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Abstract

The field of chromatin biology has been advancing at an accelerated pace. Recent discoveries of 

previously uncharacterized sites and types of post-translational modifications (PTMs) and the 

identification of new sets of proteins responsible for the deposition, removal, and reading of these 

marks continue raising the complexity of an already exceedingly complicated biological 

phenomenon. In this Perspective article we examine the biological importance of new types and 

sites of histone PTMs and summarize the molecular mechanisms of chromatin engagement by 

newly discovered epigenetic readers. We also highlight the imperative role of structural insights in 

understanding PTM–reader interactions and discuss future directions to enhance the knowledge of 

PTM readout.

PTMs of histones and other components of the epigenetic machinery, including a network of 

chromatin-modifying enzymes, covalent modifications of DNA, histone variants, and 

noncoding RNAs regulate chromatin structure and function1–3. PTMs have been found in 

both flexible tails and globular domains of the core and linker histones and are often referred 

to as ‘epigenetic’ marks, because they elicit changes in genome function that are not 

mediated through a change in the DNA sequence itself. Epigenetic marks directly influence 

histone–DNA and histone–histone interactions and serve as docking sites for reader domains 

(Fig. 1a). In large part, the binding of a reader to its cognate histone PTM defines the place 

and timing of recruitment of the host protein within the genome. Many reader-containing 

proteins constitute multisubunit enzymatic complexes, in which several readers, often with 

specificities for different PTMs, are in close proximity (Fig. 1b). Combinatorial readout of 

the multiple marks by distinct sets of readers provides a lock-and-key mechanism for 

targeting a particular genomic site that, in turn, is essential for imparting specific biological 

response. The recruited enzymatic complexes (for example, histone methyltransferases, 

demethylases, acetyltransferases, deacetylases, and ATPases) further change the epigenetic 

state of chromatin by adding or removing PTMs or by altering its dynamics and structure. 

This chain of fine-tuned events is vital to the control of most nuclear processes, including 
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DNA transcription, replication, recombination, and repair. Consistent with this fundamental 

role, impaired epigenetic mechanisms are at the root of many human diseases, most notably 

cancer4–6.

Over the past decade a considerable effort has been put forth to elucidate epigenetic 

mechanisms and identify histone readers and their matching PTMs. Characterization of 

specific PTM–reader combinations has been an especially fast-moving field. The first reader 

of the acetyllysine PTM, a bromodomain (BD), was discovered in 1999 (ref. 7); this finding 

was followed by discovery that a chromodomain (CD)8–10 and a plant homeodomain (PHD) 

finger11–14 recognize methyllysine. Dozens of epigenetic readers have since been identified 

and examined15–18 (Table 1). The biological consequences of ‘reading’ the histone PTMs 

are highly context dependent and vary for individual readers. Epigenetic studies continue 

shedding light on the dynamic nature of the chromatin landscape amended through spatial 

and temporal fluctuations of PTMs and a diverse repertoire of readers.

In this Perspective we highlight the most recent developments in the field of epigenetics 

biology, focusing on the molecular mechanisms for the recognition of epigenetic marks by 

novel readers. In addition, we discuss the effect of combinatorial readout involving multiple 

modifications and paired readers and summarize the biological importance of newly 

identified PTMs.

Newly identified PTMs and orphan marks

Recent breakthroughs in mass spectrometry (MS) proteomics have enabled the detection of a 

large number of new types and sites of histone PTMs19–22 (~550 currently known histone 

marks are listed in ref. 23) (Fig. 2). In addition to well-characterized canonical PTMs such 

as methylation of lysine (Kme) in histone H3 (K4, K9, K27, K36, and K79) and H4 (K20), 

acetylation of lysine (Kac), most notably in H3 (K9, K14, K18, K23, K27, K36, and K56) 

and H4 (K5, K8, K12, K16, and K20), and phosphorylation of serine and threonine in 

histones H2A and H3, an extensive set of new PTMs has emerged.

