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Abstract

Pluripotent embryonic stem cells (ESCs) self-renew or differentiate into all tissues of the 

developing embryo and cell-specification factors are necessary to balance gene expression. Here 

we delineate the function of the PHD-finger protein 5a (Phf5a) in ESC self-renewal and ascribe its 

role in regulating pluripotency, cellular reprogramming, and myoblast specification. We 

demonstrate that Phf5a is essential for maintaining pluripotency, since depleted ESCs exhibit 

hallmarks of differentiation. Mechanistically, we attribute Phf5a function to the stabilization of the 

Paf1 transcriptional complex and control of RNA polymerase II elongation on pluripotency loci. 
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Apart from an ESC-specific factor, we demonstrate that Phf5a controls differentiation of adult 

myoblasts. Our findings suggest a potent mode of regulation by the Phf5a in stem cells, which 

directs their transcriptional program ultimately regulating maintenance of pluripotency and 

cellular reprogramming.

INTRODUCTION

The remarkable cellular plasticity that defines ESCs is central towards their ability to 

differentiate into all somatic lineages and the germline1, 2. Their unique identity is governed 

by regulation on multiple levels, ultimately orchestrating gene expression3. However, ESCs 

must readily alter their transcriptional program to allow proper cell specification. Therefore, 

elucidating molecular mechanisms of cellular adaptation is paramount in understanding stem 

cell function. We have previously characterized several factors necessary for maintaining 

ESC self-renewal or initiating differentiation4. Using an RNAi-based screen we identified 

the poorly characterized PHD-finger protein 5a (Phf5a) as a potential modulator of 

pluripotency4. Phf5a is a small, highly conserved protein (Supplementary-Fig.1a) harboring 

a characteristic PHD-fold5. Ectopic Phf5a was suggested to localize to the nucleus, 

postulated to associate with chromatin mediating transcription5. Deletion of Phf5a is lethal 

in yeast and knockdown in C. elegans results in aberrant organogenesis during early 

development5, 6, suggesting its importance for embryo formation and tissue morphogenesis6. 

However, its functional role in transcription regulation in mammals remains unexplored.

Modulation of gene expression is crucial for stem cell self-renewal or cell specification. The 

Paf1 transcriptional complex (Paf1C) is central to these processes dictating RNA-PolII 

function and deposition of histone modifications7, 8. Paf1C plays important roles in 

development and is necessary for differentiation9–11, however details regarding its function 

in stem cells remain unknown. Here we demonstrate that Phf5a is a potent regulator of 

Paf1C stability and chromatin binding. Furthermore, we show it is essential for ESC self-

renewal, and cellular reprogramming and found that RNA-PolII elongation of pluripotency 

genes is defective after Phf5a depletion. Beyond its role in ESCs, we found Phf5a to regulate 

muscle specification suggesting additional functions in adult stem cells. We conclude that 

Phf5a is crucial regulating RNA elongation of genes controlling pluripotency and cell 

differentiation.

RESULTS

Phf5a depletion leads to loss of ESC pluripotency and inhibits reprogramming

To delineate the role of Phf5a in pluripotency, we investigated its expression levels during 

mouse ESC differentiation. We utilized the Nanog-GFP (NG) reporter ESC line, a faithful 

indicator of self-renewal4, 12. Phf5a expression, both at mRNA and protein levels, is high in 

pluripotent ESCs, but becomes rapidly downregulated upon differentiation (Fig.1a and 

Supplementary-Fig.1b). Consistent with a possible role in preserving self-renewal, 

knockdown of Phf5a led to a significant loss of Nanog-GFP fluorescence (Fig.1b). This was 

accompanied by morphological changes (Supplementary-Fig.1c), and cells exhibited 

considerably reduced alkaline-phosphatase (AP) staining, an additional marker of 
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pluripotency (Fig.1c). Importantly, we did not observe increased levels of cell death or 

apoptosis upon Phf5a knockdown (Supplementary-Fig.1d–e), suggesting that its loss leads to 

differentiation without effects on viability.

We next determined the transcriptional response of Phf5a silencing by gene expression array 

analysis revealing two sets of genes significantly up- or down-regulated (Fig.1d and 

Supplementary-Table 1). Changes in expression of selected genes were validated with 

qRT-PCR. Consistent with ESC differentiation, pluripotency markers were significantly 

downregulated, whereas lineage markers were upregulated with the exception of several 

mesoderm markers (Fig.1e–f). To further characterize gene expression profiles of Phf5a-

depleted ESCs, we performed RNA-seq followed by Gene Ontology (GO) and gene-

annotation enrichment analysis13. Downregulated genes associated with GO terms related to 

stem cell function, such as stem cell maintenance, chromatin organization and cell division, 

whereas upregulated genes associated with GO terms related to early embryo development 

such as cell adhesion, cell cycle arrest, and morphogenesis (Fig.1g–h and Supplementary-

Fig.1f). Transcriptional profiling therefore strongly supports the notion that Phf5a loss 

triggers ESC differentiation.

To validate our findings, we first ruled out potential off-target effects. Phf5a silencing using 

individual shRNAs, siRNAs, as well as CRISPR-Cas9-mediated gRNAs, targeting distinct 

regions of its transcript, resulted in identical downregulation of pluripotency markers Oct4 

and Nanog, as well as decreased AP staining (Fig.1i and Supplementary-Fig.1g–1j). 

Examination of Phf5a levels in ESCs from different backgrounds revealed no significant 

differences during differentiation (Supplementary-Fig.1k–l). Finally, we engineered 

inducible knockdown ESC lines by introducing mir30-shPhf5a cassettes in the Col1a1 locus 

of cells constitutively expressing the M2rtTA transactivator14, and were able to faithfully 

reproduce differentiation phenotypes following addition of doxycycline (Supplementary-Fig.

2a–d). Using these lines, we also investigated the role of Phf5a in pluripotency in vivo. 

Injection of inducible ESCs in immuno-deficient mice post-induction with doxycycline 

significantly inhibited the ability to form teratomas (Fig.2a–b). Examination by hematoxylin 

and eosin (H&E) stain as well as immunohistochemistry showed reduction of mesoderm 

markers compared to ectoderm or endoderm (Supplementary-Fig.2e–g). Specifically, we 

noticed apparent histological differences, including depletion of skeletal muscle formation, 

which we validated using desmin immunohistochemistry (Supplementary-Fig.2g). To further 

document defects in mesoderm differentiation we examined in vitro differentiation towards 

the mesoderm lineage15, 16 using the reporter ESC line Dppa4-RFP/Brachyury-GFP17. We 

found that shPhf5a depletion results in loss of self-renewal (Dppa4-RFP reduction), 

however, without an increase of mesoderm differentiation (Brachyury-GFP gain) 

(Supplementary-Fig.2h). Last, we were unable to detect upregulated Brachyury protein 

levels or additional mesoderm markers (Supplementary-Fig.2i–j). These results suggest that 

Phf5a loss results in failure of self-renewal maintenance while affecting lineage skewing, 

demonstrating its importance in stem cells.

These phenotypes prompted us to further investigate its role in pluripotency and cellular 

reprogramming. We compared Phf5a expression in pluripotent or differentiated cells and 

found that it correlated with the pluripotent state (Fig.2c–d). Consistent with that, analysis of 
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proliferation profiles in ESCs or primary mouse embryo fibroblasts (MEFs) following 

shPhf5a silencing resulted only in ESC self-renewal defects (Supplementary-Fig.2k–l). 

