3, where d is a neighborhood radius. Let u(N(xi)) be a vector which 

represents the intensity values of all voxels within N(xi), then w(xi, xj) may be defined as a 

Gaussian function of the Euclidean distance between vectors u(N(xi)) and u(N(xj)) by
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(1)

where hi controls the attenuation of the exponential function and Zi is a normalization 

constant to ensure that w(xi, xj) sums up to one.

If hi is too large, all voxels tend to have a same weight, leading to a strong smoothing effect. 

If hi is too small, only a few very similar voxels will be involved in denoising, and the 

difference between the denoised image and the original image will be subtle. Coupé et al. [2] 

suggested to set , where σ̂
i is an estimate of the standard deviation of the 

noise at voxel xi, β is a constant and is set to 1 [2] and |N(xi)| is the size of N(xi). The weight 

w(xi, xj) is required to satisfy 0 ≤ w(xi, xj) ≤ 1 and Σxi∈V(xi)
 w(xi, xj) = 1. If xi and xj are the 

same, the weight is too large. Hence, w(xi, xi) is set according to w(xi, xi) = max(w(xi, xj)), ∀i 

≠ j.

2.2. Collaborative NLM Denoising

NLM relies on recurring image information. But when the number of similar structures is 

small, particularly in regions that contain a corner or an edge, one encounters the rare patch 

effect [18, 19, 20]. This phenomenon leads to degradation of fine details and often manifests 

as halos around object boundaries. In the following, we will reformulate NLM to work with 

images scanned from different subjects to overcome the problem of insufficient structural 

recurrence. Unlike [2, 5, 4, 3, 21], which are focused on locating similar structures within an 

image, our approach, called collaborative non-local means (CNLM), will allow leveraging 

of common structures in different scans to improve denoising performance.

Suppose we have a target noisy image and a group of co-denoising images with indices 

denoted as set S. Let Vk(xi) be the search volume centered at xi in image k ∈ S and ŵk(xi, xj) 

be an unnormalized weight, then the CNLM compute the restored value of the voxel at xi as

If we let

and
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then we have

Hence, the restored value given by CNLM is just a weighted average of the restored values 

given by NLM across all images. An overview of CNLM is given in Fig. 1. Let |S| be the 

cardinality of the set S, then every voxel will have |S| search volumes, including one in the 

target noisy image itself and |S| − 1 in the co-denoising images. The sample size of the 

CNLM is thus |S| times larger than the classic NLM and hence similar blocks can be found 

with greater probability for improving denoising.

The NLM filter can be viewed as non-parametric kernel regression in an image block space 

[22, 8]. Based on the theory of kernel regression, it can be proven that increasing sample 

size alone will not reduce estimation bias; the bandwidth of the kernel, which in our case is 

the Gaussian function defined in (1), has to be decreased accordingly [23]. Hence, following 

the proof given in [23], we set , where hi now depends on the 

number of images |S| used for denoising1. This makes intuitive sense, because, as the 

number of co-denoising images increases, more matching structures become available, but at 

the same time more spurious structures are introduced. Reducing the bandwidth as the 

number of images increases will help ensure that only truly matching structures are used for 

denoising.

2.3. Block Preselection

A huge number of weight calculations between blocks need to be performed in CNLM, 

causing considerable computational burden. Decreasing unnecessary weight calculations is 

essential for denoising in a feasible amount of time. Mahmoudi et al. [25] proposed filters 

that eliminate unrelated blocks from the weighted average, reducing the original quadratic 

complexity involved in NLM to a linear one. The basic idea is to preclassify image blocks 

according to characteristics such as their average gray values and gradient orientation and 

only perform weight computation for blocks with similar characteristics. This method has 

been proven to not only decrease significantly the computational burden, but also enhance 

denoising efficacy. Manjón et al. [4] introduced an improved version of this method and 

applied it to denoise MR images. The improved preselection method is based on the mean 

values, the variance values and the inverted mean values of the query patch Ni and the 

search patch Nj. The involvement of the inverted mean value inv(u(Ni)) = max (u) − u(Ni) in 

