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Abstract

Cortical atrophy has been documented in both Parkinson’s disease (PD) and healthy aging, but its 

relationship to changes in subcortical white matter is unknown. This was investigated by obtaining 

T1- and diffusion-weighted images from 76 PD and 70 controls at baseline, 18-, and 36-months, 

from which cortical volumes and underlying subcortical white matter axial (AD), radial (RD) 

diffusivities, and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had 

significant group differences, and for these underlying subcortical white matter was explored. At 

baseline, higher cortical volumes were significantly correlated with lower underlying subcortical 

white matter AD, RD, and higher FA (Ps ≤0.017) in PD. Longitudinally, higher rates of cortical 

atrophy in PD were associated with increased rates of change in AD RD, and FA values (Ps ≤ 

0.0013) in two subregions explored. The significant gray-white matter associations were not found 

in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may 

not be independent events in PD.
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1 INTRODUCTION

Ontogenetically, cortical neurons are born closely to each other in the ventricular zone, and 

migrate along a common pathway to form cortical columns (Rakic, 1988). The final number 

of cortical columns and the number of neurons in each column determines the cortical 

surface area and thickness, respectively (Rakic, 1995). Cortical thickness and surface area 

are thought to be independent genetically, and may reflect separate processes (Winkler et al., 

2010). Cortical volume, however, may be a useful measure to detect overall structural 

changes during aging or disease processes, since it is the combined property of thickness and 

surface area. Indeed, loss of cortical volume has been documented both in healthy aging 

(Abe et al., 2008; Storsve et al., 2014) and Parkinson’s disease (PD) (Lewis et al., 2016), 

although the underlying mechanisms might be different. In healthy aging, dendrite losses 

and/or shrinkage of larger neurons (Terry et al., 1987) may drive the changes in cortical 

volume, since the number of cortical neurons is thought to remain relatively constant 

(Bartzokis et al., 2001; Freeman et al., 2008; Jernigan et al., 2001; Scheibel et al., 1975). In 

PD, cortical cell losses (Jiang et al., 2012; Ribeiro et al., 2013) may contribute to the loss of 

cortical volume.

Post-mortem analysis of Lewy pathology has supported the notion that the progression of 

PD follows a characteristic pattern involving first the brain stem early, and then cortical 

regions as disease advances (Braak et al., 2003a). The recent discovery that Lewy pathology 

can spread across neurons has fueled the notion that neuronal disease may spread in a prion-

like process (Chu and Kordower, 2015). In addition, it has been suggested that long, thin, 

and poorly myelinated neurons (such as cortical projection neurons) are preferentially 
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vulnerable to Lewy pathology (Braak et al., 2006a). Thus, it seems likely that subcortical 

white matter tracts that contain bidirectional axonal projections from cortical neurons 

(Singh, 2006) could be an integral part of the PD process. Thus, we hypothesized that the 

neurodegenerative processes occurring during PD might alter the relationships between 

cortical gray matter and subcortical white matter. The current study utilized cortical gray 

matter volume and subcortical white matter tract diffusion measurements, collected 

longitudinally over 36 months in PD and healthy control subjects, to test this hypothesis.

2 METHODS

2.1 Study subjects

PD (n=76) and control (n=70) subjects having a Mini Mental State Examination score ≥26 

(Dubois et al., 2007; Goetz et al., 2008a) were selected from a longitudinal cohort study 

(Table 1). PD patients were recruited from a tertiary movement disorders clinic, and control 

subjects were recruited from spousal populations and the local community. PD diagnosis 

was confirmed using published criteria (Hughes et al., 1992). All subjects were free of major 

and acute medical issues or neurological disorders except PD. All brain images were 

inspected and deemed free of any major structural abnormalities or motion artifacts. In 

accordance with the Declaration of Helsinki, written informed consent was obtained for all 

subjects. The study protocol was approved by the Penn State Hershey Institutional Review 

Board.

2.2 Clinical information and evaluation

Clinical information and evaluation data were obtained at each visit (baseline, 18-, and 36-

months). Hamilton Depression Rating Scale (Hamilton, 1960) and Montreal Cognitive 

Assessment (Nasreddine et al.) scores were obtained at each visit. In addition, Unified PD 

Rating Scale (UPDRS) motor scores and Hoehn-Yahr stages were assessed for PD subjects 

in the “on-medication” state (Fahn and Elton, 1986; Goetz et al., 2008b). Levodopa-

equivalent daily dose was calculated according to published criteria (Tomlinson et al., 2010).

