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Abstract

Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled 

remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the 

same time, these findings highlight extraordinary causal diversity and complexity at many levels 

ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we 

review current understanding of the genetic architecture of ASD and integrate genetic evidence, 

neuropathology and studies in model systems with how they inform mechanistic models of ASD 

pathophysiology. Despite the challenges, these advances provide a solid foundation for the 

development of rational, targeted molecular therapies.

Over the last few decades, technological and methodological advances in genetics and 

genomics have permitted the identification of mutations that are involved in thousands of 

rare Mendelian conditions and in the etiology of more common, complex diseases1–7 (http://

www.ebi.ac.uk/gwas/). In this regard, genetic findings have played a major role in 

neurodevelopmental disorders, such as ASD, for which many contributing genes have been 

identified (Fig. 1), providing a platform for unraveling the causal chain of events that result 

in ASD.

The challenges in understanding ASD are many, ranging from defining ASD’s heritable 

genetic components and understanding ASD risk more completely in individuals to 

determining whether the probable hundreds of different genetic forms of ASD might 

converge into a tractable set of targetable pathways for treatment8,9. Additionally, given 
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ASD’s clinical and genetic heterogeneity, it is perhaps not surprising that no common 

macroscopic or microscopic neuropathology is recognized and that no specific brain region 

or cell type is uniquely implicated9–11 (Fig. 2). Nevertheless, the identification of veritable 

genetic risk factors provides a solid mechanistic grounding on which to base therapeutic 

development. Here we start by reviewing the clinical features of the syndrome and providing 

a broad overview of genetic findings. We then describe how mouse and in vitro human stem 

cell–based models can advance mechanistic understanding. Finally, we highlight the 

evidence for the most prevalent neurobiological models that attempt to bring together 

diverse genetic findings, molecular pathways and model systems to develop an evidence-

based theoretical framework for understanding ASD.

Clinical overview

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (ref. 12) defines ASD 

by deficits in two core domains—social interaction and communication, and repetitive, 

restrictive behaviors—with onset during early development. ASD unifies three previously 

separate but highly related diagnoses: autistic disorder, Asperger’s disorder and pervasive 

developmental disorder–not otherwise specified (PDD-NOS). Although prevalence estimates 

in the early 1990s were on the order of 1 in 1,000, they have consistently increased and are 

presently 1 in 68 children under 8 years of age in the USA13. There are substantial 

differences in ASD prevalence between the sexes (1 in 42 for males; 1 in 189 for females), 

suggesting mediation by as yet unknown biological factors14,15. ASD also occurs with 

frequent comorbidities, such as motor deficits (hypotonia, apraxia or motor delay), sleep 

abnormalities, gastrointestinal disturbances and epilepsy16. Sensory hyper- or 

hyposensitivity, previously listed as a frequent (~90%) comorbidity, is now integrated into 

the core diagnosis within the repetitive and restrictive domain. Another salient comorbidity 

is intellectual disability (ID), which is observed in ~35% of individuals with ASD and can 

markedly confound diagnostic instruments17,18. These comorbidities also present challenges 

in disease modeling, as they can complicate assessment of core ASD behaviors in animal 

models and overlap with phenotypes observed in other neuropsychiatric disorders, such as 

schizophrenia, attention deficit–hyper-activity disorder (ADHD) and obsessive-compulsive 

disorder (OCD).

Current therapeutic options are predominantly restricted to behavioral interventions, which 

can be highly successful in a subset of patients, and, as such, early intervention is 

warranted19,20. The only FDA-approved drugs, risperidone, which is effective in treating 

aggressive and repetitive behaviors, and aripiprazole, which reduces irritability, are not 

directed at the core social deficits. We have few ways to prognosticate and stratify patients 

for treatment at this point. We also do not have any clear biomarkers, although tracking eye 

movements21 and electroencephalogram (EEG) parameters22 have shown promise. The hope 

is that understanding the underlying genetic risk and neurobiologically anchored disease 

mechanisms in individual patients will fuel therapeutic development and patient selection for 

the most appropriate treatments.
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Genetic architecture of ASD

We are just starting to elucidate the genetic architecture of ASD (Box 1). In Figure 1, we 

highlight the specific risk genes that have been identified, the types of mutations, the 

patterns of inheritance and the contribution of these genes to ASD. A key early insight into 

the genetic basis of ASD came from the recognition that dozens of rare medical genetic 

syndromes with diverse modes of inheritance have high penetrance (Box 1) for ASD23–26. 

Each of these known syndromes are rare, and none are found in more than 1% of patients 

with ASD; however, collectively they are estimated to be found in ~5% of the total 

population of individuals with ASD (Fig. 1).

BOX 1

Glossary of genetic terms

Genetic architecture the relative contributions of different forms of genetic 

variation.

Penetrance the proportion of mutation carriers who also are 

diagnosed with the disease or carry a given phenotype.

WES Whole-exome sequencing—reading only the genetic 

sequence that encodes for proteins in an organism.

WGS Whole-genome sequencing—reading the entirety of the 

genetic code of an organism.

De novo mutation A mutation that is present in the offspring but that was 

not inherited from either parent.

SNV Single-nucleotide variant—a rare (<1%) or common 

single-bp change in the genome.

CNV Copy-number variation—deletion or duplication of 

large genomic regions leading to changes in the number 

of copies of the genetic elements encoded within those 

regions.

Polygenic model a model that describes the genetic risk factors of a 

disease as many inherited variants, each of which 

contributes a small, additive risk for developing a 

disease.

Oligogenic model a model that describes the genetic risk factors of a 

disease as a few variants, each of which contributes a 

large risk for developing a disease.

Major gene model a model that describes the genetic risk factors of a 

disease as due to genetic variants, each of which 

contributes a large risk for developing a disease. One 
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major gene mutation is typically considered sufficient to 

cause a disease in an individual.

SNP Single-nucleotide polymorphism—a single bp change 

that is common (>1%) in the population.

Simplex family a family in which only one individual is affected with a 

disease.

Multiplex family a family in which multiple individuals are affected with 

a disease.