1See [24] for a multivariate treatment on how the bandwidth should be set. Here, we have simplified the problem by leveraging the 
fact that image voxels are highly correlated.
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the filtering process is to avoid treating high and low intensities differently [4]. To discard 

unrelated blocks, we set

(2)

only if

(3)

else we set w(xi, xj) = 0. Here, notation ·̄ and var(·) denote respectively the mean and the 

variance of the respective neighborhood blocks. The parameters 0 < μ1 < 1 and 0 < σ1 < 1 

were chosen according to [2, 4].

2.4. Adaptation to Rician Noise

The noise in the MR magnitude signal is Rician-distributed [26]. The classic NLM 

algorithm is designed to remove Gaussian noise and needs to be modified to tackle Rician 

noise. A Rician-distributed variable X satisfies E(X2) = μ2 + σ2, where μ is the true value and 

σ is a scale parameter that determines the level of noise. Using this fact, it is suggested in 

[21] that an unbiased estimate of the intensity can be obtained as

A similar adjustment is adapted for CNLM to deal with Rician noise, i.e.,

3. Datasets

3.1. Rician Noise Simulation

In order to evaluate quantitatively the proposed method, the Simulated Brain Database of 

BrainWeb2 was used. We used a noise-free T1-weighted image from the database, simulated 

using a spoiled FLASH sequence with repetition time (TR) = 18 ms, echo time (TE) = 10 

ms, and flip angle = 30°. The image size is 181 × 217 × 181 and the slice thickness is 1 mm.

2http://brainweb.bic.mni.mcgill.ca/brainweb/
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To evaluate our algorithm we added noise to the image. The noise was assumed to follow a 

Rician distribution [26]

(4)

where σ is a scale parameter that is equivalent to the standard deviation of a Gaussian 

distribution when the SNR is high, A is the noise free signal, m is noisy signal actually 

observed, I0 is the zeroth order modified Bessel functions of the first kind. When signal to 

noise ratio (SNR) is low, i.e. A/σ → 0, the noise follows a Rayleigh distribution

(5)

When SNR is high, i.e. A/σ→ ∞, the noise obeys a Gaussian distribution

(6)

To generate Rician noise we first created two intermediate images Ir and Ii using the 

following two equations

(7)

and

(8)

where I0 is the noise-free image. We then computed the noisy image IN as

(9)

In this paper, the noise standard deviation is specified in terms of percentage. That is, P% 

noise implies σ = v(P/100), where v is the brightest intensity value in the image (255 in our 

case).

3.2. Dataset 1: Baseline Synthetic Data

As the CNLM algorithm is capable of using multiple images for denoising, 11 noisy 

replicates of the T1-weighted image were generated for each noise level (i.e., 3%, 5%, 7%, 

and 9%). One image was used as the target image for denoising and ten others as co-

denoising images for providing additional information for denoising. Evaluation on this 

dataset provides a reference set of results on how the different denoising algorithms perform 

when there is no structural differences between images and when the images are perfectly 
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aligned. This reference dataset is also useful to validate that the flexibility afforded by the 

non-local block matching mechanism used in CNLM does not falsely deteriorate the results 

significantly when there is in fact no structural variation.

3.3. Dataset 2: Transformed Synthetic Data

To evaluate the effects of structural variation on denoising, we applied 10 rigid 

transformations to the noise-free co-denoising images mentioned above. The 

transformations include translations ([−2mm, 2 mm]) and rotations ([−2°, 2°]) along each 

axis. Noise was added to the 10 transformed co-denoising images and the target image. This 

dataset hence consists of 4 groups of images; each group has 11 images perturbed with the 

same level of noise.

