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Preface

Genome-scale bisulfite sequencing approaches have opened the door to ecological and 

evolutionary studies of DNA methylation in many organisms. These approaches can be powerful. 

However, they introduce new methodological and statistical considerations, some of which are 

particularly relevant to non-model systems. Here, we highlight how these considerations influence 

a study’s power to link methylation variation with a predictor variable of interest. Relative to 

current practice, we argue that sample sizes will need to increase to provide robust insights. We 

also provide recommendations for overcoming common challenges and an R Shiny app to aid in 

study design.
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Introduction

DNA methylation – the covalent addition of methyl groups to cytosine bases – is a gene 

regulatory mechanism of well-established importance in development, disease, and the 

response to environmental conditions1–5. In addition, shifts in DNA methylation are thought 

to contribute to the speciation process and the evolution of trait differences between taxa6–8, 

in support of the idea that gene regulation plays a key role in evolutionary change. Because 

of its contribution to phenotypic diversity, interest in DNA methylation from the ecology and 

evolutionary biology communities is high4,5,9–16. This interest has been further encouraged 

by the development of sodium bisulfite sequencing, a cost-effective approach that allows 

researchers to measure genome-wide DNA methylation levels at base-pair resolution in 

essentially any organism17–19.

Approaches that rely on sodium bisulfite treatment of DNA followed by high-throughput 

sequencing produce what are collectively called “bisulfite sequencing (BS) data sets.” These 

data sets have properties (discussed in the following section) that differ in key ways from 

other common types of sequencing-based functional genomic data, such as RNA-seq data. 

Consequently, several statistical approaches have been developed that are specifically 

tailored to BS data sets20–23 (Box 1). However, the development, application, and evaluation 

of these tools has primarily focused on biomedical questions or model systems, with an 

emphasis on case-control studies and experimental manipulations in a restricted set of 

species24–27. In contrast, ecologists and evolutionary biologists often study non-model 

organisms, environmental gradients that do not follow a case-control design, and natural 

populations characterized by complex kin or population structure. They are also typically 

more limited in their ability to sample pure cell types, and may be interested in effects that 

are smaller than those reported in the context of major perturbations like cancer or pathogen 

infection28,29. Notably, all of these properties can affect statistical power for differential 

methylation analysis (the identification of site or region-specific associations between DNA 

methylation levels and a predictor variable of interest), one of the most common uses of BS 

data.

Our goal in this review is to outline methodological considerations for differential 

methylation analysis of BS data sets. We tailor our discussion specifically to concerns that 

commonly arise in ecological and evolutionary studies and that, except where noted, are 

generalizable across taxa. We first consider how high-throughput BS data are generated, and 

how this process leads to several idiosyncrasies that must be taken into account during 

analysis. Next, we identify four properties common to ecological and evolutionary data sets 

that can influence power: moderate effect sizes, kinship/population structure, taxonomic 

differences in DNA methylation patterns, and cell type heterogeneity. We analyze both 

simulated and published empirical data sets to demonstrate how these four features can 

affect the power and biological interpretation of differential methylation analysis. We also 

discuss the advantages and disadvantages of conducting differential methylation analyses on 

individual CpG sites versus larger genomic intervals. Finally, we provide recommendations 

for handling each issue, with the aim of facilitating robust, well-powered studies of DNA 

methylation’s role in ecological and evolutionary processes.
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Properties of bisulfite sequencing data sets

High-throughput BS protocols, such as whole genome bisulfite sequencing (WGBS19) or 

reduced representation bisulfite sequencing (RRBS17), rely on the differential sensitivity of 

methylated versus unmethylated cytosines to the chemical sodium bisulfite (Figure 1). 

Specifically, treatment of DNA with sodium bisulfite converts unmethylated cytosines to 

uracil (replicated as thymine after PCR) but leaves methylated cytosines unchanged (in 

vertebrates, most DNA methylation occurs at cytosines in CG motifs, while, in other taxa, 

cytosines in CHG and CHH are also commonly methylated13,30,31). DNA methylation level 

estimates at a given site can thus be obtained via high-throughput sequencing of bisulfite 

converted DNA, by comparing the relative count of reads that contain a cytosine (C), which 

reflect an originally methylated DNA base, to the count of reads that contain a thymine (T), 

which reflect an originally unmethylated version of the same base. Current BS protocols 

require low amounts of DNA, avoid the use of species-specific arrays, and can be applied to 

organisms without a reference genome32, making them an increasingly popular choice for 

ecologists and evolutionary biologists33.

High-throughput BS data sets have a number of unique properties that influence both study 

design and data analysis. First, the raw data are binomially distributed count data, in which 

both the number of methylated reads (unconverted “C” bases) and the total read depth 

(number of methylated “C” bases plus unmethylated “T” bases) at each site contain useful 

information34,35 (note that in real data sets, these count data are usually over-dispersed due 

to biological variability20–22). For example, a site where 5 of 10 reads are methylated and a 

site where 50 of 100 reads are methylated both have estimated methylation levels of 50%. 