Family and twin studies show that ASD is highly heritable27–32, and this has spurred 

genome-wide analyses of genetic variants using microarrays, whole-exome sequencing 

(WES) and, more recently, whole-genome sequencing (WGS) (Box 1). However, the most 

successful efforts in gene discovery so far have identified rare protein- disrupting genetic 

variants in the affected child that are not found in the healthy parents, which represent new, 

or de novo, copy-number variants (CNVs)33–41 or single–base pair mutations (single-

nucleotide variants; SNVs) that have arisen in the germline18,42–49 (Box 1). These studies 

have shown that there is an overall enrichment in ‘likely gene-disrupting’ mutations (LGDs; 

nonsense, frameshift and splice site mutations that often result in production of truncated 

proteins) in individuals with ASD as compared to their healthy relatives or to other 

unaffected individuals. Furthermore, these studies have identified individual rare de novo 
mutations that show strong evidence for their involvement in ASD, including mutations in 

chromodomain helicase DNA binding protein 8 (CHD8) and dual-specificity tyrosine 

phosphorylation–regulated kinase 1A (DYRK1A), and a deletion or duplication of 

chromosome 16 (16p11.2) that encompass a ~600-kb region containing dozens of genes 

(Fig. 1 and Supplementary Table 1). Because the ASD-linked mutations are rare, comparing 

the difference in variant frequency at an individual gene in individuals with ASD versus the 

variant frequency in control subjects, which is a typical case-control design, while correcting 

for genome-wide comparisons of mutation rate has not yet reached statistical significance 

for the association of a mutation in individuals with ASD at any individual gene within 

current sample sizes. In general, current estimates of the significance of an association 

between a mutation and ASD are based on comparing the frequency of the observed 

mutations in patients to the expected rate at which null mutations would occur in that 

gene47,50,51. This has resulted in somewhat of a moving target for genetic significance 

estimates, as significance depends on the number of variants found in cases and controls, as 

well as the overall number of cases and controls. WES is not only allowing the discovery of 

rare de novo heterozygous mutations, but it has also identified rare recessive mutations that 

are inherited in consanguineous families52–55.

Genetic models

Several models have been presented to explain the observed familial aggregation patterns 

and recent genetic findings (Fig. 1). Polygenic risk models (Box 1) assume that there are 

many inherited variants contributing to ASD, each with a small effect that, in combination 

with environmental factors, result in an individual crossing a risk threshold to develop the 
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disease56–59. In contrast, major gene models (Box 1) assume that either one highly penetrant 

rare mutation or a limited number of moderately to highly penetrant mutations (oligogenic) 

are sufficient to cause ASD60,61. An important instance of the major gene model is a unified 

theory of ASD inheritance and occurrence62,63 that groups families into two types: low risk 

and high risk. In the more prevalent low-risk group, children develop ASD due to de novo 
mutations62. Female children of low-risk families with de novo mutations are ‘protected’ by 

an as yet unidentified mechanism and are less likely to develop ASD. In high-risk families, 

unaffected mothers transmit mutations that have reduced penetrance in females in a 

dominant manner to multiple, predominantly male, affected children. The polygenic and 

major gene models are not mutually exclusive, and both have support in the literature, but 

the extent of their contribution to ASD is a subject of debate57,63.

Polygenic models are supported by multiple lines of evidence. Firstly, recurrence of ASD in 

families implies a strong inherited genetic component28,29. Secondly, the first-degree 

relatives of children with ASD show related phenotypes more than in the general population, 

such as social and behavioral differences64–66. Finally, heritability estimates using single-

nucleotide polymorphism (SNP) (Box 1) data demonstrate that commonly inherited genetic 

variants (minor allele frequency > 0.05) or variants that are tagged by common genetic 

variants collectively explain a large proportion of the variance in susceptibility to 

ASD57,67,68, as in many other common, complex disorders67,69. However, a weakness of the 

polygenic model is that statistically significant and replicable commonly inherited variants 

have not yet been identified for ASD70. This is probably due to the limited statistical power 

using current sample sizes and study designs6,71,72.

The unified major gene model62,63 is supported by the significant increase in damaging de 
novo mutations found in subjects with ASD as compared to their unaffected siblings44,49. 

Further support for this model is seen in the phenomenon that there are more inherited SNVs 

that disrupt protein function in conserved genes transmitted from the mother to individuals 

with ASD than in unaffected siblings73. However, all pathogenic CNVs considered as a 

group have not yet shown evidence for enriched maternal transmission to probands74.

There are findings that are inconsistent with a major gene model. For example, if de novo 
mutations comprise the majority of genetic risk, then one expects monozygotic (MZ) twins 

(who share both germline de novo and inherited genetic risk factors) to be concordant for 

ASD more than twice as frequently as dizygotic (DZ) twins, who share on average only half 

of their inherited genetic risk factors. Evidence for this was demonstrated by early twin 

studies. However, larger, more recent studies show a DZ concordance rate that is higher than 

expected for de novo mutations that comprise the major contribution to ASD risk (reviewed 

in refs. 32,49). Similarly, if most cases of ASD were due to de novo mutations in the 

parental germline, then risk in relatives would be very low50. However, familial risk implies 

a strong inherited genetic component, consistent with the polygenic model described 

above29. Furthermore, estimates of the influence of de novo mutation on risk for ASD have 

been derived mostly from a sample of simplex families (Box 1), which may inflate the 

contribution of de novo mutations40,44,45,47,49. Estimates of the heritability of ASD on the 

basis of the amount of common genetic variation (as measured from SNPs) shared in 

unrelated affected individuals57,67,68 demonstrate that the collective commonly inherited 
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genetic variants can explain a large proportion of the variance in predisposition of a 

population to ASD, supporting the polygenic model. It is also recognized that some 

predictions of a major gene model have not yet been rigorously tested; the model predicts 

dominant maternal transmission of highly penetrant alleles, but estimating the contribution 

of dominance effects from family or population data is difficult to separate from the 

contribution of interaction between different loci29,75.

After comparison of the currently available data for genetic association with ASD, the data 

fit a model in which the largest component of genetic risk derives from common genetic 

variants of an additive effect with a smaller, although clearly important, contribution from de 
novo and rare inherited variation57 (Fig. 1). This is relevant because presumptions about 

genetic architecture have important implications for future study design, nosology and 

treatment. For example, if de novo mutations provide the major contribution to ASD risk, 

then we should focus genetic discovery efforts in simplex families with parents (and 

unaffected siblings when available). On the other hand, common variation is most efficiently 

detected with large case-control association studies, whereas heritable rare-variant detection 

is best served by studying larger multiplex families76 (Box 1).

With regards to nosology, highly penetrant variants may be very useful for defining subtypes 

of ASD77. For example, LGDs in CHD8 and DYRK1A have been found in individuals with 

ID and ASD but as yet have never been observed in unaffected individuals, indicating high 

penetrance of these mutations43,44. Patients with these rare mutations were then extensively 

phenotyped to identify distinct syndromic subtypes78–80. In contrast, individual common 

variants indicate only a small risk for disease and cannot be used for diagnosis. It is possible 

that the aggregate risk from common variants can be used as a part of the classification tools 

for diagnosis and subtype definition within and across disorders after confounders, such as 

population structure, are properly taken into account81–85.

Finally, the complexity of therapy development is probably proportional to the number of 

targetable biological pathways in the population, not the number of genetic insults identified. 

Although the polygenic model predicts a large number of loci to be associated with ASD, 

drug development may be simplified if convergent targetable pathways are identified. 

Conversely, if many different pathways are associated with ASD, then many different 

treatments may be necessary to alleviate the burden of disease across the population. Current 

evidence from known mutations does suggest significant convergence in the pathways in 

which the mutations are found, but the full extent of convergence will be better defined after 

further clarification of the genetic landscape8,18,86–89. Notwithstanding these challenges, the 

identification of genetic variants provides a clear causal foothold into the underlying biology 

of ASD18,90.