Although the precise functional contributions of the newly discovered sites of histone PTMs 

have yet to be elucidated, a number of recent reports demonstrate significant progress in this 

direction. For example, the finding that K4 of histone H3 (H3K4) undergoes not only 

methylation but also acetylation suggests the presence of a ‘methyl–acetyl’ switch to activate 

transcription24. It is likely that such regulatory switches represent a common epigenetic 

mechanism, as most lysine residues targeted for acetylation are also found methylated. 

Another new PTM linked to active chromatin is citrullination of H3R26, which promotes 

estrogen receptor-α target gene activation25. Spontaneous conversion of an aspartate into an 

isoaspartate followed by methylation of the latter is associated with protein aging, and this 

PTM was found in histone H4 (H4D24iso/me)22.

Some novel PTMs identified within the core domains of histones have been implicated in 

chromatin organization and transcriptional regulation. Acetylation of H3K64 (H3K64ac) 

facilitates nucleosome eviction and is associated with active chromatin, whereas its 

trimethylated counterpart, H3K64me3 has a repressive function (refs. 26,27). Dimethylation 

Andrews et al. Page 2

Nat Chem Biol. Author manuscript; available in PMC 2016 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of H3R42 (H3R42me2) stimulates gene expression from chromatinized templates, probably 

through a disruption of DNA rewrapping onto the nucleosome core28, and H3T45ph or 

H3S57ph precludes HP1-mediated repression of a set of stress-response genes29.

Although some insights into the biological importance of the novel modification sites have 

been obtained, much less is known about the newly discovered modification types, including 

lysine crotonylation (Kcr) and lysine 2-hydroxyisobutyrylation (Khib). Similarly to 

acetylation and other acylation modifications, crotonylation neutralizes the positive charge 

and increases hydrophobicity of the lysine side chain. Unlike other acyl groups, the crotonyl 

group is an unsaturated moiety that contains a C–C double bond conjugated with the 

carbonyl group. The presence of the π-system offers additional opportunities for π–π or 

cation–π interactions not available to saturated acyllysine PTMs. Interestingly, histone Kcr 

levels are substantially elevated at promoters and show, unlike H3K4me3, symmetrical 

distribution around transcription start sites20. A breakthrough in the understanding of Kcr 

functioning has come from recent studies establishing a direct role for H3K18cr in the 

stimulation of gene transcription30. Because Kcr is widely distributed, further investigation 

is needed to determine whether distinct crotonylation sites impart other functions and 

whether metabolic programs contribute to the regulation of unique transcription through 

controlling distinct acyl-CoA forms (propionylation and butyrylation, like crotonylation, are 

derived from CoA precursors whose levels are dynamically controlled via metabolic flux).

One of the most abundant new histone modifications, Khib, contains a functional hydroxyl 

group that enables it to form additional hydrogen bonds. H4K8hib mark correlates with high 

transcriptional activity in meiotic and post-meiotic male germ cells and can be distinguished 

from the analogous Kac and Kcr PTMs at different spermatogenic stages21. Although its 

mechanism of action in meiosis is poorly understood, we envision that Khib might either 

directly mediate the recruitment of yet-to-be-identified chromatin regulators to promote 

transcription or act as a dynamic switch that interferes with activities of acetyllysine 

regulators. Given that biological data have been obtained for only a few modifications 

discussed above, it will be important to functionally characterize other newly discovered 

PTMs and determine whether these marks can be read by specific readers.

Novel readers and mechanisms of chromatin engagement

A number of epigenetic readers identified and studied in the past decade have been reviewed 

and therefore are not discussed here15–18. Below we provide an overview of recently 

discovered readers and summarize mechanistic details and biological implications of their 

interactions with PTMs.

YEATS domain recognizes H3Kcr

The family of acyllysine readers, comprising BD, double bromodomain (DBD), a double 

PHD finger (DPF), and a double pleckstrin homology (DPH) domain (Table 1), has been 

expanded with the discovery that the Yaf9–ENL–AF9–Taf14–Sas5 (YEATS) domains of 

yeast Taf14 and human AF9 and YEATS2 recognize crotonyllysine marks31–33 and, to a 

lesser degree, other acyllysines, including acetyllysine34,35. Binding of the AF9 YEATS 

domain to H3K18cr or H3K9ac stimulates transcription, and the latter interaction links the 
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H3K79 methyltransferase DOT1L to H3K9ac-enriched chromatin32,34. Likewise, binding of 

the Taf14 YEATS domain to H3K9ac is required for gene activation and DNA damage 

repair in yeast35,36.