Finally, Phf5a overexpression during ESC differentiation maintained pluripotent marker 

expression (Supplementary-Fig.2m–n).

We reasoned that Phf5a expression might also regulate induced pluripotent stem cell (iPSC) 

formation. We silenced Phf5a in reprogrammable primary MEFs, engineered to express the 

Oct4, Klf4, Sox2 and c-Myc (OKSM) reprogramming casette18–20 and interrogated its 

effects 14 days post-induction of reprogramming factors. We observed that Phf5a loss 

resulted in a dramatic reduction of reprogrammed fibroblasts (Fig.2e and Supplementary-

Fig.2o). We noticed a significant decrease in the absolute number of AP-positive ESC-like 

colonies (Fig.2f), suggesting that Phf5a silencing leads to decreased efficiency of 

reprogramming. Last, we examined transgene-independent expression of endogenous 

markers of pluripotency18 and found that Phf5a deficiency blocked their upregulation 

(Supplementary-Fig.2p). Collectively, we conclude that Phf5a is necessary for ESC self-

renewal and efficient iPSC generation as its silencing results in aberrant initiation of 

differentiation and a block to reprogramming.

Phf5a interacts with the Paf1 complex

The impact of Phf5a knockdown on ESCs and iPSCs prompted us to investigate its 

functional role propagating pluripotency. We first explored its intracellular localization. We 

engineered inducible Phf5a-expressing or control ESC lines, fractionated cytoplasmic and 

nuclear extracts following doxycycline induction and confirmed a primarily nuclear 

localization in ESCs (Supplementary-Fig.3a). Immunofluorescence (IF) confirmed nuclear 

accumulation of Phf5a (Supplementary-Fig.3b). Given its internal PHD-finger motif, we 

hypothesized a possible role in transcription and chromatin regulation.

To identify its molecular function we undertook an unbiased approach by purifying Phf5a 

from ESCs and analyzing its interacting partners by mass-spectrometry (Fig.3a and 

Supplementary-Table 2). Among the top interacting proteins we found 3 out of 6 subunits 

of the Paf1 transcriptional complex (Paf1C). The mammalian Paf1C, which consists of the 

subunits Ctr9, Rtf1, Leo1, Paf1, Cdc73, and Wdr61, has been implicated in transcriptional 

regulation and deposition of histone modifications7. Since mass spectrometry suggested 

close association of Paf1C with Phf5a and since Paf1C depletion also results in ESC 

differentiation21, 22, we decided to further investigate this interaction.

Although we initially identified specific Paf1C subunits as Phf5a binding partners, we 

validated interactions with the entire complex (Fig.3b). Similar to Phf5a, Paf1C subunits are 

downregulated during ESC differentiation (Supplementary-Fig.3c). We engineered inducible 

knock-in ESC lines expressing the subunits Cdc73 and Wdr61 and confirmed binding with 

Phf5a (Supplementary-Fig.3d). Furthermore, we validated Phf5a-Paf1C interactions using 

tandem-affinity purification (Supplementary-Fig.3e), as well as endogenous protein 

immunoprecipitations in ESCs (Fig.3c). Importantly, we found that DNA or RNA do not 

mediate this interaction since it persists after extensive nuclease treatment (Supplementary-

Fig.3f). These results suggest a robust interaction between Phf5a and Paf1C.
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We next attempted to specify whether distinct Paf1C subunits mediate this interaction. We in 
vitro translated Paf1, Cdc73 and Wrd61 subunits and interrogated binding to purified 

recombinant Phf5a. We observed interactions with Cdc73 and Wdr61 subunits but not Paf1 

(Fig.3d), suggesting that Phf5a binds to a subset of Paf1C subunits directly. Next, we 

performed glycerol gradient density sedimentation analysis from ESCs and identified that 

Phf5a forms high-molecular weight complexes and co-fractionates with Paf1C under native 

conditions (Fig.3e). Furthermore, since Paf1C is implicated in transcriptional elongation, we 

confirmed Phf5a interaction with RNA-PolII (Supplementary-Fig.3g). Moreover, in density 

sedimentation analysis the elongating form of RNA-PolII co-sedimented with Phf5a and 

Paf1C (Fig.3e), indicating active engagement during transcription elongation. In contrast, we 

were unable to detect interaction with the initiation factor TFIID (Supplementary-Fig.3e), 

absent in elongating complexes, suggesting Phf5a association with PolII at specific 

transcription stages. These findings establish interaction of Phf5a with Paf1C and suggest its 

possible role in transcriptional regulation in ESCs.

Phf5a depletion leads to Paf1C destabilization and loss of binding to its target genes

The direct interaction between Phf5a and Paf1C together with differentiation phenotypes 

after knockdown, suggested an intimate connection to Paf1C function. To explore this 

functional association, we first compared gene expression profiles of Phf5a- and Paf1-

depleted ESCs and found similar gene expression patterns (Supplementary-Fig.4a and 

Supplementary-Table 3). Since Phf5a was previously implicated in alternative exon 

recognition in malignant cells23, we also investigated whether shPhf5a or shPaf1 knockdown 

result in aberrant alternative splicing in ESCs. We used multivariate analysis of transcript 

splicing (rMATS)24, and found a small number of splicing differences concluding that their 

loss do not result in overt changes in splicing patterns (Supplementary-Table 4).

We next studied Paf1C stability upon loss of Phf5a. We re-examined Paf1C composition 

using density sedimentation analysis in the presence or absence of Phf5a. We found that 

Phf5a knockdown leads to Paf1C distribution towards lower molecular-weight fractions, 

indicating destabilization (Supplementary-Fig.4b–e). In contrast other protein complexes, 

such as Swi/Snf and NELF, remain unaltered (Supplementary-Fig.4f). This suggested loss of 

interaction among Paf1C subunits and we confirmed significant decrease between subunit 

associations following Phf5a silencing (Fig.4a).

These findings suggested decreased Paf1C binding to target genes after Phf5a loss. We 

directly interrogated Paf1C occupancy in ESCs using Leo1, Cdc73 and Paf1 ChIP-

sequencing in the presence or absence of Phf5a. We identified ~4200 high-stringency targets 

of Paf1C in ESCs (Fig.4b) with Cdc73- and Paf1-bound genes constituting subsets of Leo1-

bound genes. We observed that Paf1C peaks virtually disappear upon Phf5a silencing, 

supporting its critical role in complex function (Fig.4c–d). We dissected peak localization 

and determined occupancy among promoters, UTRs, coding and intergenic regions. 

Consistent with regulation of active gene expression25, we noticed that Leo1 peaks fall 

mostly within gene bodies and promoters (Fig.4e). Further dissection revealed that 

downregulated genes engage Leo1 mostly within gene bodies (42%), whereas upregulated 

genes utilize Leo1 mostly on promoters (47%) (Supplementary-Fig.4g). This suggests that 
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Paf1C sub-complexes may differentially localize on their targets to control gene expression. 

However, using gene set enrichment analysis (GSEA) we found that Paf1 targets are 

enriched in pluripotency genes and correlate with ESC signatures (Fig.4f). These Paf1C 

targets include Pou5f1, Esrrb, Sall4, Prdm14 and other well-described pluripotency genes 

(Fig.4g). Finally, to test direct Phf5a binding to self-renewal network we engineered a Tet-

inducible HA-tagged Phf5a line and performed ChIP-seq using HA-epitope after 

doxycycline induction. Consistent with previous findings we identified Phf5a binding to 

pluripotency genes such as Nanog, Pou5f1, Fbxo15, Esrrb, Tcf3, Prdm14, Sall4 and others 

(Supplementary-Fig.4h).