3.4. Dataset 3: Real Data

This dataset consists of 11 T1-weighted MR images acquired from different individuals 

using a Siemens 3T TIM Trio MR scanner with a common imaging protocol. One image 

was used as the target image and the rest were used as co-denoising images. The images are 

of size 256 × 256 × 160 with isotropic 1mm resolution. All co-denoising images were 

warped to the target space using a large deformation diffeomorphic registration algorithm 

[27, 28].

4. Results

In all experiments, we set β = 1, M = 2, d = 2, μ1 = 0.95 and . |S| = 11, including one 

target noisy image and ten co-denoising images. σ̂
i was estimated based on a cubic volume 

(radius = 2) centered at xi, similar to the methods described in [2, 29].

4.1. Baseline Synthetic Dataset

The peak signal to noise ratio (PSNR) was used to evaluate denoising accuracy. For 8-bit 

encoded images, the PSNR is defined as

where RMSE is the root mean square error computed between the ground truth and the 

denoised image.

We ran both the NLM and the CNLM algorithms to denoise the synthetic data and then 

computed the PSNR values of the resulting images. The results are shown in Fig. 2. Perhaps 

unsurprisingly, we can see that our method outperforms the classic NLM at all noise levels. 

For moderate noise (i.e. 3%), the PSNR improvement given by CNLM over NLM peaks at 

4.65 dB. Moreover, the performance of our method can be increasingly improved by using 

more co-denoising images (Fig. 3). Such improvement is more significant when the target 

image is less noisy because it is more challenging to identify matching structures if there is 

too much noise.
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Simple averaging is used here as the comparison baseline. In this case, there is no structural 

variation and simple averaging is expected to produce optimal results. From Fig. 3, we can 

observe that CNLM degrades the results slightly due to its flexibility in including more 

information during denoising and hence introducing the possibility of including spurious 

information during the averaging process. However, the benefits of CNLM outweighs its 

imperfection especially when true structural variations exist. When structural variations 

occur, the performance of simple averaging degrades dramatically. This is due to its inability 

to correct for structural misalignment, unlike CNLM.

To better visualize the benefits of CNLM over NLM, we computed the absolute difference 

between the noise-free image and the denoised image given by each method. We then 

computed for each voxel a performance contrast value by calculating the difference of the 

absolute difference values given CNLM and NLM: Contrast = Absolute DifferenceNLM − 

Absolute DifferenceCNLM. If the absolute difference value given by CNLM is lower than 

NLM, then the contrast value at the voxel is positive; otherwise it is negative. Repeating this 

process for each noise level leads to the images shown in Fig. 4. We can see that voxels with 

warm colors (positive values) dominate the whole brain for all noise levels, indicating that 

our method works significantly better than NLM.

For a more fine-grained analysis, we report the results for different regions of the brain, 

determined based on the Anatomical Automatic Labeling (AAL) template [30]. The AAL 

template was warped to the space of the target image using a large deformation 

diffeomorphic registration algorithm [27, 28]. Fig. 5 shows, for each region, the number of 

the voxels in which CNLM or NLM performs better than one another in terms of PSNR. The 

number at each bar indicates the ratio between the length of the CNLM (red) bar to that of 

the NLM (blue) bar. It can be seen that, in every brain region, CNLM yields better 

performance than NLM. The number of voxels where CNLM performs better is 

approximately twice the number of voxels where NLM performs better. The maximum ratio 

2.96 occurs for the left rectus region.

To show that CNLM is indeed averaging over similar structures, we computed the sum of 

the top 10 un-normalized weights associated with each voxel. Greater weight sums indicate 

smaller structural differences between blocks that are deemed similar. The results, displayed 

in Fig. 6, confirm that CNLM is averaging over structures that are more similar than NLM. 

This is indicative that CNLM is able to preserve edges better than NLM, which is confirmed 

in our evaluation using real data, as reported in Section 4.3.