The unique mechanism for recognition of Kcr has been elucidated from structures of the 

YEATS domains of Taf14, AF9 and YEATS2 bound to crotonylated histone peptides31–33. 

The structure of the Taf14 YEATS–H3K9cr complex shows a novel π–π–π stacking binding 

mode that had not been observed previously in protein interactions31. In the complex, the 

H3K9cr peptide adopts an extended conformation that is stabilized through an extensive set 

of direct and water-mediated hydrogen bonds with Taf14 (Fig. 3a). The crotonyllysine side 

chain transverses the narrow tunnel, crossing the β-sandwich structure of the protein in a 

corkscrew-like manner. The planar crotonyl group inserts between the aromatic rings of 

W81 and F62 that lay parallel to each other and at equal distance from the crotonyl group, 

creating a unique aromatic-amide–aliphatic-aromatic π–π–π stacking system31 (Fig. 3a,b). 

The side chain of W81 adopts two conformations, each providing maximum π stacking with 

either the crotonyl alkene group or the crotonyl amide. The apparent dual conformation of 

W81 is probably due to the conjugated nature of the double bond and carbonyl π orbitals of 

the crotonyl group.

The side chain amide of K9cr is additionally constrained through a set of polar interactions. 

The K9cr amide nitrogen and carbonyl oxygen form hydrogen bonds with T61 and W81 and 

a water-mediated hydrogen bond with G82 (ref. 31) (Fig. 3b). Whereas a similar pattern of 

stabilizing hydrogen bonds is observed upon interaction with the H3K9ac peptide in the 

Taf14 YEATS–H3K9ac complex, W81 adopts only one conformation, being involved in π 
stacking with the acetyl amide35. The π stacking binding mode and the hydrogen bond 

network are conserved and mediate binding of the AF9 YEATS domain to H3K9cr and 

H3K9ac32,34 (Fig. 3c), though the aromatic ring of Y78 is tilted and thus is likely to 

contribute to the π–π interaction to a lesser degree than a tryptophan (W81 in Taf14).

Both AF9 and Taf14 YEATS domains show preference for the RKacyl motif present in the 

H3R8K9, H3R17K18, and H3R26K27 sequences but not in H3G13K14 (refs. 31,32,34,35). 

The guanidino group of H3R8 forms a salt bridge with an aspartate, which is conserved in 

AF9 and Taf14 (Fig. 3a,c), and substitution of R8 with an alanine decreases binding of AF9 

~200-fold34. However, the YEATS domain of YEATS2 lacks this aspartate. The structure of 

the YEATS2 YEATS–H3K27cr complex reveals that R26 is entirely solvent exposed and the 

H3K27cr peptide is bound in an orientation opposite to that of the H3K9cr peptide in the 

Taf14 and AF9 complexes33 (Fig. 3d). Whereas the histone residues N terminal to the 

acyllysine modification mediate the majority of contacts with the Taf14 and AF9 YEATS 

domains, the YEATS2 YEATS domain interacts with the histone residues that are C terminal 

to K27cr (Fig. 3d). Importantly, despite the overall different binding mode of YEATS2 

compared to that of Taf14 and AF9, the mechanism for coordination of K27cr is conserved. 

The acyllysine recognition mechanism of the YEATS domains differs substantially from the 

mechanism for methyllysine recognition by Kme readers, where the methylammonium 

group of lysine is engaged in cation–π interactions with the aromatic side chains typically 

positioned perpendicularly to each other (discussed below).
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BD selects for acetyllysine and propionyllysine

A comprehensive screen of bromodomains reveals that the majority (but not all) BDs bind 

acetyllysine and propionyllysine marks almost equally well, and a few BDs (BRD9 and 

CECR2) associate with butyryllysine31,32,37,38. These observations suggest that the varied 

preferences for acyllysines may mediate unique functions of these proteins. The structures of 