2.3 MRI data acquisition

All subjects were scanned using a 3.0 Tesla magnetic resonance scanner (Trio, Siemens 

Magnetom, Erlangen, Germany, with an 8-channel phased array head coil) at baseline, 18-, 

and 36-months. A magnetization-prepared rapid acquisition gradient echo sequence was 

used to obtain T1-weighted images with TR/TE = 1540/2.34, FOV = 256 mm x 256 mm, 

matrix = 256 x 256, slice thickness = 1 mm (with no gap), slice number = 176, slice 

selection direction is sagittal. For diffusion tensor imaging, acquisition parameters were as 

follows: TR/TE=8300/82 ms, b value=1000 s/mm2, diffusion gradient directions=42 and 7 

b=0 scans, FOV=256 mm × 256 mm, matrix=128 × 128, slice thickness=2 mm (with no 

gap), and slice number=65, phase encoding direction is axial.

2.4 Structural image processing

T1-weighted brain images were processed automatically using the FreeSurfer (version 5.1.0) 

longitudinal pipeline (Bernal-Rusiel et al., 2013). Briefly, this pipeline creates unbiased 

within-subject templates that then were used to initialize image processing (skull stripping, 
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Talairach transformations, atlas registration, spherical surface maps) for scans at each visit 

(Fischl and Dale, 2000; Reuter and Fischl, 2011). Cortical volumes were computed by 

multiplying cortical thickness and surface area at each cortical surface vertex. Gray matter 

volumes in each cortical region were computed using regional means extracted from cortical 

parcellations (FreeSurfer’s Desikan atlas) (Desikan et al., 2006). Intracranial volume was 

calculated automatically by FreeSurfer using the method described by Buckner et al. 

(Buckner et al., 2004).

2.5 Diffusion tensor image processing

Diffusion image quality control and tensor reconstruction was performed using DTIPrep 

(Neuro Image Research & Analysis Laboratory, University of North Carolina, Chapel Hill, 

NC USA). This software first checks diffusion weighted images for quality by calculating 

the inter-slice and inter-image intra-class correlation, and then corrects for the distortions 

induced by eddy currents and head motion (Liu et al., 2010). Diffusion tensor images 

subsequently were estimated via weighted least squares (Salvador et al., 2005). Additional 

quality control was performed by visually inspecting the images for artifacts and 

directionality. Diffusion tensor images were skull-stripped using brain masks generated from 

the T1 image segmentation step.

Atlas building was performed using a two-stage process in order to ensure that the overall 

final atlas was not biased by subject dropout. The first stage involved creation of within-

subject atlases using images from each subject’s baseline and follow-up images. The second 

stage involved creation of an overall atlas using the within-subject atlases of all subjects. For 

creation of both the within-subject and the overall atlases, we utilized the DTIAtlasBuilder 

program (Neuro Image Research & Analysis Laboratory, University of North Carolina, 

Chapel Hill, NC USA). This software employs a state-of-the-art image registration pipeline. 

To generate atlases, affine registration first is applied using the BRAINSFit module within 

Slicer (Johnson et al., 2007). Second, unbiased diffeomorphic deformations fields are 

computed using the GreedyAtlas module within AtlasWerks (Joshi et al., 2004). Third, a 

refinement step is applied via symmetric diffeomorphic registration with the Slicer DTI-Reg 

module using Advanced Normalization Tools (Avants et al., 2008; Klein et al., 2009). The 

final step of DTIAtlasBuilder concatenates the transforms of the previous steps to compute 

the overall transformation of the original diffusion tensor images into the final average 

diffusion tensor imaging atlas. This allows for mapping between the atlas and the individual 

diffusion tensor images recorded at each visit without the need for resampling.

For the current study, we chose to use axial diffusivity (thought to be more specific to axonal 

degeneration), radial diffusivity (thought to correlate inversely with axonal myelination), and 

fractional anisotropy (FA; thought to reflect overall microstructural integrity) (Aung et al., 

2013; Song et al., 2002; Song et al., 2005). We defined several specific regions of interest on 

the FA map of the average DTI atlas. These regions of interest were chosen specifically for 

their relation to overlying cortical gray matter. “Overall subcortical white matter” was 

defined as a region of interest that was generated by first thresholding the overall final atlas 

image at fractional anisotropy > 0.2 (Supplementary Figure 1). The thresholded mask then 

was edited manually to exclude white matter in the brainstem, cerebellum, thalamus, and 

Sterling et al. Page 4

Neurobiol Aging. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



other gray matter where fractional anisotropy fell beyond the 0.2 threshold level. This final 

region of interest was used to extract diffusion scalar values of “overall subcortical white 

matter.” We also examined subcortical white matter diffusion scalars in specific subcortical 

regions that were named according to the overlying gray matter. This was performed by co-

registering a standardized white matter parcellation atlas (JHU-MNI-SS-TypeI) with the 

overall final atlas, and then mapping the parcellated white matter regions back to the original 

diffusion tensor images (Oishi et al., 2009).