However, confidence in the methylation level estimate is higher for the second site, where 

total read depth is much greater. Information about relative confidence can be leveraged by 

modeling the raw count data rather than transforming counts to proportions or percentages, 

and several software packages now implement beta-binomial or binomial mixed effects 

models that do so20–22,36 (Box 1). These approaches provide a more powerful alternative to 

tests that assume continuously varying percentages or proportions (e.g., t-tests, Mann-

Whitney U tests, linear models). They also control for count overdispersion, a known 

property of BS data that violates the assumptions of commonly used, but extremely false 

positive-prone20,36, binomial models.

Retaining read depth information during analysis relates to a second property of BS data: 

often, some samples have low read depth or missing data at a CpG site where other samples 

have high read depth (especially in RRBS data sets, where read coverage is affected by the 

sample-specific efficiency and specificity of the restriction enzyme digest: Figure 1, 

Supplementary Figure 1). Unlike RNA-seq data sets where read depth variation within a 

sample captures biological information (i.e., once normalized, lower read counts indicate 

lower expression levels), within-sample read depth variance in BS data sets is purely 

technical. Both read depth and effective sample size will thus vary across sites in the same 

data set, and will often do so systematically across different regions of the genome 

(particularly in RRBS data sets, due to variation in CpG density: Supplementary Figure 1).
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Finally, the efficacy of the bisulfite conversion step can vary across samples or groups of 

samples prepared together, creating global batch effects. Though conversion efficiency is 

typically high (>98% of unmethylated cytosines converted to thymine37–39), small 

differences in conversion efficiency can have significant effects on genome-wide estimates 

of DNA methylation levels (see Fig S2 for an example from37). In particular, samples with 

low conversion efficiencies will tend to have upwardly biased estimates of DNA methylation 

levels relative to samples with higher conversion efficiencies, because fewer unmethylated 

Cs were converted to Ts. Thus, sample-specific bisulfite conversion rates should be directly 

estimated and taken into account (e.g., as a model covariate) in downstream analyses. 

However, we do not recommend estimating site-specific conversion rates, as these estimates 

are highly dependent on sequencing depth (because conversion occurs prior to sequencing, 

any observed relationship between sequencing depth and bisulfite conversion rate only 

reflects estimation error; Supplementary Figure 2). Estimates of sample-specific conversion 

rates can be obtained using CpG sites in the constitutively unmethylated chloroplast genome 

in plants13,19,40, an unmethylated DNA spike in (e.g., lambda phage DNA37–39), CHH and 

CHG sites (in species or cell types where CHH and CHG methylation is rare41,42), or the 

unmethylated cytosines added during RRBS library construction43 (Figure 1A). Empirical 

comparisons in a baboon RRBS data set36 suggests that spike-ins, CHH/CHG, and RRBS 

read end estimates roughly agree, but CHH/CHG estimates tend to be underestimated 

relative to the other methods and spike-ins seem to best capture a sample prep-related batch 

effect (Supplementary Figure 2).

Effect sizes in ecological and evolutionary studies

A primary determinant of power in differential methylation analysis is the distribution of 

true effect sizes. However, it is not obvious what the distributions of effect sizes for 

questions of ecological and evolutionary interest are likely to be. While effect size 

distributions and power analyses have been published for human disease case-control 

studies24–26, comparable information is not readily available for most other settings. Small 

or moderate epigenetic changes may still impact gene expression levels and consequently be 

of interest44,45; however, they will require larger sample sizes to detect.

To aid researchers in choosing appropriate sample sizes, we estimated effect sizes in BS data 

sets from plants, hymenopteran insects, and mammals that address a range of ecological and 

evolutionary questions, including: (i) developmental and demographic effects (eusocial 

insect caste differentiation41; age37); (ii) ecological effects (resource availability, including 

both large differences46 and more modest ones37); (iii) genetic effects (cis-acting 

methylation quantitative trait loci47); and (iv) species differences48,49 (Table 1). For 

comparison, we also include a data set contrasting cancer cells with normal tissue from the 

same donors28, which produces some of the largest effect sizes for differential methylation 

observed to date.

We first reanalyzed each data set using a uniform analysis pipeline (Supplementary 

Materials) and estimated two measures of effect size: (i) the mean difference in methylation 

levels between groups of samples, for binary comparisons (Figure 2A) and (ii) the 

proportion of variance explained by the variable of interest (Supplementary Figure 3). This 

Lea et al. Page 4

Nat Ecol Evol. Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis provides an empirical picture of how effect size distributions vary across differential 

methylation analyses. For example, local genetic variants tend to have large effects on DNA 

methylation levels, while environmental effects are consistently more modest (Figure 2A; 

Supplementary Figure 3). To understand how these differences impact power, we simulated 

BS data sets across a range of typical effect sizes and estimated the sample size required to 

identify differentially methylated sites in each case. All simulations presented in the main 

text assume that 10% of the sites in each dataset are true positives, but results from parallel 

analyses with varying proportions of true positives are shown in Supplementary Figure 4.