BD of BRD4 in complex with propionylated H3K23 (H3K23pr), butyrylated H3K14 

(H3K14bu), and H3K14ac peptides and of BDs of BRD9 and TAF1 in complex with 

H4K5buK8bu or H4K5crK8cr provide insight into the selectivity of bromodomains for short 

acyllysine modifications, such as acetyllysine and propionyllysine, and their inability to bind 

longer acyllysine modifications, such as butyryllysine and crotonyllysine37,38. Much like in 

the canonical BD–Kac complex, the long-chain acyllysines are anchored through direct and 

water-mediated hydrogen bonds formed between the acyllysine carbonyl oxygen and an 

asparagine and a tyrosine (N140 and Y97 in BD1 of BRD4) (Fig. 3e,f). However, the 

invariable signature water shell, which lines the acyllysine-binding pocket of BDs restricting 

its size, allows only the short acyl chain to be accommodated and excludes the long one. 

Whereas propionyl and butyryl moieties can adopt bended conformations to avoid disturbing 

the water shell38, the rigid planar crotonyl group displaces two water molecules in the water 

shell of the binding pocket of TAF1 BD, which probably accounts for the much weaker 

association (Kd = 100 µM) with this PTM37. Interestingly, BRD9 and CECR2 are members 

of the ATP-dependent remodeling complexes that may have evolved the capacity to read a 

range of short acyl modifications as part of a mechanism to differentially affect chromatin 

organization. It will be of interest to test whether crotonyllysine acts as a negative switch for 

these complexes.

Spindlin reads H3K4me3R8me2a

Spindlin is a novel reader capable of recognizing two consecutive PTMs, H3K4me3 and 

asymmetrically dimethylated H3R8 (H3K4me3R8me2a)39. This domain consists of three 

Spin–Ssty repeats and is found in proteins involved in transcriptional and cell cycle 

regulation, such as Spindlin1 (refs. 39–41). Spindlin appears to be the most robust epigenetic 

reader found to date, with a binding affinity of 45 nM39. The mechanism for the 

combinatorial methyllysine–methylarginine readout was deciphered from the structure of the 

H3K4me3R8me2a-bound Spindlin39. The Spin–Ssty repeats fold into Tudor-like β-barrels 

that are packed against each other to form a triangular assembly (Fig. 4a). The 

H3K4me3R8me2a peptide lays across the repeats, with K4me3 occupying an aromatic cage 

in the second repeat and R8me2a occupying an aromatic cage of the first repeat. Notably, the 

extended conformation of the bound H3K4me3R8me2a peptide allows to precisely match 

the distance between the two PTMs to the distance between the two aromatic cages (Fig. 

4a,b). The K4me3 group is enclosed in a characteristic methyllysine-recognizing binding 

site consisting of four aromatic residues. The aromatic side chains are positioned almost 

orthogonally to each other and are involved in cation–π and hydrophobic interactions with 

the trimethylammonium group of lysine. In contrast, the methylarginine-recognizing 

aromatic cage is larger—it contains five aromatic residues and a glutamate (E64) that 

together with Y98 restrains the guanidino group of R8me2a via two hydrogen bonds (Fig. 

4b). The methyllysine–methylarginine binding activity of Spindlin1 has been found to have 

a role in activation of the Wnt signaling pathway39.
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SAWADEE favors H3K9me over unmethylated H3K9

The SAWADEE domain of the plant protein SHH1 associates with H3K9me, and this 

interaction is required for the maintenance of small interfering RNA (siRNA) and 

methylated DNA levels and for the plant RNA polymerase Pol-IV to occupy target genes42. 

SAWADEE does not differentiate among methylation states in vitro and binds mono-, di-, 

and trimethylated H3K9 with similar affinity of 2 µM, yet methylation of H3K9 is essential, 

because binding to unmodified H3 is 17-fold weaker42. The structures of SAWADEE in 

complex with H3K9me1, H3K9me2, and H3K9me3 peptides provide a mechanistic 

explanation for this selectivity. The side chain of K9me inserts into the aromatic cage of 

Tudor1 in a tandem Tudor-like structure of SAWADEE (Fig. 4c). Whereas the hydrophobic 

character and the size of the aromatic cage preferentially select for tri-and dimethylated 

H3K9 species, the monomethylated species forms additional energetically favorable 

hydrogen bond with the protein.