Loss of Phf5a leads to RNA-PolII promoter-proximal pausing

The Paf1C facilitates transcriptional elongation26 and is required for maximal levels of 

Ser-2-P-PolII27, 28. Since our studies suggest that Phf5a controls Paf1C binding on self-

renewal genes, we hypothesized that its loss might lead to their aberrant elongation. We first 

investigated Ser-2-P-PolII levels following Phf5a loss and found them significantly lower 

(Fig.5a and Supplementary-Fig.5a). We next interrogated effects on RNA-PolII stalling and 

regulation of elongation. Pausing of activated RNA-PolII constitutes a rate-limiting step in 

gene expression and pause-release is important for embryonic development29, 30 and somatic 

cell reprogramming31. We profiled nascent RNAs using global run-on sequencing (GRO-

seq)32 and calculated the elongation pausing index in ESCs following shPhf5a knockdown. 

We initially observed that downregulated genes were paused (Fig.5b–c) in contrast to 

upregulated genes (Fig.5d) signifying a difference between the two sets. We further 

dissected pausing ratios for multiple GO subsets. Downregulated categories exhibited 

significantly elevated promoter-proximal pausing compared to upregulated ones (Fig.5e). In 

addition, downregulated gene read density shows significant decrease within gene bodies 

(Fig.5f). Similar to shPhf5a, shPaf1 knockdown leads to profound RNA-PolII pausing on 

downregulated genes (Fig.5g) analogous to flavopiridol treatment33. In contrast, ESCs 

differentiated in the absence of LIF, did not exhibit increased RNA-PolII stalling 

(Supplementary-Fig.5b–d), suggesting specific roles for Paf1C/Phf5a in maintenance of 

pluripotency. Indeed, we found that ~50% of downregulated genes are direct ChIP-seq 

Paf1C targets and show promoter-proximal pausing after shPhf5a knockdown, compared to 

upregulated targets (Supplementary-Fig.5e).

To further study elongation dynamics we performed ChIP-seq for initiating (Ser5-

phosphorylated) and elongating (Ser2-phosphorylated) RNA-PolII in the presence or 

absence of Phf5a. We calculated the RNA-PolII pausing index25 and found that Paf1C 

targets and self-renewal genes, such as Nanog Pou5f1, Sox2, Klf4 Fbxo15, Myc, Esrrb and 

others, exhibit significant stalling (Fig.5h). We also found elevated levels of Ser5-RNA-PolII 

near gene promoters for GO terms, in contrast to decreased Ser2-RNA-PolII in their gene 

bodies (Supplementary-Fig.5f–g).

Finally, we interrogated whether Phf5a affects histone modifications associated with Paf1C 

function7. We performed ChIP-sequencing for H3K4me3, H3K79me2 and H3K36me3 in 

the presence or absence of Phf5a. We found its depletion negatively affected elongation-

associated histone modifications H3K79me2 and H3K36me3 on Paf1C targets and self-
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renewal genes, but not the promoter-associated mark H3K4me3 (Fig.6a). H3K79me2 and 

H3K36me3 profiles revealed a pronounced loss from gene bodies after shPhf5a knockdown 

(Fig.6b). Dissection of H3K79me2 revealed that Paf1C targets have similar profiles to 

downregulated genes, compared to upregulated ones (Fig.6c). Last, we examined occupancy 

on pluripotency genes and found diminished H3K79me2 and H3K36me3 levels in their gene 

bodies, but not H3K4me3 levels on their promoters, compared to housekeeping genes (Fig.

6d). These data suggest that Phf5a loss affects Paf1C functions including regulation of RNA-

PolII elongation and histone mark occupancy.

Phf5a regulates myogenic differentiation

We next asked whether Phf5a functions specifically in ESCs or it controls differentiation in 

additional systems. Since Phf5a depletion results in aberrant mesoderm differentiation and 

muscle formation in teratomas, and Paf1 is also implicated in cardiomyocyte specification in 

zebrafish10, we decided to study Phf5a function in muscle. Myoblasts self-renew, however, 

in differentiation conditions commence myogenic programs and fuse forming elongated, 

multi-nucleated myotubes (Supplementary-Fig.6a). We initially depleted Paf1C subunits in 

C2C12 myoblasts and verified its role in myotube differentiation (Supplementary-Fig.6b). 

We then depleted Phf5a and found it also compromises their ability to differentiate. We 

observed that myoblasts fail to upregulate the differentiation marker myosin-heavy chain 

(MHC) (Supplementary-Fig.6c–d). Additionally, Phf5a silencing results in maintenance of 

Pax7, a marker of myoblast self-renewal (Fig.7a). To support our findings in C2C12 cells we 

generated a Tet-inducible RNAi mouse model by knocking-in individual shPhf5a hairpins in 

the Col1a1 locus of ESCs (Fig.7b). We generated Rosa26rtTACol1a1TREshPhf5a mice and 

crossed them to EIIA-Cre mice to drive hairpin expression (Fig.7b). We generated primary 

mouse myoblasts from these animals, and observed defects in myotube differentiation upon 

Phf5a silencing (Fig.7c). We observed upregulation of Phf5a and Paf1C during primary 

myoblast differentiation (Supplementary-Fig.6e) and were also able to mimic effects of 

RNAi depletion on myotube differentiation using CRISPR-Cas9 strategies (Fig.7d–e and 

Supplementary-Fig.6f–g). These results demonstrate that loss of Phf5a blocks myogenic 

differentiation.

To further investigate how Paf1C/Phf5a control mechanisms of muscle differentiation we 

performed ChIP-sequencing for Leo1 in myoblasts and myotubes. We found an increased 

number of Leo1-bound genes during muscle differentiation from 700 genes in myoblasts, to 

more than 2700 in myotubes (Fig.7f). GO analysis of Leo1-bound genes identified multiple 

chromatin- and transcription-associated GO terms in myoblasts, such as chromatin 
assembly, nucleosome organization and others, compared to muscle-specific GO terms in 

differentiated myotubes, such as actin organization, muscle development, muscle 
organization and myofibril assembly (Supplementary-Fig.6h–i), Examples for Leo1 binding 

include Hist1 cluster genes in myoblasts, Myog, Myo1c and Myom3 in myotubes and many 

others (Fig.7g).

Finally, we performed ChIP-sequencing in myotube differentiation after shPhf5a 

knockdown. We found that Leo1 binding was abolished from its myotube targets (Fig.7h and 

Supplementary-Fig.6j). Interestingly, we identified ~1000 Leo1 targets after shPhf5a 
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knockdown, however almost none of them is associated with myogenic processes (Fig.7h). 

In addition, we performed GO analysis of Leo1 targets after shPhf5a knockdown and found 

genes associated with neurogenesis, instead of myogenesis (Supplementary-Fig.6j). 

Specifically, we identified neurological system process, cognition, sensory perception of 
smell, and sensory perception of chemical stimulus GO terms after shPhf5a knockdown 

(Supplementary-Fig.6j). We observed loss of Leo1 binding in specific myogenic genes, but 

gain in neurogenic ones such as olfactory, taste and neurotransmitter receptors, G-protein-

coupled receptors, ion channels and many others (Fig.7i). Finally, to investigate whether 

Phf5a loss affects Paf1C stability we directly interrogated interactions among Paf1C 

subunits after its knockdown and found dissociation of the core subunits Leo1 and Cdc73, 

resulting in complex disruption (Fig.7f). In conclusion, these studies confirm that Phf5a is an 

essential regulator of myoblast differentiation and suggest that it stabilizes Paf1C in 

chromatin promoting myogenic programs.