Our simulations suggest that answering many ecological and evolutionary questions will 

require sample sizes that exceed those used in most current studies (Figure 2B; 

Supplementary Table 1). For example, to identify sites where the predictor variable explains 

15% of the variance in DNA methylation levels (a mean difference between sample groups 

of 13–14% in our simulations) with 50% power requires an estimated 125 samples (250 

samples for 80% power and 500 samples for 95% power). To accommodate the costs of 

larger sample sizes, we recommend choosing a reduced representation or capture-based 

approach rather than WGBS, and/or reducing per sample read depth. Indeed, consistent with 

results from a previous study25, we find almost no benefit to power after sequencing beyond 

a moderate read depth (~15–20x); in contrast, adding samples always increases power 

(Figure 2D; Supplementary Figure 5). In all cases, we strongly recommend against pooling 

DNA samples from multiple individuals into a single library, as this approach reduces power 

by collapsing the number of biological replicates.

Global analysis approaches that test for patterns in an entire data set, such as principal 

components analysis (PCA) or hierarchical clustering, may also be helpful in analyzing low 

powered data sets. These approaches are particularly useful when a predictor variable is 

associated with small changes in DNA methylation levels at any given locus, but such 

changes are common genome-wide. For example, in two published data sets (focused on the 

epigenetic effects of dominance rank in rhesus macaques and caste differences in clonal 

raider ants38,41), sample sizes were very small. The macaque study (n=3 high-ranking versus 

n=3 low-ranking animals) did not attempt site-by-site analysis, while the raider ant study 

(n=4 pools of reproductive phase ants versus n=4 pools of brood care phase ants) found no 

evidence for caste effects on DNA methylation using site-by-site paired t-tests. As shown in 

Figure 2B (see also Supplementary Figure 6), this result could have stemmed from low 

power. In support of this possibility, global analysis separates the sample groups of interest 

in both data sets. Specifically, the macaque study reported that hierarchical clustering 

distinguishes between high-ranking (n=3) and low-ranking (n=3) individuals, with increased 

separation when focusing on CpG sites near genes differentially expressed with rank38. 

Similarly, when we re-analyzed the clonal raider ant data set, we found that PCA separates 

reproductive and brood care individuals along principal component 3 (t-test for separation 

along PC 3: p=0.022; Figure 2C). Together, these results emphasize the potential utility of 

global analysis approaches in small studies.
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Kinship and population structure

Ecological and evolutionary studies often focus on natural populations that contain related 

individuals or complex population structure. Accounting for these sources of variance is 

important because DNA methylation levels are often heritable50. In humans, where genetic 

effects on DNA methylation have been best studied, average estimated heritability levels are 

18%-20% in whole blood50. As a result, more closely related individuals will tend to exhibit 

more similar DNA methylation patterns than unrelated individuals. Analyses that do not take 

genetic relationships into account can therefore produce spurious associations if the 

predictor of interest also covaries with kinship or ancestry. For example, samples are often 

collected along transects where climatic variables (e.g., temperature, altitude, rainfall) 

covary with genetic structure47,51. Genetic effects on DNA methylation could thus 

masquerade as climatic effects if genetic sources of variance are not also modeled.

Fortunately, this problem is structurally parallel to problems that have already been 

addressed in genotype-phenotype association studies, phylogenetic comparative analyses, 

and research on other functional genomic traits. The most straightforward solution is to use 

mixed effects models, which can incorporate a matrix of pairwise kinship or shared ancestry 

estimates to account for genetic similarity52–55 (Box 1). Specifically, this matrix is treated as 

the variance-covariance matrix for the heritable (genetic) component of a random effect 

variable (the environmental component is usually assumed to be independent across 

samples, so its variance-covariance is given by the identity matrix). The kinship matrix thus 

contributes to the predicted value of a heritable response variable, but does not affect the 

value of nonheritable response variables. Notably, while most approaches for controlling for 

relatedness implement linear mixed models that are only appropriate for continuous 

response variables52–54, recently developed binomial mixed models can be used to achieve 

the same task using count data36 (Box 1). These approaches avoid the need for transforming 

BS data from counts to proportions or ratios, thus preserving information about sequencing 

depth for each site-sample combination. Additionally, recent tools for calling SNP genotypes 

directly from BS reads (e.g., BisSNP56 and BS-SNPer57) can help with constructing kinship/

relatedness matrices, although not without error (Box 2).