Neurobiological models and mechanisms of ASD

Genetic advances have fueled the generation and characterization of numerous mouse 

models of ASD (Table 1 and Supplementary Table 2), the major strengths and limitations of 

which are summarized in Box 2 (refs. 91,92). A variety of established assays are now 

considered standard assessments for ASD-related behavioral phenotypes93 (Box 2). It is 
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notable that the majority of mouse models for monogenic forms of ASD have social 

impairment or repetitive behaviors; however, these core features of ASD and additional 

comorbidities, such as motor dysfunction, hyper-activity and anxiety, vary widely (Table 1 

and Supplementary Table 2). Despite their potential limitations (Box 2), mouse models have 

been valuable in translating genetic findings and have provided evidence for shared 

molecular pathways and phenotypes in ASD. Primate models or invertebrates have not yet 

been widely used to model ASD, but they are complementary to mouse models92. 

Nonhuman primates are expected to more closely model complex behavior and higher 

cortical functions, whereas zebrafish and invertebrates offer efficient, higher-throughput 

genetic manipulation92,94,95.

BOX 2

Modeling ASD with mice

Mouse models provide an experimental platform for studying ASD at multiple levels, 

including molecular, cellular, circuit and behavioral analyses, and offer one of the few 

systems in which behavioral abnormalities and reversal by potential therapeutics can be 

tested before translating them to humans. A variety of established assays are now 

considered standard assessments for ASD-related behavioral phenotypes in mouse 

models93. The juvenile social interaction and three-chamber test, in which the time spent 

with a conspecific versus a novel object is measured, are widely used in both juvenile and 

adult mice to assess social interaction and social novelty recognition and is presumed to 

test behavioral correlates of social deficits in humans. The ultrasonic vocalization (USV) 

test measures the frequency and properties of vocal communication in multiple settings, 

including separation of pups from dams or adult males interacting with estrous females. 

Motor stereotypies, such as repetitive grooming, jumping and digging, are assessed by 

the marble-burying assay or home-cage behavioral analysis. Human correlates for 

restricted patterns of behavior and perseverance are tested by the alternating T-maze and 

reversal learning in the Morris water maze.

One serious challenge in neuropsychiatric disease is that the circuitry underlying social 

behaviors in most model systems or their human parallels are unknown. Moreover, many 

relevant phenotypes in humans are assessed via patient report, whereas internal states can 

only be inferred from outward behavior in animal models. Although these comorbidities 

are also observed in individuals with ASD, they confound interpretation. Sociability can 

be impaired by sensory dysfunction, fear and anxiety, learning deficits and abnormal 

locomotor activity, and similar cross-modal effects can influence repetitive behavior. 

Therefore, it is important to perform a full battery of behavioral tests, rather than to 

evaluate only core ASD-associated behaviors. Rigorous assessment of construct validity 

(whether a model recapitulates the genetic variant or mechanism of disease as in 

individuals with ASD) and convergent validity (whether application of more than one test 

in a given domain yields a high correlation among tasks) is critical to interpreting animal 

model behavioral data91.
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Advantages and limitations of mouse models

Advantages Limitations

1 Homologs exist for most 
human genes. 
Reasonable degree of 
conservation of some 
relevant circuits (for 
example, cortico-
striatal286).

2 Practical, genetically 
tractable and cost-
effective. Multiple ASD 
models displaying core 
phenotypes are 
available.

3 Well-established 
phenotypic batteries for 
core ASD phenotypes.

4 Uniquely accessible to 
multiple levels of 
experimentation: 
molecular, cellular, 
circuit and behavioral.

1 Evolutionary distance, which 
manifests in many ways, 
including limited knowledge of 
the circuitry of social 
behaviors and its human 
counterparts, as well as the 
inability to model poorly 
conserved regulatory elements.

2 Certain behavioral phenotypes 
in neuropsychiatric disease are 
internal states, as assessed by 
patient report or not 
measurable in mice (language); 
however, some are inferred in 
mouse models on the basis of 
outward behaviors.

3 Assessment of core ASD 
phenotypes can be confounded 
by common comorbidities, 
including sensory dysfunction, 
learning deficits, locomotor 
dysfunction, fear and anxiety. 
Multiple tests are required for 
meaningful interpretation.

4 Invertebrate and other 
vertebrate models (for 
example, zebrafish) permit 
higher-throughput studies.

In parallel, advances in stem cell biology in the past decade make it possible to generate and 

study human neurons and their development92. Differentiation into functional neurons that 

may model phenotypes of ASD has been shown to be possible from human embryonic stem 

cells (hESCs), human induced pluripotent stem cells (hiPSCs) and primary human neural 

progenitor cells (phNPCs) (Table 2 and Supplementary Table 3), although limitations exist 

(Box 3). Together, human neural stem cell models suggest that abnormalities in 

neurogenesis, cell fate, neuronal morphogenesis and synaptic function contribute to the 

pathogenesis of ASD (Table 2 and Supplementary Table 3). Transcriptomic studies in these 

models point to dysregulation in specific molecular processes that may be driving 

pathogenesis, including chromatin modifications, RNA-splicing, Wnt signaling and Ca2+ 

signaling96–99. A small number of drugs, including insulin-like growth factor 1 (IGF1) and 

roscovitine, have been used to reverse phenotypes associated with Rett syndrome, Timothy 

syndrome and Phelan-McDermid syndrome (PMDS) in hiPSC models99–102 (Table 2). 

Although promising, human in vitro studies using neurons derived from stem cells have 

focused on syndromic ASD variants, and thus, modeling of idiopathic ASD103 and ASD-

associated de novo variants will be crucial to obtain a comprehensive picture of phenotypic 

overlap and potential, convergent disease mechanisms. A further challenge to in vitro studies 

is that it is not currently certain what the most relevant cellular and physiological ASD 

phenotypes are that need to be modeled in vitro.
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BOX 3

Human in vitro models of ASD

The need for human models of brain development and function is supported by a growing 

list of differences between rodents and humans212,287, a poor track record in drug 

development92 and the scarcity of human tissue, especially representing the period of 

disease onset10. Human neural stem cells overcome the species barrier, provide a high-

throughput experimental platform for drug discovery and phenotypic screening, and 

could potentially be used in isogenic cell-based therapies. To gain meaningful insights 

into disease mechanisms, the differentiation of neural progenitors into specific neuronal 

subtypes of sufficient maturity is necessary116,288; however, cell identity and maturity 

have not been consistently assessed in human neural stem cell models of ASD (Table 2 

and Supplementary Table 3), with all but a few studies using markers to rigorously define 

the populations of the cells under study99,101–103,289,290. Human stem cell–derived 

neurons are immature, approaching fetal stages of development even after prolonged in 
vitro culture, thus limiting their potential to model synaptogenesis and synaptic 

function130,291–294. Unbiased genome-wide frameworks can be applied130 to measure the 

extent to which in vitro models recapitulate in vivo development and to assess their 

neuroanatomical identity and maturity. Thus, this and other studies295 point to the 

validity of using neural stem cells to model early stages of human corticogenesis that are 

predicted to be dysregulated in ASD88,296. Advances in 3D organoid culture systems, 

organotypic slice culture and cell engraftment into rodent models may provide avenues 

for studying cortical lamination, circuit connectivity and more mature stages, including 

synaptic function290,297–300.