PZP is a promiscuous reader of unmodified H3

Structural studies of the PHD–zinc-knuckle–PHD (PZP) domain of AF10 and BRPF1 reveal 

that this reader comprises three integrated zinc-binding modules—two PHD fingers linked 

by a single zinc finger43,44. Remarkably, although the two PZP domains have very similar 

structures, their functions differ (Fig. 5). The PZP domain of AF10 recognizes the middle 

portion (residues 22–27) of the histone H3 tail and is highly sensitive to methylation of 

H3K27, which abrogates this interaction even when K27 is monomethylated43. The PZP 

domain of BRPF1 instead associates with the N terminus of H3 and DNA44. The results of 

comprehensive biochemical and in vivo analyses underscore the significance of these 

interactions for proper functioning of AF10 and BRPF1. AF10 is a cofactor of the H3K79 

methyltransferase DOT1L, and binding of its PZP domain to H3 is required for H3K79 

dimethylation43. Histone- and DNA-binding activities of the BRPF1 PZP domain are 

essential for the recruitment of the MOZ/MORF acetyltransferase complex to chromatin and 

histone acetylation44. The bivalent interaction of BRPF1 PZP with H3 and DNA also affects 

nucleosome dynamics, shifting the DNA unwrapping–rewrapping equilibrium toward the 

unwrapped state and increasing DNA accessibility.

The H3 peptide is bound in a deep channel within the AF10 PZP domain43 (Fig. 5a). 

Numerous intermolecular contacts restrain the histone residues T22–K27. Particularly, the 

side chain amino group of K27 is locked by hydrogen bonds formed with three backbone 

carbonyls of the protein, the loss of which due to H3K27 methylation would be energetically 

unfavorable. In the BRPF1 PZP domain, the first PHD finger retains its histone-binding 

function, also observed in an isolated PHD1 finger construct of BRPF1/2, which interacts 

with residues 1–7 of histone H3 (refs. 44,45). The H3(1–7) peptide forms the third 

antiparallel β-strand and pairs with the double-stranded β-sheet of BRPF2 PHD1 (ref. 45). 

Notably, the H3(1–7)-binding site of PZP is located on the side opposite to the H3(22–27)-

binding site. The zinc-knuckle–PHD2 part of the BRPF1 PZP domain is enriched in 

positively charged residues and is implicated in DNA binding44. The PZP domain represents 

a fascinating example of functional plasticity of some readers and adds another layer of 

complexity in efforts to establish and generalize epigenetic mechanisms.
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Crosstalk of paired readers

A wide variety of nuclear proteins contain multiple reader domains that show specificity for 

distinct PTMs and act in a combinatorial manner, mediating recruitment of the proteins to 

specific genomic regions. Concurrent binding of paired readers to modifications on the same 

histone tail and on separate histone tails is referred to as cis- and trans-readout, respectively.

Bromo–ZnF–PWWP of ZMYND11 recognizes H3.3S31K36me3

A combinatorial cis-readout regulates function of ZMYND11, a candidate tumor suppressor 

and transcriptional regulator. ZMYND11 contains contiguous PHD finger, BD, zinc finger 

(ZnF), and PWWP domains. The BD–ZnF–PWWP region recognizes K36me3 in the histone 

variant H3.3 and also binds DNA46. Although histone H3.3 differs from its canonical H3.1 

form by only five amino acids, one residue in particular (S31 in H3.3 and A31 in H3.1) is 

essential for the ZMYND11 interaction. Structural comparison of BD–ZnF–PWWP 

complexes with H3.3K36me3 and H3.1K36me3 peptides reveals that K36me3 occupies the 

same aromatic cage of the PWWP domain in both complexes; however, several hydrogen 

bonds involving S31 and other residues in the A29–G33 region of H3.3 are lost in the 

corresponding H3.1 complex46 (Fig. 6a). ZMYND11 represents the first example of a paired 

reader that is selective for a particular histone variant, and it will be of interest to explore 

whether other variant-specific readers exist.