Taxonomic differences in DNA methylation

Most research on DNA methylation to date has focused on humans and a handful of model 

systems. However, ecologists and evolutionary biologists study a wider range of species, and 

patterns of DNA methylation can vary dramatically among taxa13,30. Striking examples 

include the broad use of non-CpG (CHH and CHG) DNA methylation in plants relative to 

animals4,13,30, increased capacity for transgenerational epigenetic inheritance in 

plants15,58,59, and increased use of DNA methylation as a transposable element silencing 

mechanism in large eukaryotic genomes13,30. This variation means that patterns typical of 

one taxonomic group cannot necessarily be extrapolated to others (see3,4,12,13,30,31,60 for 

recent comparative studies and reviews of taxon-specific patterns). Here, we focus on how 

differences in the distribution of CpG DNA methylation levels across the genome can impact 

power and analysis strategies.
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To provide some intuition about these differences, we synthesized data from published 

studies of flowering plants, hymenopteran insects, canids, humans, and non-human primates 

(Table 1). We estimated the mean and variance of methylation levels at each CpG site in 

each data set (Figure 3A–B; Supplementary Figure 7). Consistent with expectations, 

vertebrates show largely hypermethylated genomes, except in tumor samples where normal 

patterns are extensively perturbed28. In contrast, Arabidopsis genomes include many more 

hypomethylated sites, and the ant genome—typical of hymenopteran insects12,60—is almost 

completely unmethylated (Figure 3). Based on these observed values, we performed 

additional simulations (Supplementary Materials), with a particular focus on understanding 

how variance impacts power (because it is unlikely that a predictor variable of interest will 

significantly explain variation in DNA methylation levels at a locus where there is little 

variation to begin with). Importantly, the degree to which genomes are composed of 

relatively monomorphic (low variance) versus high variance sites systematically varies due 

to both taxon and sequencing strategy (Figure 3A–B, Supplementary Figure 7).

Our simulations suggest that, all else being equal, power to detect differential methylation in 

BS data is limited by variance. Specifically, for any given sample size with a fixed mean 

DNA methylation level, power increases as a function of the underlying variance in DNA 

methylation levels (Figure 3C). These results suggest that analyses of low variance genomes 

(e.g., those of hymenopteran insects) may require larger sample sizes to detect a given effect 

than analyses of more variable systems, such as plants or mammals. An alternative approach 

is to filter out low variance sites prior to data analysis, which reduces the multiple testing 

burden. Notably, such filtering will also affect the relative representation of sites in genes, 

promoters, CpG islands, and other functional compartments of the genome because some of 

these compartments are consistently more variable than others (Supplementary Figure 7).

In the current literature, differences in the genome-wide distribution of DNA methylation 

levels across taxa have led to taxon-biased analysis approaches. For example, in 

hypomethylated insect genomes, several studies41,61,62 have used a binomial test to classify 

sites into ‘unmethylated’ or ‘methylated’ categories (i.e., all sites that do not pass a given 

significance threshold are considered ‘unmethylated’). Our simulations (Supplementary 

Materials) suggest that this approach not only loses information about quantitative variation, 

but is also sensitive to technical aspects of the data, such as sequencing depth. For example, 

using a binomial test approach, a site with an observed methylation level of 15% would be 

considered ‘unmethylated’ at a read depth of 20x, but ‘methylated’ at a read depth of 26× 

(Supplementary Figure 8). This problem likely accounts for the report of high rates of 

‘sample-specific DNA methylation’ (where a site is methylated in one sample, but 

unmethylated in all other samples) in one recent study41. Indeed, our re-analysis of the same 

data shows that 77% of putative sample-specific sites can be more parsimoniously explained 

by greater read depth in the “outlier” sample (Supplementary Figure 8). Such problems can 

be readily avoided by not binarizing DNA methylation levels, which are intrinsically 

continuous traits, and by using count-based models that account for variation in sequencing 

depth20–22,36.

Discretizing DNA methylation levels into “genotype”-like data for population analyses, 

which has also been proposed49,63,64, can suffer from the same technical biases. Fortunately, 
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most analyses that can be applied to discretized data can also be run on observed DNA 

methylation levels without artificial categorization, including differential methylation 

analysis (Box 1) and variance partitioning within and between populations65,66. Researchers 

interested in epigenetic inheritance67,68 have also analyzed DNA methylation levels as 

discrete states (e.g., ‘epialleles’35,64,69) in considering the evolutionary dynamics of 

epigenetic inheritance. However, because epialleles are thought to ‘mutate’ at a much faster 

rate than sequence variants and are not limited to discretized states, they are unlikely to 

behave like biallelic variants in classical population genetics70. There are ongoing efforts to 

modify classical population genetic models to take this hypervariability into account63,70, 

and we believe that the development of approaches that directly model the continuous nature 

of DNA methylation data would be particularly valuable in this regard.