DISCUSSION

Since their early characterization, PHD-finger proteins were recognized as tethering 

molecules recruiting or stabilizing protein complexes34–36 leading to tight regulation of gene 

expression37. Here we characterize in detail the functions of Phf5a in ESCs, iPSCs and 

myoblasts and attribute its requirement for self-renewal to the binding and stabilization of 

the Paf1C. We found that Phf5a depletion resulted in ESC differentiation and inhibition of 

cellular reprogramming. Phf5a and Paf1C associate strongly, are recruited on actively 

transcribed pluripotency genes and positively-regulate RNA-PolII elongation.

Previous efforts to study Paf1C functions focused entirely on promoter occupancy using 

ChIP-on-chip assays21, or in relation to DNA methylation38. Our studies characterize how 

Phf5a affects elongation dynamics in self-renewing ESCs and we integrated a combination 

of approaches to elucidate its functions. First, we characterized promoter-proximal pausing 

ratios using nascent RNA profiling following Phf5a depletion. Second, utilizing RNA-PolII 

ChIP-sequencing we elucidate traveling ratios on pluripotency genes and Paf1C targets. 

Last, we determine how elongation-specific histone marks change in response to Paf1C 

alterations. Our results suggest that Phf5a directly regulates Paf1C stability, facilitating 

pause release and productive elongation of the self-renewal network. Elongation of 

upregulated genes in the absence of Paf1C is due to indirect effects. Direct Paf1C/Phf5a 

targets include master regulators of pluripotency, and it would be intriguing to further study 

mechanisms of Paf1C/Phf5a recruitment and possible cooperation with transcription 

factors22.

Furthermore, we found that Phf5a functions are not limited to ESCs. Using in vivo and in 
vitro models we demonstrated that Phf5a is essential for differentiation of myoblasts to 

myotubes. These functions are Paf1C-dependent as loss of Phf5a expression leads to 

significant decrease of Paf1C occupancy at myogenic genes and de novo targeting at 

neurogenic ones. These findings are consistent with Paf1C regulating cardiac specification 

and heart morphogenesis in zebrafish10 and deregulation on muscle organ formation in 

Phf5a-depleted C. elegans6. Collectively, we conclude that Phf5a mediates Paf1C functions 

to orchestrate myogenic differentiation.
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Processes that balance self-renewal or cell specification can be deregulated in cancer. Paf1C 

can also act as an oncogene and its amplification or overexpression is implicated in tumor 

formation8, 39. Although Paf1C stimulates transcriptional elongation in vitro and in 
vivo7, 26, 40, it was recently suggested to also suppress RNA-PolII transcription in cancer41. 

Our data suggest that Paf1C is active in ESCs, directly promoting elongation of pluripotency 

networks. However, Paf1C may function in a cell-type specific manner influenced by 

chromatin accessibility.

Recent studies in human malignancies, implicated Phf5a in endometrial cancer and 

glioblastoma23, 42. Although Phf5a is suggested to interact with ATP-dependent helicases 

and the U2 snRNP spliceosome23, 43, its silencing surprisingly only affects exon recognition 

and splicing in glioblastoma stem cells (GSCs) but not their normal counterpart neural stem 

cells (NSCs)23. Despite extensive sequencing studies, we did not find significant splicing 

defects in Phf5a-depleted ESCs, enforcing the notion that these are cell-type specific. It 

would be intriguing to speculate that splicing phenotypes are absent from non-malignant 

cells (ESCs and NSCs) but present in glioblastoma or other malignancies, opening the way 

to investigate this distinction as a potential vulnerability in cancer. It is interesting to 

interrogate whether aberrant Phf5a expression correlates with de-regulated Paf1C functions 

in human disease, and since Phf5a loss inhibits proliferation of cancer cells44, its targeting 

might be an alternative therapeutic option.

Methods

Mouse ESC and iPSC culture and OKSM MEF reprogramming

Mouse ESCs, iPSCs and “reprogrammable” OKSM MEFs45 were cultured under standard 

conditions as described previously46, 47 using recombinant LIF, on gelatin-coated plates or 

feeder-MEFs, respectively. For shRNA viral transductions ESCs and OKSM MEFs were 

transduced with pLKO.1-puro backbone lentiviruses and selected with puromycin. For 

reprogramming experiments ESC-like colonies were enumerated 14 days post-initial 

induction with doxycycline.

Culture of C2C12 myoblasts, myotube differentiation

C2C12 myoblast cells were cultured as described previously48. For differentiation C2C12 

cells were grown to confluence followed by culturing in differentiation media (DMEM 

supplemented with 2% horse serum) for 72h or up to 120h before analysis.

Immunofluorescence

ESC expressing Flag-Phf5a or C2C12 cells were fixed with 4% formaldehyde in PBS for 20 

min at room temperature, washed once with PBS and permeabilized for 20 min at room 

temperature using Block Solution (5% normal goat serum, 0.1% Triton X-100 in PBS). Cells 

were incubated overnight at 4°C with Flag antibody (1:500), Desmin (1:500) or MHC serum 

(1:500) in Block Solution, washed 3 times with PBS, incubated for 1h at room temperature 

with 1:1000 secondary rabbit anti-mouse Alexa594-conjugated antibody in Block Solution 

and DAPI.
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Animal experiments

Female C57BL/6 mice (6–8 weeks old) were obtained from the National Cancer Institute. 

For teratoma assays nonobese diabetic/severe combined immunodeficient NOD/

MrkBomTac-Prkdcscid (NOD-SCID) mice were obtained from Taconic. 106 KH2 ESCs 

engineered to express inducible shControl or shPhf5a hairpins were injected subcutaneously 

into NOD-SCID mice, were under 0.1mg doxycycline diet throughout the course of the 

assay and were euthanized 3 weeks after injection when tumors were collected. Tumors 

were fixed in formalin followed by imbedding in paraffin, sectioned and stained for 

histological analysis with hematoxylin and eosin or immunohistochemistry stains following 

standard procedures. For generation of Tet-inducible knockdown animals 

Rosa26rtTACol1a1TREshPhf5a targeted ESCs were purchased from Mirimus Inc. Mice were 

generated by injection into tetraploid blastocysts at the NYU Medical Center Rodent 

Genetic Engineering Core. Engineered mice were crossed to EIIA-Cre recombinase mice to 

drive Rosa26rtTA expression. For in vivo Col1a1TREshPhf5a cassette expression mice were 

placed on 0.1mg doxycycline diet. Isolation and growth of primary myoblasts was 

performed as described previously49. Briefly, neonatal mice were sacrificed and limb muscle 

was dissected from skin and bones. Primary myoblasts were isolated in mincing and 

incubation of muscle in collagenase/dispase/CaCl2 solution followed by incubation in 5% 

CO2 incubator using F-10-based primary myoblast growth medium. Mice were housed in 

specific pathogen-free conditions at the Skirball Institute animal facility. For animal 

experiments, no statistical method was used to predetermine sample size. Furthermore, the 

experiments were not randomized and the investigators were not blinded to allocation during 

experiments and outcome assessment. All animal experiments were performed in 

accordance with protocols approved by the New York University Institutional Animal Care 

and Use Committee.

CRISPR-Cas9 editing

For CRISPR-Cas9 editing Control- and Phf5a-targeting and repair template vectors were 

purchased from SantaCruz (sc-418922, sc-427066, sc-427066-HDR) and were transfected in 

ESCs or C2C12 cells using Lipofectamine 2000 (Life Technologies) according to the 

manufacturer’s manual.