BAH–PHD of ORC1 binds unmodified H3

A new cis-readout mechanism has been reported for the bromo-adjacent homology (BAH)–

PHD cassette of the plant protein ORC1b. The ORC1b PHD finger sequence is embedded in 

the sequence of BAH, and this unique assembly of readers recognizes unmodified histone 

H3 tail (residues 1–8)47. In the BAH–PHD–H3 complex, the peptide adopts an extended 

conformation and occupies a long groove at the interface of the readers (Fig. 6b). Both 

readers create the binding site and surround the same region of the peptide. The extensive set 

of hydrogen bonds formed between BAH–PHD and the side chains of the histone R2, T3, 

and K4 residues suggests that modification of these residues would prevent binding, and this 

has been confirmed experimentally47.

A trans-readout of H3K9me2 by BAH and CD of ZMET2

Biochemical and structural characterization of the maize protein ZMET2 shows that CD and 

BAH, which are linked through the DNA methyltransferase domain, each recognize 

H3K9me2 through caging dimethyllysine in their individual aromatic pockets48. A 

triangular topology of the BAH–CD–methyltransferase region suggests a trans-readout 

mechanism in which CD and BAH can read the H3K9me2 marks on two histone tails (Fig. 

6c). As further evidence for the dual-recognition mode, isothermal titration calorimetry 

(ITC) experiments yield a 1.8 stoichiometry for binding of the H3K9me2 peptide to 

ZMET2. A dual-recognition mode may be necessary to ensure a high fidelity of DNA 

methylation and may promote spreading of the methyltransferase activity48.
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Concluding remarks

The past few years have seen rapid advances in the field of epigenetics, especially in the 

identification and characterization of histone PTMs and the protein domains capable of 

reading these modifications. In addition to the well-established mechanisms that mediate 

recognition of methyllysine or methylarginine through cation–π interactions within the 

aromatic cage of the reader or dictate reader specificity toward a mono- or dimethyllysine 

species due to the presence of a negatively charged residue in the aromatic pocket, a diverse 

set of new binding modes has emerged. These include π– π–π stacking interactions 

involving the C–C double bond of crotonyllysine and a pair of aromatic residues of the 

reader; a sandwich-like insertion of acetyllysine between the aromatic residues; a water-shell 

control allowing differentiation of the acyllysine side chains; a hydrogen bond–mediated 

selectivity toward methylated states of lysine; and PTM rulers that govern binding of paired 

readers. In-depth characterization of these mechanisms is crucial not only for understanding 

a wide array of chromatin-related processes—most of all gene expression regulation—but 

also for the development of unique epigenetic-driven therapies. Aberrant epigenetic states 

have been linked to cancer, premature aging, immunodeficiency, and other human diseases 

and, as a result, histone readers have become attractive therapeutic targets49,50.

Despite remarkable advances in the field, many more questions remain. For example, the list 

of histone readers has grown substantially, but binding partners for a number of currently 

known PTMs have yet to be elucidated. To facilitate the discovery of readers, new 

technologies and adaptions of current ones, including high-throughput microarrays capable 

of testing interactions with intact PTM-containing nucleosomes in vitro and in cells and 

animal models, need to be developed. A large number of PTMs have been discovered in the 

core domains of histone proteins, and it will be important to explore whether unique core 

PTM readers exist. Other pressing objectives are to establish the synergistic and antagonistic 

effects of PTMs at the genome-wide level; define the role of the regulatory methyl-, acyl-, 

and phospho-PTM switches51–53; and characterize bookmarking PTMs that may contribute 

to reactivation of transcriptional and chromatin-remodeling programs during cell 

division54,55.
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Figure 1. Recognition of epigenetic marks by histone readers
(a) A reader domain (orange circle) binds to its target PTM (blue circle) in the histone tail, 

tethering the host protein to chromatin. (b) Multivalent engagement with chromatin through 

interactions of multiple readers, in the same protein or in different proteins (assembled in the 

complex), to enhance or regulate overall binding affinity and specificity. Complexes often 

contain proteins or subunits with catalytic domains (writers, erasers, or ATPase remodelers) 

and scaffolding domains necessary for the complex assembly.