Cell type heterogeneity

Epigenetic patterns vary substantially across cell types, contributing to differences in gene 

expression and biological function among different tissues. Because most sampled tissues 

also contain multiple cell types, putatively differentially methylated sites could, in some 

cases, be more parsimoniously explained by variation in cell type proportions rather than a 

direct effect of the variable of interest on DNA methylation71. Controlling for cell type 

heterogeneity is therefore a major concern in differential methylation analysis71, and a 

particular challenge for biologists working under field conditions or with non-model 

organisms where isolating purified cell types is not an option.

Three broad approaches can be used to confront this challenge. First, cellular composition 

can be phenotyped for use as a downstream statistical control using microscopy, flow 

cytometry, or, for animal blood samples, Giemsa or Wright-Giemsa stained blood smears. 

The ability to leverage these strategies will vary across species and collection conditions. 

However, some are already commonly applied in field studies (especially blood 

smears72–75), suggesting these approaches are feasible in at least some cases. The resulting 

estimates, or a composite measure (e.g., the first several principal components of variation in 

cell type proportions) can be incorporated as covariates in downstream analysis.

Second, if no measures of cell type heterogeneity are available for the samples of interest, 

another option is to use epigenomic profiles from sorted cells76,77 (‘reference epigenomes’) 

to predict the composition of mixed samples (a process known as ‘deconvolution’71,78). 

Even if obtained from different individuals or populations (and likely even if obtained from 

a closely related species), this approach can provide reasonable control for cell type 

heterogeneity79. Reference epigenome-based deconvolution is an active area of research, and 

several software packages exist to execute it79,80. Data from reference epigenomes can also 

be used to test if sites that are differentially methylated with respect to the predictor of 

interest are also differentially methylated by cell type, which would suggest the two are 

confounded8,37. However, if the between-sample compositional differences that would be 

required to produce the observed levels of differential methylation are not biologically 

plausible, tissue heterogeneity is unlikely to completely explain observed differentially 

methylated sites8.
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Finally, if data from sorted cell populations are unavailable, researchers can apply methods 

that attempt to account for cell type heterogeneity without the need for reference 

information81–83. Both previously developed approaches, such as surrogate variable analysis 

(SVA: originally designed for differential gene expression analysis82), and approaches 

specifically developed with DNA methylation data in mind (e.g., FaST-LMM-EWASher81 

and RefFreeEWAS83), have been suggested for this purpose. In applying them, researchers 

will need to evaluate whether the assumptions of these methods are met in their data. 

Because they were designed for batch correction, these approaches tend to assume that the 

largest sources of variance in DNA methylation levels (e.g., the top PCs) are due to cell type 

heterogeneity rather than differential methylation associated with the predictor of interest. 

Under this assumption, the only true positive associations that are detectable will tend to be 

both rare and of large effect. However, some predictors (e.g., environmental or disease 

perturbations) may truly have widespread, but modestly sized effects. For example, an 

analysis of resource base effects in baboon whole blood identified an association with DNA 

methylation levels at 1014 sites, after ruling out tissue heterogeneity confounds based on 

blood smear counts and comparisons against purified cell populations37. In comparison, 

FaST-LMM-EWASher detected a single differentially methylated site in the same data set. 

Recent comparisons of reference-based and reference-free methods suggest that reference-

based approaches are consistently better powered79,80, and reference-free methods should 

only be used when sorted cell profiles are not available (SVA and RefFreeEWAS are 

recommended in these cases79,80). Such results suggest that researchers should consider 

investing in the generation of a small set of reference epigenomes, if possible for their 

system.

Site versus region-based analyses

DNA methylation levels are spatially correlated, such that CpG sites that are near each other 

(within a few hundred base pairs84,85) will tend to have more similar DNA methylation 

levels than those that are farther apart. In addition, regulatory regions such as promoters and 

CpG islands are characterized by a high density of CpG sites. Hence, spatially contiguous 

differentially methylated regions (DMRs) will generally be of greater functional interest than 

individual CpG sites. They also provide some reassurance that a signal of differential 

methylation is not a statistical or technical artifact.

Many strategies for DMR identification have been reported in the literature. Although they 

differ in modeling approach (Supplementary Table 2), all focus on identifying consecutive 

differentially methylated sites or regions with a specific number or density of differentially 

methylated sites. Such approaches have several advantages25,27. In addition to their potential 

functional relevance, region-based analyses can borrow strength across spatially contiguous 

sites, and some specifically incorporate coverage information to place higher weight on 

deeply sequenced sites21,23,86–88. In principle, taking a region-based approach could also 

reduce the multiple hypothesis testing burden (there should be fewer regions in a genome 

than individual sites). However, we note that in a false discovery rate framework89,90, DMR 

analyses will only be more powerful if they proportionally increase the number of true 

positives relative to null expectations.
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Current region-based methods also have some limitations. First, they are less flexible than 

site-specific analyses, and generally do not enable users to control for other covariates or test 

the effects of continuous predictor variables (Supplementary Table 2). In addition, we are 

not aware of any region-based approach that controls for population structure, a known 

source of confounding. Second, some of the most commonly used DMR methods have been 