2.6 Statistical analysis

2.6.1 Group Comparisons—Age and years of education were compared between PD 

and control subjects using two-sample t-tests, whereas gender frequencies were compared 

using Fisher’s Exact Test. Mini Mental State Exam, Montreal Cognitive Assessment, and 

Hamilton Depression scores were compared between groups using Wilcoxon Rank-Sum 

Test. Baseline total and regional cortical gray matter volumes and white matter diffusion 

measurements were compared using one-way analysis of covariance with adjustment for 

age, gender, education, and depression scores, with intracranial volume added as a covariate 

for the gray matter analysis. To limit the probability of false positive findings in our analysis 

of gray matter-subcortical white matter relationships (see below), we restricted our analyses 

to cortical areas that had raw p<0.05 in group comparisons between and control subjects 

(total=12 regions). Rates of annual change in gray matter volumes and white matter 

diffusion were compared between groups using a linear mixed effects model with random 

slopes and intercepts and the same covariates as above, with the additional term of years 

elapsed (since baseline) and the interaction term years elapsed × group.

2.6.2 Gray matter-subcortical white matter associations—The baseline 

relationships between gray matter volume and subcortical white matter diffusion were 

explored using a linear model that included gray matter volume as the dependent variable 

and the following independent variables: subcortical white matter diffusion scalar, 

intracranial volume, age, gender, education, Hamilton depression score, and years since 

diagnosis (as appropriate). To test whether the correlation between gray matter and 

subcortical white matter depended upon group status (PD vs. control), we performed 

interaction analyses by adding the additional independent variable of PD (yes/no) × 

subcortical white matter diffusion scalar.

Longitudinal data were analyzed by linear regression where the slope of white matter 

diffusion across all visits (annual rate per subject) was the dependent variable and the 

independent variable was the slope of gray matter volume across all visits (annual rate per 

subject). Group differences were assessed using the additional term group × annual rate of 

gray matter volume change.

To lessen the likelihood that extreme values and/or non-normally distributed distributions 

might drive the study results, all cross-sectional comparisons and correlations using imaging 

measurements were analyzed using multiple linear regression and p-values generated via 

permutation testing of the model residuals (10,000 iterations) (Anderson and Legendre, 

1999; Freedman and Lane, 1983). Raw p-values are reported due to the step-wise nature of 
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the analysis, however, values that survived correction for multiple comparisons are noted 

(Benjamini and Hochberg, 1995). For the main hypothesis, we focused on total cortical gray 

matter volumes and subcortical diffusion properties, corrected for multiple comparisons 

based on the three diffusion measurements (AD, RD, and FA), and statistical significance 

was defined as p≤0.017. For the explorative analyses, we corrected for multiple comparisons 

based on the 12 regions of interest and three diffusion measurements, with statistical 

significance defined as p≤0.0013. All analyses were completed using R version 3.1.1 (Bates 

et al., 2015; R_Core_Team, 2016).

3 RESULTS

3.1 Demographic and clinical characteristics of study subjects at baseline

Compared to controls, PD subjects were significantly older (p=0.011), but did not have 

significant differences either in gender frequency or education (Table 1). PD subjects, 

however, had lower Mini Mental State Examination (p=0.024) and Montreal Cognitive 

Assessment (p=0.007) scores, and higher depression scores (p<0.0001) than control 

subjects. Clinical characteristics of PD subjects are summarized in Table 1.

3.2 Selection of cortical gray matter regions of interest for correlation analyses

Table 2 summarizes the total gray matter volume data, along with the baseline and annual 

change data for the 12 cortical subregions. As it relates to the primary hypothesis of this 

work, at baseline PD subjects had lower total cortex volume compared to control subjects 

(p=0.006). We then explored gray matter differences of 69 parcellated regions; this revealed 

12 subregions that had significant (p<0.05) group differences. We then focused on the total 

cortical volume-white matter relationship (primary hypothesis), and also explored these 12 

subregions to attempt to understand the relationship between cortical subregional gray 

matter volume and underlying white matter diffusion properties.