4.2. Transformed Synthetic Dataset

Fig. 2 shows that CNLM performs quite comparably on both baseline and transformed 

synthetic datasets. This implies that CNLM is insensitive to structural variations. For the 

baseline synthetic dataset where there is no structural misalignment, simple averaging yields 

optimal results. However, when structural misalignment occurs, the outcome of simple 

averaging degrades significantly. The block matching mechanism employed in CNLM helps 

to offset the effect of structural misalignment. This hence enables CNLM to borrow 

information from scans of different individuals for more effective denoising. Compared with 

NLM, which does not borrow information across individuals, CNLM yields higher 
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denoising performance, as confirmed by the results shown in Figs. 7 8, 9, and 10. The 

conclusions that can be drawn from these figures are very similar to their corresponding 

figures (Figs. 3, 4, 5, and 6) discussed in the previous section.

4.3. Real Data

Representative results for the real data consisting of scans from different individuals are 

shown in Fig. 11. It might not be immediately apparent from the images that CNLM gives 

better performance than NLM. But close-up views of some cortical structures (see Fig. 12), 

which are typically small and difficult to denoise without sacrificing structural details, 

indicate that CNLM is more effective in preserving edges. Preservation of the fine details in 

cortical regions is critical for applications such as cortical surface extraction [31] and 

cortical thickness measurement [32]. The sum-of-weights analysis (Fig. 13) again confirms 

that CNLM, compared with NLM, benefits from being able to leverage information from 

structures that have greater similarity. The mean values of the sums of weights are reported 

for the different AAL regions in Fig. 14. In some regions such as the left and right part of 

the pallidum, the mean values given by CNLM are more than 4 times greater than NLM. 

This is indicative of the fact that even though the images are acquired for different 

individuals, they share common structural information that can be harnessed for improving 

denoising performance.

4.4. Computational Time

Our implementation takes advantage of the multithreading capability of ITK. The algorithm 

took approximately 45 seconds to process one imaging slice on a machine with an Intel Core 

i5 processor (3.1GHz).

5. Discussion and Conclusions

We have demonstrated that information common across images of different individuals can 

be utilized for effective structure-preserving denoising. This is achieved by extending NLM 

to not only employ self-similar but also mutually-similar information occurring in other 

images for increasing the sample size for improving the estimation of the noise-free value of 

each voxel. This helps avoid the rare patch effect, discussed in [18, 19, 20], which affects 

the classic NLM when there is a lack of pattern reoccurrence.

Our work is greatly inspired by the label fusion work of [17]. The goal of our work however 

is not to transfer label information but to harness T1-weighted images from different 

individuals for effective denoising. Furthermore, in our framework, we deal with varying 

bandwidth associated with the change in sample size. It is well known in the theory of 

nonparametric regression [23] that estimation bias does not improve with sample size if the 

bandwidth is not adjusted. In [17], the bandwidth is at most spatially adaptive and is 

invariant to sample size. Our work suggests that the statistical bias in [17] can be improved 

by better bandwidth selection.

Experiments on synthetic data have shown that the proposed method works significantly 

better than the classical NLM algorithm. Ideally, one should use a set of noise-free images 

acquired from different subjects in these experiments. However, to the best of our 
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knowledge, no existing database provides such images. The BrainWeb image (Section 3.2) 

that we have used for our evaluation is the only noise-free image with sufficiently structural 

complexity for realistic evaluation. Various levels of Rician noise was added to the image so 

that we could study the affect of noise on denoising performance. This however only 

satisfies partly the requirements of an ideal synthetic evaluation dataset because all the noisy 

image realizations are perfectly aligned. Hence, we further introduced spatial misalignment, 

via random transformations, to the synthetic dataset to create a more challenging dataset for 

evaluation. In the future, as more anatomical models become available, we will subject our 

method to more stringent evaluations.

Both qualitative and quantitative results of our evaluations using the real data support the 

notion that images from different individuals contain common structural information that 

can be used for mutual denoising. The results given by the proposed method clearly showed 

less structural blurring and greater detail preservation. The effectiveness of the proposed 

method can be attributed to the fact that estimation accuracy is improved by increasing the 

number of samples. A well-behaving estimator should asymptotically converge to the real 

value as the number of samples increases to infinity. The proposed method significantly 

increases the number of available samples by taking advantage of information redundancy 

between images.