developed with long stretches of contiguously measured CpG sites in mind (e.g., WGBS 

data23,88,91,92). For RRBS or capture data, where stretches of interrogated sites are patchier, 

adjusting default parameters for window size or number of CpG sites in a putative DMR will 

therefore be necessary. For example, the default settings in BSmooth, one of the most 

popular DMR finding algorithms, perform DMR identification over windows that contain at 

least 70 CpG sites. In human WGBS data, 70 CpG sites can be captured in a window of 2.94 

kb, on average. However, the patchiness of typical RRBS data sets means that a mean region 

size of 34.5 kb is necessary to capture stretches of 70 CpG sites, well beyond the range 

expected for spatial autocorrelation of DNA methylation levels. Finally, strategies for DMR 

identification have focused most immediately on CpG DMRs. Identifying CHG or CHH 

DMRs is indeed possible20,93–95, however, because the distribution, density, and variance of 

CHG and CHH sites differ from CpG sites, identifying non-CpG DMRs may also require 

careful adjustments to “off-the-shelf” settings.

One possible strategy to overcome the relative sparsity of RRBS data compared with WGBS 

data is to first identify differentially methylated sites and then aggregate them into DMRs (as 

in 18,37). A direct comparison between this approach and a “DMR-first” approach in 

simulated data indicates that they identify generally overlapping sets of DMRs, especially 

for longer stretches of sites (Supplementary Materials; Supplementary Figure 9). These 

results suggest a possible compromise between the modeling flexibility afforded by site-by-

site analysis and prioritization of the most interesting candidate regions via DMR 

identification.

Conclusions and tools

Like most other genomic technologies, high-throughput BS approaches were first optimized 

in research contexts that afford a high degree of control (e.g., experimental case-control 

studies in model systems) and in systems that boast extensive genomic resources (e.g., 

humans). However, for ecologists and evolutionary biologists, these approaches often 

become most exciting when they can be extended to a much more diverse set of species and 

populations—even if these extensions come with complications. We believe that the 

biological insights to be gained from studies of DNA methylation in diverse taxa have 

substantial potential.

However, maximizing the yield from these studies will require careful consideration of 

taxon-specific characteristics, the use of analysis methods appropriate to a data set’s 

structure, and realistic assessments of power. In particular, our results reveal that, with 

sample sizes that are currently applied by many ecologists and evolutionary biologists, 

differential methylation analyses will tend to be moderately or lowly powered. Such studies 

may still have the potential to reveal interesting and important biology, but researchers 

should be aware that they are likely to detect only the largest effect sizes (as is also true for 
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other types of genomic analysis96). Notably, how tightly small effects on differential 

methylation are linked to differences in downstream phenotypes, such as gene expression, 

remains somewhat unclear. While this relationship can be investigated for a few loci using 

experimental manipulation of DNA methylation levels in reporter assays97 or, more recently, 

CRISPR-dCas9 manipulation98, genome-wide tests are still missing from the literature.

Finally, to help quantify how sample size, effect size, population structure, and modeling 

approach affect BS data analysis, we have developed an R Shiny application to perform 

power analyses like those presented here. This app allows BS data to be simulated with user-

specified properties, is coupled with a set of statistical analysis options to evaluate study 

power, and outputs the simulated count data for maximal flexibility. The app is freely 

available at www.tung-lab.org/protocols-and-software.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1. Modeling approaches for bisulfite sequencing data

Binomial regression

A binomial distribution intuitively describes bisulfite sequencing data generated for a 

given sample, i, at a given site: the number of methylated counts (m) represents the 

number of ‘successes’ in an experiment with t trials and p probability of success. Here, t 
translates to the total read depth and p to the (unobserved) true methylation level.

(1)

However, bisulfite sequencing data are overdispersed (i.e., show greater variance than 

expected) relative to binomial expectations. Thus, using a binomial regression to model 

bisulfite sequence data can result in an extremely high rate of false positives and is not 

recommended20,36.

Beta binomial regression

To account for overdispersion, beta binomial regressions have been proposed for 

bisulfite sequencing data20–22. Here, the parameter pi from the binomial setting (equation 

1) is itself treated as a random variable that follows a two-parameter beta distribution.

(2)

The beta distribution is then re-parameterized as a beta binomial with parameters ti, πi 

(equal to αi/(αi, + βi)), and γ to capture overdispersion.

(3)

Here, πi is the analog of the binomial probability of success (pi) and can be interpreted as 

the underlying true methylation level (note that the binomial distribution is a special case 

of the beta binomial distribution when γ=0). πi is passed through a logit link function in 

order to transform probability values (which are bounded between 0 and 1) to a 

continuous space for linear modeling. Transformed values are modeled as a function of 

an intercept (β0), the predictor variable of interest (xi), and its effect size (βx).