Table 3 summarizes the baseline and annual changes of both total subcortical white matter, 

and the 12 regions of interests that were explored. Several significant effects were seen at 

baseline, but none of these differences between PD and control subjects survived correction 

for multiple comparisons either at baseline or longitudinally.

3.3 Correlations of cortical volume and white matter diffusion

At baseline, total cortex volume was correlated negatively with overall subcortical white 

matter axial and radial diffusivity, and positively with overall subcortical white matter 

fractional anisotropy in PD, but not in control subjects (Table 4). None of the associations in 

the 12 studied subregions survived correction for multiple comparisons. The associations 

seemed to be different in PD compared to controls, with only RD surviving multiple 

comparison correction (p=0.011, Figure 1 and Supplemental Table 1).

Longitudinally, annual loss of total cortex volume was not correlated significantly with the 

annual increase in subcortical white matter diffusion measurements (Table 5). The 

exploration of cortical subregions demonstrated that cortical atrophy in the left lateral 

occipital area was significantly associated with increasing axial and radial diffusivities over 
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time, and cortical atrophy in the left postcentral region also was significantly associated with 

increasing fractional anisotropy over time (Table 5, Supplementary Table 2, and Figure 2). 

The associations were not found in controls.

3.4 Sensitivity analysis using matched PD and control samples

In our prior analysis, we factored in age. To address specifically the possibility that the 

correlation differences between PD and control subjects were due to age differences between 

the samples, we performed a sensitivity analysis using 61 PD and 60 control subjects 

matched on age. There was no significant difference in age (p=0.493) or gender (p=0.474) 

between the groups. Baseline overall subcortical white matter radial diffusivity was 

correlated inversely with total cortical volume in PD subjects (p=0.0002), and the 

correlations were absent in controls (p=0.804, interaction p=0.023).

4 DISCUSSION

To our knowledge, the current study is the first to investigate the relationship between gray 

matter atrophy and white matter diffusion properties in PD and healthy controls. The results 

suggest that cortical gray matter atrophy in PD may be related to microstructural changes of 

underlying subcortical white matter, a phenomenon not present in healthy controls. Future 

investigation of the responsible mechanisms is warranted since they may have important 

implications for understanding PD pathology and its progression.

4.1 Gray matter and white matter changes in PD

Gray matter atrophy in PD has been reported by a number of groups (Hwang et al., 2013; 

Ibarretxe-Bilbao et al., 2012; Lewis et al., 2016; Pereira et al., 2014; Ramirez-Ruiz et al., 

2007; Segura et al., 2014; Song et al., 2011; Tinaz et al., 2011; Zhang et al., 2014), and the 

current study confirmed these findings in a longitudinal cohort. On the other hand, past 

research has yielded inconsistent results regarding the extent and nature of white matter 

involvement in PD. Some studies have suggested that PD subjects have altered subcortical 

white matter diffusion properties (Auning et al., 2014; Duncan et al., 2015; Gattellaro et al., 

2009; Gu et al., 2014; Hattori et al., 2012; Huang et al., 2014; Koshimori et al., 2015) 

particularly in advanced-stage, cognitively impaired, and depressed patients (Bohnen and 

Albin, 2011). Conversely, other studies have found none or minimal evidence of altered 

white matter measures in PD (Ji et al., 2015; Rizzo et al., 2008; Tsukamoto et al., 2012; 

Worker et al., 2014). The current study falls on the side of those that report altered white 

matter diffusion properties in several brain regions of non-demented PD subjects. No 

subcortical white matter diffusion differences, however, survived correction for multiple 

comparisons. Similarly, although the rate of cortical gray matter volume loss in most cortical 

regions examined was accelerated significantly in PD compared to control subjects, we 

found no differences in the rates of white matter diffusion change. This may indicate that the 

effects of PD on white matter microstructural integrity are weaker than those leading to gray 

matter atrophy. It also may be that white matter microstructural changes are more difficult to 

capture via diffusion tensor imaging. Larger sample sizes and more sensitive methods for 

capturing white matter properties on imaging might be useful in the future.
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4.2 The gray-white matter associations in PD

Our findings of a gray matter-white matter association in PD are in agreement with those of 

Ham et al. (2015), who reported that cortical atrophy was associated with the distribution of 

white matter hyperintensities in PD. The current study, however, utilized distinct diffusion 

measures (axial and radial diffusivity, and fractional anisotropy) that provide quantitative 

measurements of the microstructural properties of subcortical white matter, as opposed to 

categorical classification of white matter hyperintensities (Ham et al., 2015). In addition, we 

utilized a spatial approach to pair cortical gray matter areas with underlying subcortical 

white matter, and included a control cohort for comparison of correlation strengths. It is 

possible that the observed gray matter-white matter relationships represent separate parallel 

processes throughout PD progression. This is less likely, however, because we included 

years-since-diagnosis” as a covariate in the analyses to account for progression effects. 