Andrews et al. Page 12

Nat Chem Biol. Author manuscript; available in PMC 2016 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Modifications identified in histone proteins
fo, formylation; ma, malonylation; su, succinylation; glu, glutarylation; ub, ubiquitination; 

cit, citrullination; oh, hydroxylation; ar, ADP ribosylation; og, O-GlcNAcylation.
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Figure 3. Novel acyllysine readers and their binding mechanisms
(a) Structure of the Taf14 YEATS domain (blue) in complex with H3K9cr peptide (yellow 

stick). Red dashed lines represent hydrogen bonds; spheres represent water molecules. (b) 

The π–π–π stacking mechanism involving the alkene moiety of Kcr in Taf14 YEATS–

H3K9cr (PDB 5IOK). (c) AF9 YEATS domain (green) in complex with H3K9cr (yellow; 

PDB 5HJB). (d) The H3K27cr-binding site of the YEATS2 YEATS domain (beige; PDB 

5IQL). H3K27cr is shown in orange. (e) The structure of BD of BRD4 (yellow) in complex 

with the H3K23pr (light blue; PDB 3MUK). (f) Overlay of the structures of the BRD4 BD1 
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in complex with H3K23pr (light blue), H3K14bu (light green; PDB 3MUL), and H3K14ac 

(pink; PDB 3JVK), with water shells shown as red, light green, and pink spheres, 

respectively.
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Figure 4. New methyllysine readers
(a) The structure of Spindlin of the protein Spindlin1 in complex with H3K4me3R8me2a 

peptide (PDB 4MZF). (b) Close-up view of the two aromatic cages of Spindlin. (c) The 

structure of the SHH1 SAWADEE–H3K9me2 complex (PDB 4IUT).
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Figure 5. Novel readers of unmodified histone H3
(a) The structure of the AF10 PZP–H3(22–27) complex (PDB 5DAH). Zn-kn, zinc knuckle. 

(b) Superimposed structures of the BRPF1 PZP domain (brown, cyan, and blue) and the 

PHD1 finger (gray) of orthologous BRPF2 fused to a sequence corresponding to histone 

H3(1–7) tail (light green) (PDB 5ERC and 2L43). Spheres represent zinc ions.
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Figure 6. Crosstalk of PTMs and paired readers
(a) The structure of the ZMYND11 BD–ZnF–PWWP region in complex with H3.3K36me3 

peptide (yellow) (PDB 4N4I). (b) The structure of ORC1 BAH–PHD in complex with 

H3(1–8) (yellow) (PDB 5HH7). (c) Superimposed structures of two complexes of the 

ZMET2 BAH–CD–methyltransferase region bound to different H3K9me2 peptides (red) 

(PDB 4FT2 and 4FT4). MTase, methyltransferase.
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Table 1

Readers of histone PTMs

Epigenetic mark Reader Histone PTM

Kac BD H3Kac, H4Kac, H2AKac, H2BKac

DBD H3KacKac, H4KacKac

DPF H3K14ac

DPH H3K56ac

Kpr BD H3Kpr

Kcr YEATS H3Kcr

Kme ADD H3K9me3

Ankyrin H3K9me2, H3K9me1

BAH H4K20me2, H3K27me3

Chromobarrel H3K36me3, H3K36me2, H4K20me1,
H3K4me1

CD H3K9me3, H3K9me2, H3K27me3,
H3K27me2

DCD H3K4me3, H3K4me2, H3K4me1

MBT H3Kme1, H3Kme2, H4Kme1,
H4Kme2

PHD H3K4me3, H3K4me2, H3K9me3

PWWP H3K36me3, H4K20me1, H4K20me3,
H3K79me3

SAWADEE H3K9me1, H3K9me2, H3K9me3

Spindlin H3K4me3R8me2a

TTD H3K4me3, H3K9me3, H4K20me2

Tudor H3K36me3

WD40 H3K27me3, H3K9me3

CW H3K4me3

Rme ADD H4R3me2s

Tudor H3Rme2, H4Rme2

WD40 H3R2me2

Sph, Tph 14-3-3 H3S10ph, H3S28ph

BIR H3T3ph

Tandem BRCT H2AXS139ph

H3 unmodified ADD H3

BAH–PHD H3

PHD H3

PZP H3

WD40 H3
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