Linear mixed effects models

While beta-binomial regressions have become a popular tool for modeling bisulfite 

sequencing data, these models are not appropriate for data sets that contain related 

individuals or population structure. Such data sets require approaches that can account for 

genetic covariance (i.e., nonindependence) among samples, such as linear mixed effects 
models.
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(4)

Here, y is a vector of continuously distributed methylation levels (obtained by 

normalizing m/t) and g is a vector of random effects with a covariance structure 

determined by the genetic relatedness among individuals in the sample (described by K, a 

user-defined n × n pairwise relatedness matrix) and the heritability of the DNA 

methylation trait (h2, which can be decomposed into its genetic and environmental 

components).I is an n × n identity matrix.

Binomial mixed effects models

Linear mixed models are flexible and fast, but discard information about total read depth 

when counts are normalized. Binomial mixed effects models overcome this constraint 

by controlling for genetic covariance while modeling raw counts.

(5)

Where ε, g, σe
2, and σg

2 are described as in eq. (4). This model essentially combines the 

linear mixed model with the beta binomial regression. The variable p now reflects the 

vector of true methylation levels for all samples and is passed through a logit link 

function for linear modeling. The genetic covariance, as well as the overdispersion, is 

captured by the random effects component.

Summary of model properties
Method Models 

the 
count-
based 

nature of 
the

data

Models genetic
covariance

Programs that
implement the method

Binomial regression Yes* No R and many others

Beta-binomial regression Yes No DSS22, MOABS21, RadMeth20

Linear mixed effects model No Yes GEMMA52, EMMA53, 
EMMAX99, FaST-LMM55

Binomial mixed effects 
model

Yes Yes MACAU36

*
Binomial regression is never recommended. Because bisulfite sequencing data are overdispersed relative to the 

assumptions of this model, binomial regression analyses tend to generate many false positives.
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Box 2. Calling genotypes from bisulfite sequencing data

Like other high-throughput sequencing assays100,101, bisulfite sequencing studies 

generate sequencing reads that contain information about genetic variation. Calling 

variants or genotypes from these data may be of interest for detecting genetic effects on 

DNA methylation levels (i.e., methylation quantitative trait loci, or meQTL), verifying 

sample identity, or controlling for genetic relatedness in downstream analyses. However, 

typical SNP-calling algorithms are not well suited to bisulfite sequencing data because 

the C to T conversion obscures true C/T polymorphisms. Several recently developed 

software packages attempt to overcome these challenges56,57. To assess the performance 

of one such program, BisSNP56, we analyzed a whole genome bisulfite sequencing data 

set for 29 Arabidopsis thaliana accessions47 where SNP calls were also available from 

whole genome sequencing through the 1001 Genomes Project and, for a subset of these 

individuals (n=25), genotype array data102.

Using BisSNP under default recommendations (Supplementary Materials), we identified 

235,338 biallelic variable sites. This set was highly skewed to transitions (n=234,512 

transitions, 99.65% of all called sites). Only 45% (n=106,925) of variants called using 

BisSNP represent putatively ‘true’ variants that were also identified in the 1001 Genomes 

resequencing data, but transversions were much more likely to be ‘true’ variants than 

transitions (90.3% compared to 45.3%). More stringent variant call filtering (variant 

quality ≥50 rather than ≥30) increased the proportion of likely true variants to 50.3%, but 

at the cost of retaining only 4.7% of the original sites. However, for previously identified 

variants in the BisSNP call set, BisSNP genotype calls and genotype array data agreed 

87.5% of the time, with transversions agreeing more often than transitions (93.1% 

compared to 87.4%). Thus, BisSNP appears to provide relatively high-quality genotyping 

information for known variants.

However, our analyses do suggest that BisSNP genotypes provide a reliable way to verify 

sample identity and capture population structure. Using the set of biallelic SNPs that 

were identified by BisSNP, the 1001 Genomes Project, and the array data (n=3,553 SNPs 

overlapped between all 3 methods for n=25 accessions), a neighbor joining tree103 clearly 

clusters samples by accession. The single exception was a WGBS sample that may be 

mislabeled, as the BisSNP calls clustered separately from the resequencing and array 

genotype calls for this accession. Further, the pairwise genetic covariance matrix 

generated from BisSNP calls was highly consistent with the genetic covariance matrix 

generated from whole genome resequencing data (Mantel test r = 0.873, p < 10−6). 