Advantages and limitations of human in vitro models

Advantages Limitations

1 Genomic conservation 
not an issue; allows for 
modeling of coding and 
non-coding variants.

2 One of the few living 
systems in which human 
brain development can 
be studied.

3 High experimental 
tractability, including 
genetic manipulation, 
neuronal physiology and 
the potential for high-
throughput assays for 
phenotypic screening 
and drug discovery.

4 Neurons derived directly 
from affected 
individuals (iPSCs) can 
be used to model disease 
without knowing the 
causal or contributory 
genetic variants.

1 Culture variability, 
heterogeneity and 
reproducibility issues arising 
from multiple sources, 
including culture methodology 
and differences in lines and 
clones used.

2 Cultures to date produce 
immature fetal-like neurons, 
limiting their potential to 
properly model later 
developmental stages.

3 Neuronal migration, cortical 
lamination, projection patterns 
and circuit-level organization 
are difficult to model in 2D 
cultures. Tissue engineering 
and 3D organoid cultures will 
enable the study of some of 
these phenotypes.

4 So far, mostly limited to 
syndromic ASD or small 
cohorts of idiopathic ASD.

5 As a fundamentally in vitro 
system, in vivo connectivity 
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Advantages and limitations of human in vitro models

Advantages Limitations

and external milieu are not 
preserved; thus findings may 
not precisely translate to in 
vivo biology.

Several molecular or cellular mechanisms of ASD pathophysiology have multiple lines of 

supporting evidence from studies in humans or model systems (Table 3). Most of these 

mechanisms are individually quite broad and considerable work is needed to refine these 

models to targetable molecular pathways. Furthermore, these mechanisms are not entirely 

distinct. Indeed, the same genes or molecular pathways contribute to several of these 

processes at different points during development (Fig. 2), and it is not always clear how 

early developmental dysfunction relates to later events. An important caveat is that we only 

have a limited knowledge of the specific genetic contributions to autism susceptibility, and 

study designs to date have presumably identified the low-hanging fruit or specific types of 

mutations (for example, de novo mutations with large effects), which may paint a skewed 

picture of the underlying biology. With these factors in mind we discuss the evidence for 

each, in turn, below.

Altered fetal cortical development

Both human genetic evidence and post-mortem studies indicate that ASD can be caused by 

dysregulation of fetal cortical development10,87–89. Neuropathological studies, albeit with 

small cohorts (fewer than 36 individuals per study), have identified a number of cortical 

abnormalities in individuals with ASD that may be caused by errors in cortical development

—including decreased neuron size, increased neuron number, ectopic cells, misoriented 

pyramidal neurons, irregular lamination, reduction in white matter tracks and dendritic 

abnormalities10 (Fig. 2). A few small studies consistently report narrower and more densely 

packed cortical minicolumns (a basic processing unit of cortical circuits)104. Recently, 

patches of cortical cells lacking specific laminar markers were observed in a large proportion 

of ASD cases within a small cohort105, although the neurodevelopmental process that this 

abnormality corresponds to is unknown. Furthermore, smaller brain size at birth followed by 

overgrowth during childhood is a widely reported phenotype for individuals with ASD106, 

although its anatomical or cellular basis also remains undefined.

Studies in model systems have established a role for genetic mutations associated with major 

syndromic forms of ASD—including mutations in fragile X mental retardation 1 (FMR1), 

tuberous sclerosis 1 and 2 (TSC1 and TSC2), phosphatase and tensin homolog (PTEN), 

contactin associated protein-like 2 (CNTNAP2) and chromodomain helicase DNA binding 

protein 7 (CHD7)—in fetal brain development107–111. A number of these syndromes are 

caused by loss-of-function variants in multiple genes that may converge in the mechanistic 

target of rapamycin (mTOR) pathway, which regulates cell proliferation, growth and 

neuronal morphogenesis (Fig. 2)112,113. Indeed, PTEN mutations cause fore-brain 

macrocephaly in both mice and humans, consistent with defects in corticogenesis51,114.
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Similarly, ASD-associated genetic variants are enriched in genes involved in the Wnt 

pathway115 (Fig. 2), a regulator of the balance between radial glia self-renewal and neuronal 

differentiation, as well as dorsoventral patterning in the brain116,117. In mice, modulation of 

the Wnt pathway results in altered cortical neuronal production and ASD-like social 

deficits118–121. Moreover, many of the ASD-related rare de novo mutations that are 

predicted to disrupt gene function are in genes also thought to regulate or have cross-talk 

with canonical Wnt signaling and that are involved in chromatin modification and regulation 

of gene expression, such as CHD8, T-box brain 1 (TBR1), and members of the Brg1-

associated factors (BAF) and mixed-lineage leukemia (MLL) complexes122–129 (Fig. 2). 

Recent work indicates that these genes are highly coexpressed in the human fetal brain 

during the period of neurogenesis (4–24 weeks after conception)88,130 and are expressed in 

both neural progenitors and newly born neurons131, again implicating altered fetal cortical 

development, as mutations in these genes are expected to affect cortical development.

The CNS function of the majority of these chromatin-modifying genes and transcriptional 

regulators is mostly unknown, with the exception of the BAF complex, a multi-subunit 

chromatin-remodeling complex that regulates neurogenesis and neuronal morphogenesis127. 

The ASD candidate gene SMARCC2, which encodes a subunit of the SWI/SNF chromatin-

remodeling complex, was shown to regulate cortical thickness by modulating 

neurogenesis132. In addition, TBR1 has a role in cortical deep layer neuron generation, and 

mice lacking Tbr1 have impaired callosal and thalamocortical axon projections128. 

Knockdown of CHD8 expression in human neural progenitors causes downregulation of 

genes governing cell adhesion, neuronal differentiation and axon guidance, the Wnt pathway 

and genes related to chromatin modification that are enriched in de novo ASD variants98,133. 

Moreover, individuals with LGD mutations in CHD8 have macrocephaly, consistent with its 

reported function as a regulator of Wnt signaling, which is known to regulate brain size via 

regulation of neurogenesis80,134.

Synaptic dysfunction

Mutations in genes encoding excitatory and inhibitory synaptic cell-adhesion molecules 

(including neurexins43,73,74,135,136 and neuroligins137), excitatory synaptic scaffolding 

molecules (including the SH3 and multiple ankyrin-repeat domain (SHANK) 

proteins43,74,138,139), the excitatory glutamatergic receptor GRIN2B43,44,73 and inhibitory 

GABAergic receptor (GABAR) subunits43,73,140, and exonic deletions in the gene encoding 

the inhibitory synaptic scaffolding molecule gephyrin (GPHN)43,141, are associated with 

ASD in multiple unbiased and targeted sequencing studies. Neurotransmitter release 

regulators including the synaptotagmins43,45,47 and synapsins43,142,143 also harbor 

mutations, but so far there is less statistical support for their involvement in ASD.