Taken together, these findings suggest that degenerative changes in cortical gray matter and 

subcortical white matter are not necessarily independent phenomena in PD.

4.3 Possible biological mechanisms of the gray-white matter associations in PD

Although there are several possible explanations for the observed gray matter-white matter 

correlations in PD, the exact mechanism is unknown. The gray matter-white matter 

associations might be due to the death of the overlying cortical cells resulting in anterograde 

degeneration of axons in the subcortical white matter (Carrera and Tononi, 2014). This 

would be consistent with previous reports suggesting that the number of cortical neurons in 

normal aging remains relatively constant (Freeman et al., 2008; Terry et al., 1987), whereas 

PD subjects undergo cell losses (Braak et al., 2003b; Fukuda et al., 1999; Jiang et al., 2012). 

In addition, microstructural damage to subcortical white matter axons might cause cellular 

changes in the overlying cortical gray matter substrate. This notion is supported by the 

reported cortical atrophy that is associated with subcortical white matter hyperintensities in 

both PD (Ham et al., 2015) and non-PD (Seo et al., 2012) populations. Finally, the extent of 

subcortical white matter myelination may influence cortical neuronal survival in PD. Recent 

studies have indicated that in PD subjects unmyelinated axons in cardiac nerves accumulate 

more α-synuclein aggregates (Orimo et al., 2011), and regions with greater myelination 

during human development are associated with less Lewy deposition (Braak et al., 2006b). 

Thus, it is possible that greater white matter RD (Figures 1 and 2) may represent less axonal 

myelination associated with increased vulnerability of overlying cortical gray matter to α-

synuclein aggregation or Lewy body deposition.

It is important to note that cortical gray matter volume is known to decrease throughout the 

lifespan (Abe et al., 2008; Storsve et al., 2014), and subcortical white matter axial and radial 

diffusivities increase sharply after age 60 (Sexton et al., 2014; Westlye et al., 2010). In 

normal aging, there is a loss of dendrites in the cortex (Dickstein et al.) and subcortical 

white matter fibers (Marner et al., 2003). Consistent with this, the current study found 

overall cortex atrophy and altered subcortical white matter diffusion over time in both PD 

and control subjects. In addition, PD subjects displayed region-specific cortical atrophy in 

the left LOC and POC that were associated with increased diffusion measures over time. The 

finding of differential cortical gray and subcortical white matter associations between PD 

and healthy aging subjects was both unexpected and intriguing. The association between left 
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POC atrophy and increasing fractional anisotropy change (Figure 2) also is unexpected. 

Fractional anisotropy is the synthesized asymmetrical measure of the diffusion that occurs 

along all directions, and it is possible it represents a more complex biological process than 

radial and axial diffusivity. Thus, fractional anisotropy may depend on the stage of disease 

and timing of the measurements. Consistent with this hypothesis, fractional anisotropy 

values have been shown to increase and decrease over time in over the course of disease in 

multiple sclerosis patients (Calabrese et al., 2011; Ontaneda et al., 2014). Future studies, 

especially longitudinal follow-up in patients with different stages and durations of disease, 

are needed to confirm these findings and investigate underlying mechanisms.

4.4 Limitations & conclusions

Although our longitudinal design is a strength, the sample size is still relatively small. In 

designing the study, we tried to balance carefully the potential of both false positive and 

false negative results. To limit the probability of false positive gray-white matter 

associations, we only explored the associations in areas that were found to have lower gray 

matter volumes in PD subjects at baseline. To lower the likelihood of false negatives or 

excluding regions of potential interest, we utilized a criteria of raw p<0.05 for areas to be 

included subsequently in the gray-white matter association analyses. Despite these efforts, it 

still is possible that we excluded some biologically meaningful regions of interest and/or 

introduced false positive regions of interest into the association analyses. It is important to 

point out, however, that 1) several of the reported gray-white matter associations at baseline 

survived correction for multiple comparisons and 2) the results of longitudinal analyses of 

radial and axial diffusivities were consistent with the baseline analysis.