Perhaps more importantly, the differences we did detect had marginal effects on 

differential DNA methylation analysis. Specifically, when we analyzed possible 

methylation quantitative trait loci (meQTL) in the Arabidopsis data set (Supplementary 

Materials), meQTL effect sizes were highly consistent between analyses using BisSNP 

calls to estimate population structure and analyses using whole genome resequencing 

data (Spearman’s rho=0.925, p<10−15).
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Figure 1. Overview of reduced representation bisulfite sequencing (RRBS; left) and whole 
genome bisulfite sequencing (WGBS; right)
(A) Steps to prepare an RRBS or WGBS library from genomic DNA. Black lollipops: 

methylated CpG sites; open lollipops: unmethylated CpG sites. Bases introduced during 

library preparation due to end repair or A-tailing are colored red; unmethylated cytosines 

that can be used to estimate conversion efficiency are underlined and marked with an 

asterisk. RRBS fragments start and end with the Msp1 digest sites (CCGG) flanking the 

initial piece of genomic DNA. (B) Read pileups after mapping RRBS and WGBS libraries to 

a reference (red asterisks=Msp1 digestion sites). Reads from RRBS libraries cover a small 
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fraction of the genome. Further, because genomic DNA is fragmented with Msp1 and then 

size selected, all retained fragments should start and end with an Msp1 recognition site and 

be enriched for CpG sites. Sequencing reads that are shorter than the original fragment 

length will localize to the Msp1 recognition site associated with either the 5’ or 3’ end of the 

original fragment. (C) Bar charts compare the proportion of measured CpG sites that fall in 

gene bodies (between the TSS and the TES), promoters (2 kb upstream of the TSS), CpG 

islands, and regions far from genes (>100 kb from any annotated TSS or TES) in simulated 

RRBS and WGBS experiments given the same sequencing effort (20 million reads; read 

depths commonly used in WGBS studies typically exceed those of RRBS studies, however).
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Figure 2. Estimates of effect sizes and their impact on the power of differential methylation 
analysis
(A) The maximum percent difference in mean DNA methylation levels between two sample 

groups (y-axis), for selected percentiles of sites (x-axis, ranked from smallest to largest 

percent difference) in reanalyzed data sets (Table 1) with binary predictor variables. Mean 

differences are based on raw values, without correction for covariates. We show the largest 

percentiles here because those effects are most likely to be detected and of interest. (B) 

Power to detect differentially methylated sites at a 5% FDR in simulated RRBS datasets 

(sample size is plotted on a log scale). The magnitude of the effect of interest on DNA 

methylation levels (x-axis) is represented as the proportion of variance explained. (C) In a 
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small ant data set (n=8), site-by-site analyses are underpowered to detect differential 

methylation between reproductive phase (blue dots) versus brood care phase (yellow dots) 

individuals, but PCA separates samples by caste (t-test for PC 3, which explains 21.7% of 

the overall variance: p = 0.022). In 1000 permutations, only 8.8% of permutations separate 

as cleanly on any of the first five PCs, suggesting that the original analysis was power-

limited. Whiskers on boxplots represent the values for the third and first quartiles, plus or 

minus 1.5× the interquartile range, respectively. (D) The sample size and mean read depth 

combinations required to achieve 25% power (i.e., detect 25% true positives) in simulated 

RRBS datasets, for 3 different effect sizes. Increases in read depth do not affect power 

beyond ~20× coverage, and sample size or effect size increases always increase power more 

(Supplementary Figure 5).
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Figure 3. Properties of CpG methylation levels vary across data sets and influence power
For each (A) WGBS and (B) RRBS data set, we plotted the distribution of mean DNA 

methylation levels at each CpG site with a median coverage >10× across all samples in the 

study. Whiskers on boxplots represent the values for the third and first quartiles, plus or 

minus 1.5× the interquartile range, respectively. (C) Power to detect differentially 

methylated sites (at a 5% FDR) in simulated RRBS datasets. The proportion of simulated 

true positives (TP) detected is plotted on the y-axis. Power increases as a function of the 

simulated effect size (represented as the proportion of variance explained; x-axis) and the 

variance in DNA methylation levels (colors). For all simulations, mean DNA methylation 

levels were held constant. The levels of variance in DNA methylation levels explored here 

(0.035, 0.045, 0.055, and 0.095) represent common values observed in real bisulfite 

sequencing data sets (Supplementary Figure 7).
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Table 1

RRBS and WGBS data sets reanalyzed in this study

Species Predictor of
interest Contrast Method Citation

Dog (Canis lupus familiaris) and wolf 
(Canis lupus)

Species differences dog versus wolf RRBS 49

Human (Homo sapiens) Gestational famine during the 
Dutch Hunger Winter

famine-exposed versus same sex 
unexposed sibling

RRBS 46

Yellow baboon (Papio cynocephalus) Age continuous age values RRBS 37

Yellow baboon Resource base wild-feeding versus human refuse-
supplemented

RRBS 37

Clonal raider ant (Cerapachys biroi) Caste reproductive phase versus brood care 
phase

WGBS 41

Human Cancer status normal versus colorectal tumor samples 
(paired)

WGBS 28

Human, orangutan (Pongo abelii), gorilla 
(Gorilla gorilla), and chimpanzee (Pan 

troglodytes)

Species differences human versus other great apes WGBS 48

Mouseear cress (Arabidopsis thaliana) Local genetic variation nearby (putatively cis-acting) genotype WGBS 47
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