Engineering of inducible ESCs expressing tagged proteins or shRNAs

For inducible expression, cDNA was prepared (High-Capacity RNA-to-cDNA Kit, Applied 

Biosystems). Open reading frames (ORF) were cloned into the Tet-operated vector pINTA, 

bearing N-terminal Flag/Strep-TagII (F/S) tandem tags50 (kind gift of Dr. R. Bonasio, 

University of Pennsylvania). Vectors were nucleoporatated (Amaxa) into KH2 ESCs51, 52. 

ESCs were selected with 50 µg/ml Zeocin (Invitrogen) for 7 days.

For inducible knockdown, miR-30 hairpins were cloned into a modified pColTGM vector53 

targeting the Col1a1 locus. Vectors were electroporated with pCAGS-FlpE recombinase in 

KH2 ESCs and were selected with hygromycin 140µg/mL for 10 days.

shControl: 

5’TGCTGTTGACAGTGAGCGCAGGAATTATAATGCTTATCTATAGTGAA
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GCCACAGATGTATAGATAAGCATTATAATTCCTATGCCTACTGCCTCGG

AA3’

shPhf5a: 

5’TGCTGTTGACAGTGAGCGACTATCGGAAGACTGTGTGAAATAGTGA

AGCCACAGATGTATTTCACACAGTCTTCCGATAGCTGCCTACTGCCTC

GGA3’

Antibody dilutions, western blotting and immunoprecipitations

Antibodies were used according to manufacturer’s specifications. For western blots, cells 

lysed in Lysis Buffer (100mM Tris-HCl pH8.0, 150mM NaCl, 0.1% Triton X-100) 

supplemented with Complete Mini protease inhibitors (Roche), 10mM NaF (Sigma) and 

1mM Na3VO4 (Sigma). For immunoprecipitation (IP) 1mg of pre-cleared cell lysate was 

incubated overnight with each antibody or IgG control (sc-2027 Santa Cruz), and bound to 

Protein-A Sepharose beads (Invitrogen) at 4°C. Beads were washed 4 times with 1mL Lysis 

Buffer. Antibodies used were the following: Nanog (1:10000 A300-397A, Bethyl), Oct-3/4 

(1:5000 sc-5279, Santa Cruz), Actin (1:10000 C4, Millipore), Flag (1:10000 M2, Sigma), 

HA (1:5000 ab-9110, Abcam) Phf5a (1:500 15554-1-AP, ProteinTech), Paf1 (1:1000 

A300-173A, Bethyl for IP, A300-172A, Bethyl for WB and purified rabbit antibody for 

ChIP54), Cdc73 (1:1000 A300-701, Bethyl), Ctr9 (1:1000 A301-395A, Bethyl), Leo1 

(1:1000 A300-175A, Bethyl), Rtf1 (1:1000 A300-179A, Bethyl), Wdr61 (Ski8) (1:500 

pAB-012-150, Diagenode), Caspase-3 (1:1000 9662, Cell Signalling), GFP (1:5000 sc-9996, 

Santa Cruz), RNA-PolII (1:1000 sc-899, Santa Cruz), Ser2-phospho-RNA-PolII (1:1000 

clone 3E10, Active Motif), Ser5-phospho-RNA-PolII (1:1000 ab5131, Abcam), TFIID 

(1:1000 sc273 X, Santa Cruz), a-Tubulin (1:10000 sc-53029, Santa Cruz), Lamin B (1:1000 

sc-6217, Santa Cruz), Pax7 (1:500 sc-81975, Santa Cruz), NELF-A (1:1000 A301-910A, 

Bethyl), Brachyury (1:500 ab20680, Abcam), Desmin (1:1000 ab32362, Abcam), Nestin 

(1:1000 MAB353, clone rat-401, EMD Millipore), H3K4me3 (1:1000 07-473, Millipore), 

H3K79me2 (1:1000 39143, Active Motif), H3K36me3 (1:1000 ab9050, Abcam). Serum 

against Myocin Heavy Chain (MHC, kind gift from Dr. B. Dynlacht, NYU School of 

Medicine) was used 1:10000. For western blots antibodies were used in 5% milk in TBS-T, 

unless otherwise noted. Secondary horseradish peroxidase (HRP)-conjugated antibodies (GE 

Healthcare) were used in 5% milk in TBS-T. For immunoprecipitations Rabbit IgG Trueblot 

(1:5000 18-8816-31, Rockland) or Mouse IgG Veriblot (1:5000 ab131368, Abcam) 

secondary HRP-conjugated antibodies were used.

Purification of tagged proteins and mass spectrometry

5*107 targeted ESCs were induced with 2µg/mL doxycycline (Sigma) for 3 days and treated 

with 10µM MG132 (Peptides International) for 3h. Pellets were resuspended in Lysis Buffer 

(100mM Tris-HCl pH7.5, 150mM NaCl, 1% Triton-X100, 1mM EDTA, 2mM MgCl2, 

supplemented with Complete Mini protease inhibitors (Roche), 10mM N-elthylmaleimide 

(Sigma), 10mM NaF (Sigma), 1mM Na3VO4 (Sigma) and 250 units Benzonase nuclease 

(Novagen), and passed 8 times through a 25 & 5/8 gauge syringe. Protein purification was 

performed as described before50. Beads were eluted with 5mL Elution Buffer (Buffer E, 

IBA) and concentrated with Amicon Ultra centrifugal filter units, 10,000 MW cutoff, 
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(Millipore) to 200µL. For tandem affinity purification elutions were bound to 50µL Flag 

magnetic beads, washed with 1× Buffer E (IBA), and boiled in SDS-loading buffer. For 

cytoplasmic and nuclear fractionation 1*107 KH2 ESCs were lysed as above and 

cytoplasmic and nuclear extracts were prepared as described previously using a glass 

homogenizer55. For mass spectrometry peptides were analyzed by LC-MS/MS on Orbitrap 

Velos MS. The MS/MS spectra were searched against NCBI database using a local 

MASCOT search engine (V.2.3). At least two peptides were identified for each protein (false 

discovery rate <0.01%) with a confidence interval no less than 95%.

Glycerol gradient density sedimentation analysis

5*107 targeted ESCs were induced, lysed and tagged proteins were purified as above and 

concentrated to final volume of 500µL. 15-35% glycerol gradients were prepared using 

BIOCOMP Gradient Master in 4.5mL open-top tubes (Beckman) and fraction preparations 

as described before using TCA precipitation56.

Phf5a purification from bacteria and in vitro pull-down

Phf5a ORF was cloned into the pGEX-6P-1 vector (GE Healthcare) (kind gift from Dr. K.J. 

Armache, NYU School of Medicine) and transformed into BL21 Star (DE3) bacteria. 12L of 

liquid cultures were induced overnight with 0.1mM IPTG at 18°C. Bacteria were lysed in 

20mM Tris-HCl pH8.0, 200mM NaCl, 1mM DTT passing though a pressure homogenizer. 

Soluble fraction was bound to glutathione agarose beads (Pierce) for 1h at 4°C, beads were 

washed with 200 column volumes (CV) Lysis Buffer and GST-Phf5a protein was eluted 

using reduced glutathione. GST tag was cleaved by cleavage with PreScission Protease (kind 

gift from Dr. K.J. Armache, NYU School of Medicine) and Phf5a was further purified by 

ion exchange and size exclusion FPLC chromatography. Paf1, Cdc73 and Wdr61 were 

cloned in Flag/HA-modified pCDNA3.1 vector (Invitrogen) and in vitro translated using 

TNT Coupled Wheat Germ Extract System (L4140, Promega). 5µg of purified Phf5a protein 

was added, mixtures were bound overnight at 4°C and HA-tagged proteins were pulled-

down using HA affinity gel beads (Invitrogen) for 4h at 4°C. Beads were washed 4 times 

with 1mL Lysis Buffer and interactions were visualized by WB analysis.