Another limitation of the study is that we define white matter as total cerebral white matter 

or white matter underlying cortical subregions. This approach may lack sensitivity to assess 

the relationship between cortical gray matter and the white matter fibers that connect to it 

since several other fibers (i.e., long-range tracts not necessarily connected to the overlying 

cortex) are included and averaged in the same regions of interest. Future studies with 

tractography-based approaches to characterize white matter diffusion are needed. In this 

study, we utilized time-since-diagnosis as a surrogate for disease duration because time-of-

first-symptom-onset could be vague and less precise than time-of-diagnosis. Further, poor 

white matter microstructure and white matter hyperintensities have been linked with 

cognitive impairment in PD (Agosta et al., 2014; Auning et al., 2014; Baggio et al., 2012; 

Debette and Markus, 2010; Kandiah et al., 2014; Koshimori et al., 2015; Mak et al., 2015; 

Shin et al., 2012; Sunwoo et al., 2014), and our exclusion criteria based on MMSE score 

limited our analysis to non-demented patients. Thus, future studies are warranted to 

determine whether different relationships between gray and white matter occur in subjects 

having PD with dementia. Lastly, we computed the rates of change over 36 months by 

calculating the slope over baseline, 18-, and 36-month visits. It is possible that the rates of 

change, however, could be non-linear as a function of time and further studies with even 

longer follow-up are needed. Nevertheless, the data are consistent with our overall 

conclusion that cortical gray and subcortical white matter are related in PD. Independent 

replication is needed, and may yield important information regarding the underlying 

mechanisms in normal aging and progressive neurodegenerative disease.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Gray and white matter degeneration have been documented in PD.

• The relationship of gray and white matter in PD is unknown.

• Cortical gray matter atrophy may be related to white matter properties 

in PD.

• These associations are not observed in a healthy aging population.
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Figure 1. Relationships between cortical gray matter volume and underlying subcortical white 
matter diffusion in PD vs. Controls at baseline
Cortex gray matter volumes are shown as a percent of intracranial volume for illustration 

purposes. Figures show regression coefficients for PD and control subjects for the 

correlations between cortex volume and subcortical white matter diffusion measures axial 

diffusion (AD), radial diffusion (RD), and fractional anisotropy (FA). Bolded p values 

represent significant correlations after Bonferroni correction for multiple comparisons 

(p≤0.017). Abbreviations: PD = Parkinson’s disease, WM = white matter.
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Figure 2. Relationship between change in left lateral occipital (LOC) and change in diffusion 
measures axial diffusion (AD) and radial diffusion (RD), and in left posterior occipital cortex 
(POC) and fractional anisotropy (FA) in PD vs. Controls using longitudinal data
Figures show regression coefficients for PD and control subjects for the correlations between 

change in LOC volume and change in diffusion measures axial diffusion (AD) and radial 

diffusion (RD), and POC volume and fractional anisotropy (FA). Bolded p values represent 

significant correlations after Bonferroni correction for multiple comparisons (p≤0.017). PD 

subjects showed decreased AD and RD values with decreasing LOC volume, and decreased 

FA values with decreasing POC volume. The changes in Controls were not significant.
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Table 1

Baseline and follow-up demographic and clinical characteristics of study subjects.

PD Control P-Value

N, Baseline (Female:Male) 76 (29:47) 70 (36:34) 0.134

N, 18 months (Female:Male) 62 (27:35) 60 (31:30) 0.472

N, 36 months (Female:Male) 50 (24:26) 56 (30:26) 0.697

Age (years) 63.3 ± 8.4 59.9 ± 7.7 0.011

Education (years) 15.9 ± 2.7 16.6 ± 2.8 0.135

MMSE 29.1 ± 1.1 29.5 ± 0.9 0.024

MoCA 24.6 ± 3.6 26.1 ± 2.5 0.007

HAM 7.7 ± 4.5 3.8 ± 2.5 <0.0001

UPDRS-III 22.5 ± 14.3 - -

LEDD 557 ± 457 - -

Duration of disease (years) 4.9 ± 5.5 - -

HY Stage 1.8 ± 0.7 - -

Abbreviations – HAM: Hamilton depression rating scale; HY: Hoehn-Yahr; LEDD: levodopa daily equivalent dosage; MMSE: Mini mental state 
exam; MoCA: Montreal Cognitive Assessment; UPDRS: Unified Parkinson’s disease rating scale;
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