Genetic evidence for synaptic dysfunction is also supported by neuropathological studies, 

providing suggestive evidence of increased spine density144,145, abnormalities in inhibitory 

function (such as reduced GABARs in the cortex and hippocampus146–149), abnormal 

mRNA expression of glutamate decarboxylase (GAD1 and GAD2) in the cortex and 

cerebellum150–153, and downregulation of interneuron markers (such as parvalbumin 

(PVALB) and somatostatin (SST)) in post-mortem brains89. Impaired glutamatergic and 

de la Torre-Ubieta et al. Page 11

Nat Med. Author manuscript; available in PMC 2016 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GABAergic transmission, as has been reported in several mouse models of ASD, can result 

in ASD-like behaviors that can be alleviated by modulators of AMPA receptor (AMPAR), 

NMDA receptor (NMDAR) and GABAAR (Table 1). Similarly, human neurons derived from 

individuals with PMDS, a syndromic form of ASD associated with deletions of SHANK3, 

have deficits in excitatory (AMPAR- and NMDAR-mediated) transmission102. Together, 

these studies provide evidence that dysregulation in synaptogenesis and synaptic 

transmission154 has a role in ASD (Fig. 2 and Tables 1 and 2).

The observation of defects in both glutamatergic and GABAergic synaptic function has led 

to the hypothesis that alterations in the excitatory/inhibitory (E/I) balance contribute to ASD. 

Consistent with this, mouse models with altered synaptic transmission or plasticity (activity-

dependent changes in synaptic strength usually related to learning and memory155,156) that 

are outside the normal range in either direction exhibit social dysfunction. Indeed, directly 

increasing the E/I ratio in the medial prefrontal cortex (mPFC) of the brain, using 

optogenetic stimulation, led to impaired social interactions in mice157.

However, E/I imbalance is a broad concept that is frequently observed in a wide variety of 

brain disorders including epilepsy, Alzheimer’s disease and schizophrenia158–160; therefore, 

the contribution of E/I imbalance to ASD pathophysiology requires considerable refinement. 

Identifying spatiotemporal dynamics of synaptic dysfunction in multiple ASD model 

systems may help to delineate this question—for example, whether there is a critical period 

for an E/I imbalance that mediates ASD-associated behavior, or whether the E/I imbalance 

in ASD is circuit specific. Furthermore, an E/I imbalance may arise not only from changes 

in synaptic physiology but also from altered cell fate that can lead to abnormal proportions 

of inhibitory and excitatory cells, as evidenced by recent findings in human in vitro 
models103 (Table 2 and Fig. 2). This further highlights how early developmental 

abnormalities may have repercussions later on. It is also important to note that E/I imbalance 

studies have mainly been carried out in animal models, hence a detailed evaluation of when, 

where and how an E/I shift contributes to the ASD phenotypes in humans is 

warranted161–163.

Activity-dependent transcription and translation

In neurons, gene transcription and protein translation are dynamically regulated by neuronal 

activity, creating spatially or contextually restricted gene expression within subcellular 

compartments164,165. Disruptions in activity- dependent transcriptional regulators or their 

targets are associated with ASD. These include mutations in methyl-CpG–binding protein 2 

(MeCP2)166 and calcium channel, voltage-dependent L-type, alpha 1C subunit 

(CACNA1C)167; de novo mutations in the neuronal activity-induced transcription factor 

myocyte enhancer factor 2C (MEF2C)168; abnormal imprinting and microdeletion of MEF2-

regulated ubiquitin-protein ligase E3A (UBE3A) (which causes Angelman syndrome169) or 

duplication (dup) 15q11-q13 syndrome (which also encompasses UBE3A); and de novo 
mutations in TBR1, whose product is required for activity-dependent Grin2b 
expression170,171. Studies with iPSCs derived from individuals with Timothy syndrome 

demonstrate that CACNA1C regulates a network of genes involved in synaptic function96,99. 

Moreover, targets of Mef2 (such as activity-regulated cytoskeleton- associated protein, 
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Arc172, and brain-derived neurotrophic factor, BDNF173), Mecp2 (such as BDNF174) and 

Tbr1 (such as Grin2b171) have established roles in synaptic transmission and plasticity, thus 

providing a point of mechanistic convergence between distinct genetic etiologies of ASD 

(Fig. 2). IGF1 treatment rescued core ASD behaviors that are present in untreated Mecp2y/− 

(refs. 175,176) and Shank3+/− mice177, as well as synaptic defects in iPSCs derived from 

subjects with PMDS102, presumably via cross-talk with activity-dependent signaling 

pathways175,178 (Fig. 2).

Mutations in TSC1 and TSC2, which encode canonical components of the mTOR 

pathway113, support dysregulation of neuronal translation in individuals with ASD179. Other 

ASD risk loci, including FMR1, which encodes fragile X mental retardation protein (FMRP) 

that also regulates neuronal translation180, and dup15q11-q13, which contains the FMRP 

interactor and translational repressor cytoplasmic FMR1-interacting protein 1 

(CYFIP1)181,182, also suggest convergence on neuronal translational regulation (Figs. 1 and 

2). Consistent with this, mice with disruptions in mTOR signaling or translation initiation 

have core ASD behaviors144,183–187 (Table 1), possibly through the modulation of 

translation of neuroligin 2 (Nlgn2), neurexin 1 (Nrxn1) and Shank3 through Fmrp188, a 

point of molecular convergence between synaptic function and translational regulation. 

Further, metabotropic glutamate receptor (mGluR) activation modulates FMRP-mediated 

translational inhibition and FMRP modulates AMPAR trafficking and mGluR- mediated 

LTD189, emphasizing the cross-talk between synaptic plasticity and translational control.

Activity-dependent transcription and translation also regulate synaptic pruning and 

stability190,191. Increased dendritic spine density in the temporal lobe of individuals with 

ASD has been reported, although the cohorts have been very small144,145. Mef2 and Fmr1 

cooperatively modulate synapse elimination192, and Mef2 has a crucial role in mGluR5-

mediated synapse elimination by stimulating the expression and dendritic translation of the 

Mef2 target gene Arc193. Spine-elimination deficits were also observed in Tsc2+/− mice, 

which were restored by treatment of the mice with the mTOR inhibitor rapamycin144.

Many genes known to be associated with an increased risk for ASD (which we refer to as 

ASD risk genes) are also predicted to be transcriptionally co-regulated by MEF2A, MEF2C 

and SATB homeobox 1 (SATB1), and to be translationally regulated via FMRP, further 

implicating activity-dependent gene regulation as a potential convergent mechanism in ASD 

pathogenesis88. How changes in synapse dynamics that are under the control of ASD risk 

genes lead to the specific behavioral deficits observed in model systems and humans with 

ASD is a critical area of investigation. One can speculate that even small changes in synaptic 

function and timing will preferentially disrupt the connectivity of higher-order association 

areas that mediate social behavior, which include the frontal-parietal, frontal-temporal and 

frontal-striatal circuits11,194. Identification of the spatiotemporal dynamics of transcriptional 

and translational regulation and the subsequent changes in micro- and macro-circuit 

connectivity will be necessary to link synaptic dysfunction to complex behavioral traits in 

individuals with ASD.
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Altered neural circuitry

Human cognitive neuroscience and neuroimaging in ASD have been extensively reviewed 

elsewhere195–197. Neuroimaging and neuropathology studies in humans suggest that changes 

occur both in resting state network activity and alterations in macro-circuit connectivity 

within the cortex and in corticostriatal circuits198–203. The only study using systematic 

imaging phenotyping in ASD mouse models highlighted the parieto-temporal lobe, the 

cerebellar cortex, the frontal lobe, the hypothalamus and the striatum as the most affected 

regions, which were shared across many of the 26 models examined204; however, not all 

mouse models showed structural phenotypes, including mice lacking Cntnap2, which had 

normal gross anatomy.