Benzonase treatment assay

1*107 KH2 ESCs were lysed as above and 50 units Benzonase nuclease (Novagen) was 

added. Lysate was incubated at 4°C for a total of 12h and 100µL of material was removed 

and snap-frozen every 3h. Nucleic acids were phenol/chloroform extracted, ethanol 

precipitated and visualized in a 2% agarose gel.

Flow Cytometry Analysis

Apoptosis and cell death was detected using Annexiv-V APC-conjugated detection kit (BD 

Biosciences) along with 7-AAD following manufacturers protocol on a BD LSRFortessa 

(BD Biosciences) flow cytometer.
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Real-time quantitative reverse transcription PCR (qRT-PCR) and microarray analysis

Total RNA was harvested from cells using the Qiagen RNeasy Kit (Qiagen) and 2µg of was 

used for cDNA synthesis using the High-Capacity RNA-to-cDNA Kit (Applied Biosystems). 

qRT-PCR was carried out using LightCycler SYBR green mix (Roche) using a LightCycler 

480 II (Roche). For microarray analysis RNA samples were hybridized to Affymetrix 

MoGene2.0.st Chips and scanned at the NYU Genome Technology Center. CEL files were 

loaded into GeneSpring (Agilent). Feature intensities for each probe set were condensed into 

a single intensity value.

GRO-seq and library preparation

Analysis of nascent RNAs using global-run-on experiments were performed as described 

previously57. Briefly, nuclei were isolated in swelling buffer (10mM Tris-HCl pH7.5, 2mM 

MgCl2, 3mM CaCl2), lysed twice in lysis buffer (10mM Tris-HCl pH7.5, 2mM MgCl2, 

3mM CaCl2, 10% glycerol, 0.5% NP-40) and snap-frozen in freezing buffer (50mM Tris 

pH8.0, 40% glycerol, 5mM MgCl2, 0.1mM EDTA), For run-on reaction, an equal volume of 

reaction buffer was added to thawed nuclei (10mM Tris pH8.0, 5mM MgCl2, 300mM KCl, 

500uM ATP, 500µM GTP, 5µM CTP, 500µM BrUTP, 1mM DTT, 100U/mL SuperaseIN, 1% 

Sarcosyl), mixed and incubated at 30°C for 5min. The reaction was stopped with Trizol 

reagent and RNA was phenol/chloroform extracted and ethanol precipitatated. RNA was 

heated in Fragmentation buffer (40mM Tris pH8.0, 100mM KCl, 6.25mM MgCl2, 1mM 

DTT), DNAse treated and purified using Zymo RNA Clean & Concentrator (Zymo 

Research) using the >17nt protocol. Run-on RNA was immunoprecipitated using BSA-

blocked BrDU beads (Santa Cruz) in Binding buffer (SSPE 0.5X, 1mM EDTA, 0.05% 

Tween-20) for 1h at 4°C, washed and eluted in Elution buffer (5mM Tris pH7.5, 300mM 

NaCl, 20mM DTT, 1mM EDTA, 1% SDS) at 65°C for 20min. Nascent RNA was further 

phenol/chloroform extracted and sequencing libraries were prepared.

Data sources and computational pipelines

The samples were run using Illumina HiSeq2000. Raw reads were aligned against the mouse 

genome assembly mm10/GRCm38. Alignments were performed using Bowtie v.1.0.058. 

MACS 1.4.259 or MACS 2.0 was used for peak-calling in the case of ChIP-Seq data, while 

the suite GenomicTools version 2.8.160 was used for genome binning, genomic annotations 

and the construction of occupancy profiles, both in the case of polymerases and histone 

marks. For plotting, R version 3.2.0 was used (R Core Team (2016). R: A language and 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria) (https://www.R-project.org), along with the VennDiagram package61 for the 

generation of Venn diagrams and ggplot262 for the generation of boxplots, density profiles 

and scatterplots with ggrepel (https://CRAN.R-project.org/package=ggrepel). For the 

generation of heatmaps depicting the binding profiles of Pac1C components, deepTools was 

used63.

ChIP-seq and library preparation

ChIP experiments were performed as described previously60, 64. Antibodies coupled to 

magnetic beads were added to precleared chromatin and incubated for 12–16 h. Beads were 
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washed and eluted according to protocol. ChIP-Seq libraries for Paf1C components, PolII 

samples and histone marks were prepared using the Illumina TruSeq system, including end 

repair, A-tailing, adaptor ligation and PCR amplification. AMPure XP beads (Beckman 

Coulter, A63880) were used for DNA cleaning in each step of the process. Raw images 

generated by Illumina HiSeq2000 using default parameters, were processed by CASAVA to 

remove the first and last bases and then they were used to generate sequence reads in fastq 

format. Reads were aligned to mm10 mouse genome using Bowtie with the standard 

parameters (except for –m 1 in order to report only unique alignments). MACS version 

1.4.259 was used to perform peak calling using the parameter values listed below:

In the case of ChIP-Seq experiments for Paf1C components and Phf5a, MACS 

v1.4.2 was used and the parameter values were: (a) --nomodel, (b) --

shiftsize=120, (c) --slocal 5000, (d) --llocal 50000 (e) –p 1e-4.

In the case of polymerase and histone ChIP-Seq experiments, MACS v.2.0 was 

used with the following parameter values: (a) --nomodel, (b) --broad, (c) --

shiftsize=200, (d) –q 0.05.

All PolII and histone ChIP-Seq experiments were performed in triplicates and peaks present 

at least in two out of the three triplicates were used for downstream analysis. The files with 

the aligned reads were converted to wig format using GenomicTools60 and then to bigwig 

format using the corresponding UCSC tool.

Peak characterization

Peaks were assigned to the following categories based on their genome-wide distribution: (a) 

Upstream: this category includes all peaks that fall within 1-3kb upstream of the 

transcription start site (TSS), (b) Promoter: it includes all peaks that fall within 1kb upstream 

of the TSS, (c) Gene body: it includes all peaks that fall within the 5’ UTR, the coding 

region of genes and the 3’ UTR, (d) Downstream: it includes all peaks that fall within 3kb 

from the transcription end site (TES), (e) Distal Intergenic: All the peaks that fall within the 

remaining genomic loci. The peak characterization was performed using ChIPSeeker65 and 

custom in-house scripts.

Calculation of PolII Pausing Index

The calculation of PollII Pausing index was performed as described previously66. 

Specifically, the PolII densities were initially calculated as reads per kilobase per million 

(RPKMs)67 in order to normalize for region length and number of reads. The initiating 

region was defined as the area between 30bp upstream of the transcription start site (TSS) to 

300bp after the TSS, while the elongating region was from +300bp to the end of the gene. 

We calculated the PolII pausing index by dividing the PolII densities for the initiating region 

vs. the elongating region. We used Wilcoxon’s non-parametric test to compare the 

distributions of the fold-changes (log2 scale) in the pausing index in control (shControl) and 

the samples, where either Phf5a (shPhf5a) or Paf1 (shPaf1) were down-regulated.
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Gene-set enrichment analysis

For GSEA analysis the online version of the GSEA tool was used68. The peaks that were 

identified as significant after peak-calling, were ranked according to peak score (from 

highest to lowest) and they were used as input for GSEA. MSigDB v5.0 (updated in April 

2015) was used for GSEA.