In conclusion, we have proposed an MRI denoising framework that makes use of inter-

subject structural correlations for effective estimation of the noiseless signal. This obviates 

the need for time-consuming multiple acquisitions. Future work will be directed to extend 

the proposed collaborative denoising framework to work with diffusion-weighted images 

[33]. This will help improve the reliability of studies investigating the integrity white matter 

tracts in relation to development, aging, and disorders [34, 35, 36, 37, 38, 39, 40, 41].
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Figure 1. 
An overview of CNLM. The value of the voxel at location xi is computed based on the 

weighted average of voxels within the associated search volumes Vk(xi) (cyan squares) in the 

target image and the co-denoising images. Each weight ŵk(xi, xj) is determined based on the 

similarly between voxel neighborhoods N(xi) and N(xj) (yellow squares).
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Figure 2. PSNR Comparison
Comparison of denoising performance between NLM and CNLM for both baseline and 

transformed synthetic datasets.
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Figure 3. Influence of the Number of Co-Denoising Images
PSNR trend in relation to the number of co-denoising images for 3%, 5%, 7%, 9% noise 

evaluated based on the baseline synthetic dataset.
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Figure 4. Comparison between NLM and CNLM
Warm colors indicate CNLM performs better than NLM; cool colors indicate otherwise. All 

results are based on the baseline synthetic dataset.
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Figure 5. Regional comparison of CNLM and NLM
The results were computed based on the baseline synthetic dataset with 9% noise. The bar 

length represents the number of voxels where one method performs better than the other 

one. The number at each bar represents the ratio between the length of the CNLM (red) bar 

to that of the NLM (blue) bars.
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Figure 6. Structural Similarity
CNLM is able to identify a greater number of blocks with matching structures than NLM. 

The images show the sum of the 10 greatest weight values at each voxel for (A) NLM 

denoising and (B) CNLM denoising. (C) Subtraction of (A) from (B). The results are based 

on the baseline synthetic dataset with 3% noise.
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Figure 7. Influence of the Number of Co-Denoising Images
The PSNR changing trend in relation to the number of co-denoising images for 3%, 5%, 7%, 

9% noise evaluated based on the transformed synthetic data.
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Figure 8. Comparison between NLM and CNLM
Warm colors indicate CNLM performed better than NLM; cool colors indicate otherwise. 

All results are based on the transformed synthetic dataset.
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Figure 9. Regional comparison of CNLM and NLM
The results were computed based on the transformed synthetic dataset with 9% noise. The 

bar length represents the number of voxels where one method performs better than the other 

one. The number at each bar represents the ratio between the length of the CNLM (red) bar 

to that of the NLM (blue) bars.
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Figure 10. Structural Similarity
CNLM is able to identify a greater number of blocks with matching structures than NLM. 

The images show the sum of the 10 greatest weight values at each voxel for (A) NLM 

denoising and (B) CNLM denoising. (C) Subtraction of (A) from (B). The results are based 

on the transformed synthetic dataset with 3% noise.
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Figure 11. Denoising of Real Data
(A) The target noisy image; (B) CNLM-denoised image; (C) NLM-denoised image; (D) 

Average image. Close-up views of cortical structures from various image slices are shown in 

Fig. 12.
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Figure 12. Close-Up Views
Regional close-up views of Fig 11.
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Figure 13. Structural Similarity
CNLM is able to identify a greater number of blocks with matching structures than NLM. 

The images show the sum of the 10 greatest weight values at each voxel for (A) NLM 

denoising and (B) CNLM denoising. (C) Subtraction of (A) from (B). The results are based 

on the real data.
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Figure 14. Regional comparison of CNLM and NLM
The results were computed based on the real data. The bar length represents the mean of the 

sum of the top 10 weights. The number at each bar represents the ratio between the length of 

the CNLM (red) bar to that of the NLM (blue) bars.
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