The brain circuitry underlying social behavior in mice is not yet well defined. In addition to 

frontal circuits, cerebellar function has also been implicated in social behavior. Cell type–

specific knockout of Tsc1 in cerebellar Purkinje cells was sufficient to elicit core ASD-like 

behavior in mice183, providing experimental evidence that cerebellar dysfunction can lead to 

ASD-like social deficits in mice. Systemic analysis of cerebellar function in five ASD mouse 

models has identified defects in cerebellum-dependent learning, although the functional 

implication of cerebellar dysfunction in core ASD behaviors remains to be identified205. In 

fact, developmental injury in cerebellar circuitry may increase ASD risk 36-fold, whereas 

adult injury does not lead to social dysfunction206, suggesting that the cerebellum may not 

be the direct neural correlate of social behavior, but that instead cerebellar injury during 

early development may lead to a cascade of long-term deficits in cerebellar-associated 

targets, leading to the core behavioral deficits observed in ASD. Therefore, comprehensive 

mapping of developmental circuit formation will be essential to finding the neural correlates 

of social behavior.

The amygdala is another candidate region that may be affected in ASD because of its role in 

modulating fear and social behavior202,207,208. Tbr1+/− mice have defective amygdala axonal 

projections and neuronal activation. Notably, direct infusion of D-cycloserine, a partial 

agonist of NMDAR, to basolateral amygdala restored social deficits of Tbr1+/− mice170, 

even though Tbr1 has an established role in deep-layer neuron generation and cortical 

lamination.

In contrast to social behavior, the neuroanatomical substrate for repetitive behavior is better 

understood in both mice and humans. Several lines of evidence suggest that striatal 

dysfunction is a neural substrate for repetitive behavior and motor routine learning in mice 

and in humans209. Mice lacking Shank3b showed striatal dysfunction, including striatal 

hypertrophy, and reduced corticostriatal excitatory synaptic transmission along with 

repetitive behavior210. Mice lacking Nlgn3 display stereotyped motor routines that are 

dependent on inhibitory transmission by D1-dopamine receptor–expressing medium spiny 

neuron (D1-MSNs) in the nucleus accumbens211.

How these mouse phenotypes relate to human circuits is not well understood, and because 

many of the implicated brain regions in humans, such as the frontal and temporal lobes, have 

undergone massive changes during primate evolution212, additional comparative studies, 

which may involve primate models in addition to mouse models, are needed to relate 
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neuroanatomical traits to the candidate brain circuits implicated in ASD pathogenesis. 

Moreover, given the developmental stage–related manifestations of ASD, the temporal 

trajectory of neural circuitry abnormalities and the developmental disconnectivity in ASD 

warrants study. Recent advances in connectomics213,214 and optogenetics215,216 may help in 

delineating the functional neural correlates for core ASD-associated behaviors, thus 

providing therapeutic opportunities.

Dysregulated neuron-glia signaling and neuroinflammation

Another consistently reported observation in brains from individuals with ASD is the 

presence of activated microglia and astrocytosis in multiple brain regions (Fig. 2). 

Neuropathological and positron emission tomography (PET) imaging studies have identified 

microglial infiltration and activation in the frontal, prefrontal, cingulate, frontoinsular and 

visual cortices and in the cerebellum217–220. Astrocytosis has been observed in the frontal, 

parietal, cingulate and temporal cortices and in the cerebellum220–222. Alongside these 

observations, transcriptomic studies in post-mortem brains consistently find that genes 

enriched in activated microglia and astrocytes are upregulated in the cortex of brains from 

individuals with idiopathic ASD, and to a lesser extent in the cerebellum89,223. No studies 

have identified causal genetic variants associated with ASD in microglia- or astrocyte-

specific genes, which combined with transcriptomic and genetic evidence suggests that this 

process is most likely a reaction or a secondary process coupled to underlying synaptic 

dysfunction89. However, the lack of primary genetic evidence for association with ASD does 

not reduce the value of these microglial or astrocyte pathways as potential therapeutic 

windows to explore. Notably, knockdown of chemokine (C-X3-C motif) receptor 1 

(CX3CR1), which is not mutated in individuals with ASD, leads to a reduction in microglia, 

deficits in synaptic pruning and ASD-like behavioral and functional connectivity 

defects224,225. Thus, synaptic dysfunction in individuals with ASD could also arise from 

dysregulated synaptic pruning and homeostasis that is promoted by a vicious cycle of 

microglial and astrocyte upregulation. Because astrocytes and microglia regulate synaptic 

development and pruning226–228, this may provide another opportunity for therapeutic 

development. Mouse models have not been rigorously assessed for microglial activation, but 

given the observations in human brain, this should be done.

Therapeutic strategies

Currently, the following major molecular pathways have been primarily targeted in model 

systems to evaluate novel therapeutic strategies. The E/I imbalance hypothesis highlights 

glutamatergic and GABAergic receptor modulators as potential therapeutic strategies; 

roscovitine, mGluR5 antagonists and agonists, NMDAR agonists and GABAAR agonists 

have shown varying degrees of preclinical efficacy in mouse models, including the 

alleviation of social deficits or repetitive behavior (Table 1 and Supplementary Table 

2)170,229–239. Translational inhibition by eukaryotic translation initiation factor (eIF) 4E and 

eIF4G interaction inhibitor (4EGI-1) and rapamycin have been effective in alleviating 

behavioral and neuronal phenotypes in models with perturbations in the mTOR 

pathway144,183–186,240–242. Transcriptional modulation through phosphatidylinositol 3-

kinase (PI3K) and Ras signaling by IGF1 and BDNF also showed efficacy by rescuing 
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physiological and behavioral abnormalities in some models, including in Mecp2-null 

mice175–177,243,244. Treatment with clenbuterol and fingolimod also alleviated behavioral 

deficits in Mecp2-null mice by increasing levels of BDNF and IGF1 (refs. 245,246). 

Treatment with oxytocin, a neuropeptide involved in the modulation of various aspects of 

social behavior247,248, ameliorated ASD-like social deficits in several mouse models249–251 

and has been implicated in improving information transfer by modulating inhibitory 

transmission252. In addition to these genetic models, striking evidence for a role of the gut 

microbiome in brain development and function has been demonstrated. Oral treatment of 

mice with Bacteroides fragilis restored social behavioral abnormalities in maternal immune 

activation (MIA) models253, but the direct relevance to various forms of human ASD has not 

yet been established.