Gene ontology

Gene ontology (GO) analysis was performed based on ChIP-Seq data and gene expression 

data by using the DAVID tool v6.7 (https://david.ncifcrf.gov/). Visualization of the GO 

results was performed using the R package GOplot69. The reported z-score was calculated as 

described in GOplot and shows the trend (increasing/decreasing) of the corresponding GO 

category in terms of gene expression.

Statistics and reproducibility

Sample sizes and reproducibility for each figure are denoted in the figure legends. Unless 

otherwise noted, data are representative of at least three biologically independent 

experiments. For mouse experiments, no statistical method was used to predetermine sample 

size. Furthermore, the experiments were not randomized and the investigators were not 

blinded to allocation during experiments and outcome assessment. Statistical significance 

between conditions was assessed by two-tailed Student’s t-tests. Error bars represent s.d., 

and significance between conditions is denoted. Raw data from independent replicate 

experiments can be found in the Statistics Source Data (Supplementary Table 5).

Cell lines

No cell lines used in this study were found in the databases of commonly misidentified cell 

lines that are maintained by ICLAC and NCBI Biosample. The following source of cell lines 

was used: KH2 ESCs, OKSM MEFs and iPSCs: Kind gift from Dr. Konrad Hochedlinger, 

Harvard Stem Cell Institute; CCE and Nanog-GFP: Kind gift from Dr. Ihor Lemischka, 

Mount Sinai School of Medicine; MK6: Kind gift from Dr. Sang Yong Kim, Rodent Genetic 

Engineering Core, NYU School of Medicine; Dppa4-RFP/Brachyury-GFP ESCs: Kind gift 

from Dr. H.J Fehling, University Clinics Ulm, Germany; C2C12 Kind gift from Dr. Brian 

Dynlacht, NYU School of Medicine. The cell lines were not authenticated. The cell lines 

were routinely tested for mycoplasma contamination.

Primary accessions

Gene Expression Omnibus (GEO) GSE63974

Data availability

The next-generation sequencing data that support the findings of this study in Figures 1, 4, 5, 

6, and 7 have been deposited in the Gene Expression Omnibus (GEO) database under the 

accession code GSE63974. Statistics source data have been provided as Supplementary 

Table 5. All other data supporting the findings of this study are available from the 

corresponding author upon reasonable request.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phf5a is required for maintenance of ESC self-renewal
(a) Western blot analysis of Phf5a and Nanog, Oct4 proteins during ESC differentiation (see 

Supplementary Figure 7). (b) Histogram FACS plots representing loss of GFP fluorescence 

in Nanog-GFP transcriptional reporter ESCs following knockdown with shControl or 

shPhf5a respectively. (c) Alkaline phosphatase (AP) staining of ESCs following knockdown 

with shControl or shPhf5a (2 different hairpins), respectively. Scale bars, 100 µm. (d) 
Heatmap of Affymetrix microarrays for differentially expressed genes of Nanog-GFP ESCs 

following knockdown with shControl or shPhf5a respectively. Red: upregulated genes, blue: 
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downregulated genes. Q-value<0.05 Fold change (log2)>1.5. (e and f) Bar graphs showing 

expression levels by qRT-PCR of Phf5a, pluripotency markers (e) and differentiation 

markers (f), respectively, following shPhf5a knockdown in ESCs. n=6 biologically 

independent replicates (see Supplementary Table 5). Phf5a, Nanog, Pou5f1, Sox2, Zfp42 
and Nr0b1: **p=0.0001, respectively. Gata6, Gata4, Nkx2-5, Sox1, and Meox1, 

**p=0.0001, respectively, Brachyury: n.s: non-significant, p=0.5632, two-sided Student’s t-

test, values represent the mean ± s.d.. (g) GO-Circle plot displaying gene-annotation 

enrichment analysis. Blue and red indicate downregulated or upregulated gene-associated 

GO Terms, respectively, relative to the z-score of the analysis. (h) GO-Chord plot displaying 

relationships between several representative downregulated and upregulated GO Terms and 

associated genes. Distinct categories linked to pluripotent or differentiated cells cluster 

separately. (i) Western blot analysis of pluripotency factors following CRISPR-Cas9 

mediated Phf5a depletion in ESCs. (see Supplementary Figure 7).
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Figure 2. Phf5a regulates ESC pluripotency and cellular reprogramming
(a and b) Comparison of mass (a) and size (b) of teratomas generated in SCID mice 

following injection of doxycycline-induced ESCs engineered to express shControl or 

shPhf5a cassettes from the Col1a1 locus. n=4 biologically independent replicates (see 

Supplementary Table 5). **p=0.001 two-sided Student’s t-test, values represent the mean ± 

s.d. (c) Comparison of Phf5a transcript levels between differentiated fibroblasts and 

pluripotent stem cells by qRT-PCR. n=4 biologically independent replicates (see 

Supplementary Table 5). ESCs: **p=0.0035, iPSCs: **p=0.0013, two-sided Student’s t-test, 

values represent the mean ± s.d. (d) Western blot analysis of Phf5a protein in differentiated 

fibroblasts or pluripotent stem cells. (see Supplementary Figure 7). (e and f) Alkaline 

phosphatase (AP) staining (e) and comparison of AP-positive ESC-like colony number (f), 

respectively, of reprogrammable OKSM MEFs on day14 post-initial doxycycline induction 

following shPhf5a knockdown. n=4 biologically independent replicates (see Supplementary 

Table 5). **p=0.001, respectively, two-sided Student’s t-test, values represent the mean ± 

s.d.
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Figure 3. Phf5a physically associates with the Paf1 complex
(a) Ingenuity systems-generated pathway of Phf5a interacting proteins following purification 

and mass spectrometry in ESCs. Solid or dashed lines illustrate established direct or indirect 

interactions, respectively. (b) Validation of Phf5a interactions with the Paf1 complex in 

ESCs using Flag-Phf5a purification. Tagged Phf5a, Wdr61 (positive control) and GFP 

(negative control) were transiently expressed in engineered Tet-inducible ESC lines 

following addition of doxycycline. Bait proteins are tagged (marked with a star) and migrate 

slower than endogenous proteins (see Supplementary Figure 7). (c) Endogenous protein 

immunoprecipitations for Phf5a and Paf1C subunits in ESCs (see Supplementary Figure 7). 

(d) Paf1-complex subunits Paf1, Cdc73 and Wdr61 were cloned in HA-tag expressing 

vectors and subjected into in-vitro transcription and translation. Phf5a protein was expressed 

and purified from bacteria. In vitro binding of HA-tagged subunits and Phf5a was 

interrogated by a pull-down assay using HA-immunoprecipitation and western blot analysis 

(see Supplementary Figure 7). (e) Phf5a interacting proteins from ESCs were subjected to 

glycerol gradient sedimentation followed by fractionation and western blot analysis resulting 

in overlapping distributions of Phf5a and Paf1-complex subunits. A control analysis for GFP 

is shown in the lower panel. (see Supplementary Figure 7).
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Figure 4. Phf5a controls interactions among Paf1C subunits and its silencing abrogates Paf1C 
recruitment on pluripotency genes in ESCs
(a) Western blot analysis of Paf1C subunit immunoprecipitations in 293T cells following 

knockdown with shControl or shPhf5a, respectively, showing loss of interactions between 

different Paf1C members upon Phf5a depletion. Two different shRNA hairpins are shown. 