The lack of consistency in experimental findings between different laboratories and the 

genetic background effects of different mouse strains are important issues that should be 

addressed to increase the therapeutic utility of animal models254–256. Even when mouse 

models suggest a potential mechanism or therapeutic avenue, caution should be exercised in 

translating animal studies to humans. The efficacy of mGluR5 antagonists and oxytocin, 

which showed promise in mouse models, is uncertain following clinical trials in 

humans257–260. It is unknown whether these failures are due to inadequate trial design and 

outcome measures, the lack of appropriate target engagement or simply choosing the wrong 

target261. It should be noted that the outcome measurements used in clinical trials are often 

not the same as those in animal models. This emphasizes the importance of understanding 

the factors that lead to variable results. Social behavior is particularly vexing in this regard, 

as its environmental context and the state of the subject are so important, both in humans and 

in model organisms. In addition to genetic background effects, how the animals are housed 

and treated, when they are tested and who the examiner is can have profound effects on the 

outcome262. The development of objective scoring systems, as well as the identification of 

measurable biomarkers and endophenotypes (for example, EEG, magnetic resonance 

imaging (MRI) scans and molecular profiles) will help in more accurate cross-species 

assessment of the therapeutic effects.

Conclusions and future directions

Genetic evidence frames ASD not as a single disease but as a number of etiologically 

distinct conditions with diverse pathophysiological mechanisms that lead to similar 

behavioral manifestations. This is supported by mouse models, which demonstrate that 

multiple mechanisms can lead to parallel outward social deficits. At the same time, the 

convergence of risk variants in molecular pathways and the identification of common 

transcriptomic signatures in brains from subjects with ASD argue for an unexpected degree 

of convergence at the molecular and cellular levels. Genetic findings now provide a firm 

causal foundation on which to understand the relationship of molecular pathways with 

cellular and circuit dysfunction, and ultimately with behavior. Furthermore, although little is 

known about the mechanisms of increased male prevalence, genetic models provide a route 

for identifying and testing the role of potential female protective factors, which could 

provide new therapeutic opportunities14,263. Finally, evidence for several models based on 

maternal environmental factors, such as infection and the gut microbiome, are also 
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growing253, but their definitive causal role in ASD and their relationship to genetic risk 

factors warrant further definition.

Work in animal models and in human cell lines supports some of the observations in post-

mortem human brains and in clinical studies; yet we are far from parsimonious explanations. 

Microglial activation is variably observed in brains from individuals with ASD, along with a 

deficit in synaptic pruning. Conversely, a mouse model with a reduction in microglia 

displays deficits in synaptic pruning225. Understanding the role of glial cells in synaptic 

homeostasis and their adaptive or maladaptive roles in brains from subjects with ASD are 

thus important goals with significant therapeutic implications.

Interdisciplinary approaches combining genetics, functional genomics, experimental 

modeling and ultimately their integration into cohesive biological models, in line with those 

that are developing in cancer, may help drive therapeutic innovations264. The road ahead 

necessitates advances in each of these approaches. We must gauge where to put our 

resources for genetic discovery. Lessons from other common neuropsychiatric disorders 

suggest that large cohorts (>50,000 subjects) are needed to identify predicted common 

variants6. The success of identifying de novo variants should not occlude the efforts of 

identifying inherited variants. Shared resources, such as single-cell transcriptomes and 

expression quantitative trait loci (eQTL) studies at relevant epochs, will provide critical 

support to molecular pathway analysis that can bridge genetics, animal model and human 

studies.

Translating mechanistic understanding that is derived from model systems faces many 

challenges. One of them is understanding the optimal timing for treatment249. Model 

systems based on neurodevelopmental syndrome genes demonstrate the ability to reverse 

certain deficits in adults, providing important hope that treatment long after birth can be 

efficacious. Yet, given the developmental roles of many ASD risk genes, we must 

acknowledge that there may be critical periods for certain treatment modalities249,265. 

Another important avenue is developing human biomarkers that are robust and, optimally, 

have parallels in animal models. These are challenging problems to be faced with, but they 

underscore the extraordinary recent progress in defining both the causes and mechanisms of 

ASD and a number of plausible routes toward developing more effective treatments.
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Figure 1. 
Genetic architecture of autism spectrum disorders. (a) The inheritance patterns of syndromes 

with known genetic etiology and high incidence of autism, as well as that of genes recently 

identified to be associated with autism. The red stars indicate a causal allele and the red pie 

charts indicate a small proportion of risk. Most dominant disorders show de novo 
inheritance. Autosomal recessive, autosomal dominant and X-linked inheritance patterns 

best fit a major gene model, whereas a polygenic model is best represented by additive risk. 

(b) The types of genetic variation (left and middle) and the developmental disorders (right) 

associated with autism. Genes that have been associated with ASD are also indicated. (c) 

The penetrance of known syndromic mutations summarized from multiple studies. 95% 

binomial proportion confidence intervals, based on Wilson’s score interval, are shown. (d) 

The percentage of individuals with ASD harboring known mutations, as well as the 

percentage of liability from different classes of mutations (taken from ref. 57). The 

percentage variance in liability measures the contribution of a particular variant or class of 

variants relative to the population variance in a theoretical variable called liability. Liability 

is a continuous and normally distributed latent variable that represents each individual’s risk 

(both genetic and environmental) for developing a disease266. Notably, percentage variance 

in liability is directly dependent on the frequency of the variant and the effect size of the 

variant, and it is inversely dependent on the frequency of the disease in the population. 

References for this figure are found in Supplementary Table 1.
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Figure 2. 
Convergent neurobiological mechanisms in ASD. Normal brain development requires the 

generation and positioning of the correct number and type of cells, the growth and targeting 

of neuronal processes, and the formation of the precise number and type of synapses. (a) 

These events are regulated by molecular pathways in development. Genes within these 

pathways for which there is genetic evidence for a link to ASD18 (Fig. 1), including from 

our meta-analysis of SNVs and CNVs (compiled from refs. 43,44,73,74), are colored in 

gold. Chemical compounds that reverse behavioral or cellular ASD phenotypes in model 

systems are indicated in green font near their predicted site of action. (b) The cellular events 

leading to changes in the higher-order organization of the brain, including disruption of fetal 

cortical development and synaptic function. The cortical laminae are depicted from early 

fetal to neonatal stages (not to scale). The numbers indicate the molecular pathways 

important at each stage of development. (c) The widespread pathology10 and functional 

phenotypes observed in ASD, including altered brain growth trajectories, altered cortical 

cytoarchitecture (red triangles indicate excitatory upper layer neurons; green triangles are 

excitatory deep-layer neurons; blue triangles are interneurons; numbers indicate cortical 

layers; WM, white matter) and connectivity, may arise from combined deficits in 

neurogenesis, cell fate, neuronal migration and morphogenesis during fetal development and 

dysregulated synaptic function, possibly in combination with reactive microglia infiltration 

and astrocytosis. RG, radial glia; oRG, outer radial glia; IP, intermediate progenitor; MN, 
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migrating neuron; EN, excitatory neuron; IN, interneuron; A, astrocyte; E/I, excitatory or 

inhibitory neuron; U/D, upper-layer or deep-layer neuron. MPEP, 2-methyl-6-

(phenylethynyl)-pyridine; CDPPB, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide; 