Left Panel: Blot for Leo1; Right Panel: blot for Cdc73; IP: immunoprecipitation. IB: 

immunoblot. (see Supplementary Figure 7). (b) Venn diagram showing number of genes 

bound by individual Paf1C subunits in ESCs using ChIP-sequencing with antibodies against 
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endogenous Leo1, Cdc73 and Paf1 proteins. (c) Heatmap representations of normalized read 

density for Leo1 binding in ESCs following shControl or shPhf5a silencing, respectively. (d) 
Venn diagrams showing the numbers of genes bound by Leo1, Cdc73 and Paf1 in ESCs in 

the presence or absence of Phf5a, respectively. (e) Binding profiles for genomic distribution 

of Leo1 peaks (upstream, promoter, coding region, 5'UTR, 3'UTR, downstream and 

intergenic) in ESCs, showing preferential (32%) binding within gene bodies. (f) Gene set 

enrichment analysis (GSEA) enrichment plots showing significant enrichment of the top 

Paf1 targets for genes linked to embryonic stem cell signatures. (g) Snapshots of Leo1 and 

Cdc73 binding on representative pluripotency gene targets (Sall4, Klf4, Zfp42, Esrrb, Sox2, 
Pou5f1 and Nanog) in the presence (blue) of absence (red) of Phf5a, respectively.
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Figure 5. Phf5a controls transcriptional elongation and RNA-PolII pause-release of pluripotency 
genes in ESCs
(a) Western blot analysis of total PolII and Ser-2 phosphorylated RNA-PolII in ESC 

following shControl or shPhf5a knockdown or ESCs differentiated in the absence of LIF, 

respectively. (see Supplementary Figure 7). (b and c) Scatter plot representing pausing 

indices of downregulated (b) or upregulated genes (c), respectively, 72h following shControl 

or shPhf5a knockdown using GRO-seq analysis. Read density of 500bp downstream of 

promoters (5'density) was normalized to read density in the rest of the gene bodies 
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(3'density). Pausing Index= 5’density/3’density. Gray: All genes; Blue: Downregulated 

genes; Red: Upregulated genes. (d) Box plot showing pausing index ratios after GRO-seq 

analysis for downregulated (blue) or upregulated (red) genes, respectively, following 

shPhf5a knockdown. Only downregulated genes exhibit significant promoter-proximal 

pausing after shPhf5a depletion. n=3 biologically independent replicates, Wilcoxon signed 

rank test non-parametric. (e) Box plot showing pausing index ratios after GRO-seq analysis 

for specific GO Terms. Blue: Downregulated and Red: Upregulated GO Term categories, 

respectively. Only downregulated GO Terms exhibit significant promoter-proximal pausing 

after shPhf5a depletion. n=3 biologically independent replicates, Wilcoxon signed rank test 

non-parametric. (f) Comparison of GRO-seq read density profiles of genes 72h following 

shControl or shPhf5a knockdown, respectively, in ESCs. RPKM: Reads Per Kilobase per 

Million total reads. (g) Box plot representing comparison of log2 pausing index for 

downregulated genes, 72h following shControl, shPhf5a, shPaf1 knockdown, or flavopiridol-

treated ESCs, respectively, using GRO-seq analysis. Flavopiridol treatment is used as a 

positive control of pause-release block. n=3 biologically independent replicates, Wilcoxon 

signed rank test non-parametric. (h) Scatter plot representing RNA-PolII pausing index for 

Paf1C targets and pluripotency genes based on normalized Ser5 (on TSSs)/Ser2 (on gene 

bodies) read density ratio of RNA-PolII ChIP-Seq in ESCs following shControl of shPhf5a 

silencing, respectively. In box plots (d, e and g) the central mark is the median, and the edges 

of the box are the first and third quartiles. Whiskers extend to the most extreme non-outlier 

data points.
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Figure 6. Phf5a regulates the deposition of histone marks characteristic of transcriptional 
elongation in pluripotency gene loci
(a) Box plots representing log2 fold change of normalized read density for H3K4me3, 

H3K79me2 and H3K36me3 ChIP-seq in ESCs following shControl or shPhf5a silencing. 

Plots represent comparisons of all expressed transcripts in ESCs with direct Paf1 targets 

around transcription start sites (TSSs) (H3K4me3) or gene bodies (H3K79me2 and 

H3K36me3). n=3 biologically independent replicates, Wilcoxon signed rank test non-

parametric. (b) Normalized read density profiles around TSSs (H3K4me3) or gene bodies 
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(H3K79me2 and H3K36me3) on Paf1C targets and pluripotency genes in ESCs in the 

presence (blue) or absence (red) of Phf5a. (c) Box plots showing log2 fold change 

H3K79me2 occupancy on gene bodies of target genes. H3K79me2 occupancy is increased in 

upregulated genes, however, H3K79me2 occupancy is decreased in downregulated genes 

compared to all expressed genes. n=3 biologically independent replicates, Wilcoxon signed 

rank test non-parametric. (d) Snapshots of representative H3K4me3 H3K79me2 and 

H3K36me3 density tracks on pluripotency genes or control loci under conditions of 

shControl (blue) or shPhf5a silencing (red). In box plots (a and c) the central mark is the 

median, and the edges of the box are the first and third quartiles. Whiskers extend to the 

most extreme non-outlier data points.
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Figure 7. Phf5a loss leads to Paf1C destabilization and inhibits myogenic differentiation
(a) Western blot analysis of myoblast self-renewal and myotube differentiation markers 

(myosin heavy chain and Pax7, respectively) following shControl or shPhf5a knockdown 

(see Supplementary Figure 7). (b) Schematic of Tet-inducible Rosa26rtTACol1a1TREshRNA 
animals for the derivation of primary myoblasts. Addition of doxycycline drives expression 

of shPhf5a from the Col1a1 locus. LSL: LoxP-stop-LoxP cassette. (c and d) Myosin heavy 

chain (MHC) immunofluorescence on primary myotubes purified from 

Rosa26rtTACol1a1TREshRNA animals (c) and CRISPR-Cas9-mediated Phf5a silencing on 
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C2C12 cells (d), respectively, depicting suppression of myoblast differentiation. Scale bars, 

100 µm. (e) Western blot analysis of Phf5a on primary myotubes purified from 

Rosa26rtTACol1a1TREshRNA animals. Addition of Doxycyclin induces shRNA hairpin 

expression and the silencing of Phf5a (see Supplementary Figure 7). (f) Venn diagram of 

Leo1-bound genes in myoblasts and myotubes following ChIP-sequencing. (g) Genome 

browser tracks showing peaks of Leo1 ChIP-sequencing for representative genes in 

myoblasts and myotubes. Histone-1 cluster genes, Myog, Myo1c, Myom3 and Ubc are 

shown as examples. (h) Venn diagram of Leo1 bound genes in myotube differentiation in the 

presence or absence of Phf5a following ChIP-sequencing. (i) Genome browser tracks 

showing peaks of Leo1 ChIP-sequncing for representative genes in shControl and shPhf5a 

conditions, respectively. Myog, and several olfactory, taste and smell receptors and G-

protein coupled receptors, ion channels and neurotransmitter receptors are shown as 

examples. (j) Western blot analysis of Paf1C subunit composition using 

immunoprecipitations in C2C12 cells differentiated for 72h following knockdown with 

shControl or shPhf5a, respectively. A significant loss among Paf1C subunit interactions is 

observed upon Phf5a silencing (see Supplementary Figure 7).
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