DCS, D-cycloserine; IGF1, insulin-like growth factor 1. VZ, ventricular zone; ISVZ, inner 

subventricular zone; OSVZ, outer subventricular zone; IZ, intermediate zone; SP, subplate; 

CPi, inner cortical plate; CPo, outer cortical plate; MZ, marginal zone.
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Table 3

Evidence for distinct neurobiological mechanisms in ASD

Brain region and 
mechanism Supporting evidence Caveats and limitations Treatment potential

Neocortex

Brain overgrowth • Multiple studies 
with large cohorts 
measuring brain 
size (MRI) and 
head 
circumference

• Mutations in 
genes controlling 
neurogenesis and 
growth (Fig. 2)

• Small effect size 
(2 mm)

• Potential bias in 
measurements

• Incomplete 
understanding of 
biological 
mechanism. 
Evidence for both 
white and gray 
matter origin

• Limited. 
Targeting key 
pathways 
potentially risks 
broad 
developmental 
problems

• Rapamycin 
treatment 
reversed 
macrocephaly in 
a mouse model184

Altered cortical 
cytoarchitecture (neuron 
size, number, 
positioning and/or 
orientation)

• Cumulative 
evidence from 
>12 
neuropathological 
studies

• Mutations in 
genes controlling 
neurogenesis, 
growth and 
neuronal 
migration (Fig. 2)

• Modeling in mice 
consistent with 
observed 
phenotypes 
(Table 1)

• Small cohorts. 
No systematic 
assessment of the 
same brain 
regions and 
phenotypes

• Multiple 
phenotypes; none 
unique to ASD

• Limited. 
Targeting key 
pathways 
potentially risks 
broad 
developmental 
problems

Neuronal morphogenesis • White matter 
reduction in 
neuropathological 
studies. Narrow 
minicolumns and 
altered 
connectivity in 
cortical circuits

• Mutations in 
genes controlling 
axon growth or 
guidance and 
dendrite 
arborization (Fig. 
2)

• Small cohorts. 
Limited number 
of studies

• Limited. 
Targeting key 
pathways will 
probably lead to 
broad 
developmental 
problems

• Rapamycin 
successfully used 
in rescue 
experiments in 
mice184,240

Synaptogenesis • Increased layer-
specific dendritic 
spine density in 
frontal (L2), 
parietal (L2) and 
temporal lobes 
(L2, L5)144,145

• Mutations in 
genes converge in 
pathways 
regulating 
synaptogenesis 
(Fig. 2)

• Only two studies 
with small 
cohorts144,145

• Unclear 
mechanism: both 
increase and 
decrease in 
synapse density 
reported in mouse 
models (Table 1)

• Promising. 
Phenotypic 
reversal possible 
in postnatal 
periods

• IGF1 
successfully used 
in rescue 
experiments in 
hiPSC100,102

• PI3K antagonists 
rescue FXS-
associated 
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Brain region and 
mechanism Supporting evidence Caveats and limitations Treatment potential

• Increased spines 
and upregulated 
spine dynamics 
in some mouse 
models192,193,283

increased spine 
density in 
mice271

Synaptic dysfunction E/I 
imbalance

• Decreased GABA 
receptor density 
and altered 
GAD1 and 
GAD2 levels. 
Functional 
imaging studies 
identify local 
hyperconnectivity 
and decreased 
long-range 
connections

• Mutations in 
genes converge in 
pathways 
regulating 
synaptic function 
(Fig. 2)

• Mouse models 
support 
disruption in E/I 
balance leads to 
ASD phenotypes 
(Table 1). 
Increasing E/I in 
prefrontal cortex 
using 
optogenetics 
leads to social 
deficits157

• Poorly 
documented in 
neuropathological 
studies. Small 
cohorts

• Unclear 
mechanism: both 
increase and 
decrease in 
excitatory 
synaptic function 
reported with and 
without 
concomitant 
inhibitory 
compensation. 
Multiple 
molecular 
mechanisms 
leading to 
synaptic 
dysfunction, 
including altered 
translation, Ca2+ 

signaling and 
activity-
dependent 
transcription 
(Fig. 2)

• Promising. 
Phenotypic 
reversal possible 
in postnatal 
periods

• IGF1 rescues 
phenotypes in 
mouse models 
and 
hiPSC100,102,177

• Positive allosteric 
modulators for 
GABAA 

receptor239, 
mGluR5 
antagonists and 
agonists230,232,233, 
NMDAR partial 
agonist170,232, 
and blockers of 
NKCC1 cation-
chloride 
cotransporter251 

restored 
behavioral 
deficits in mice

Cerebellum

Purkinje cell (PC) loss 
and dysfunction

• Reported 
decrease in PC 
size and number. 
Motor 
coordination 
problems in ASD

• PC-specific 
ablation of ASD 
risk gene Tsc1 in 
mice 
recapitulates core 
ASD phenotypes 
and PC 
degeneration183

• Developmental 
cerebellar injury 
increases ASD 
risk206

• Small cohorts. 
Limited number 
of studies. Gliosis 
observed in most

• Global gene 
expression 
profiles between 
cerebellums of 
control subjects 
and those with 
ASD very 
similar89

• Limited 
knowledge of the 
role of the 
cerebellum in 
ASD behavioral 
domains

• Promising. 
Postnatal 
cerebellar 
development 
increases 
therapeutic 
potential

• Rapamycin 
successfully used 
in rescue 
experiments in 
mice183

Widespread

Neuron-glia signaling • Reported 
increased 
microglia 
infiltration and 
astrogliosis in 
multiple brain 
regions 
(neuropathology 

• Small cohorts. 
Limited number 
of studies

• Lack of genetic 
evidence suggests 
a reactive role

• Untested, but 
promising

• Microglia- and 
astrocyte-specific 
rescue 
experiments in 
Rett mouse 
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Brain region and 
mechanism Supporting evidence Caveats and limitations Treatment potential

and PET 
imaging)

• Post-mortem 
transcriptome 
identifies 
increased 
microglial and 
immune 
signature89,223

• Role of microglia 
and astrocytes in 
regulating 
synapse 
formation, 
function and 
pruning. 
Disrupted 
neuron-microglia 
signaling in mice 
leads to social 
deficits225

• Limited 
characterization 
in ASD mouse 
models

models rescues 
disease 
phenotypes284,285

Neuropathological and neuroimaging findings discussed here were recently reviewed10. See the section titled ‘Neurobiological models and 
mechanisms of ASD’ for additional references and detailed information on the genetic evidence and the function of specific genes involved in each 
biological process. hiPSC, human induced pluripotent stem cells; MRI, magnetic resonance imaging; PET, positron emission tomography; FXS, 
fragile X syndrome; IGF1, insulin-like growth factor 1; PC, Purkinje cell.
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