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Abstract

Plants live in biogeochemically diverse soils that harbor extraordinarily diverse microbiota. Plant 

organs associate intimately with a subset of these microbes; this community’s structure can be 

altered by soil nutrient content. Plant-associated microbes can compete with the plant and with 

each other for nutrients; they can also provide traits that increase plant productivity. It is unknown 

how the plant immune system coordinates microbial recognition with nutritional cues during 

microbiome assembly. We establish that a genetic network controlling phosphate stress response 

influences root microbiome community structure, even under non-stress phosphate conditions. We 

define a molecular mechanism regulating coordination between nutrition and defense in the 

presence of a synthetic bacterial community. We demonstrate that the master transcriptional 

regulators of phosphate stress response in Arabidopsis also directly repress defense, consistent 

with plant prioritization of nutritional stress over defense. Our work will impact efforts to define 

and deploy useful microbes to enhance plant performance.

Plant organs create distinct physical and chemical environments that are colonized by 

specific microbial taxa1. These can be modulated by the plant immune system2 and by soil 

nutrient composition3. Phosphorus is present in the biosphere at high concentrations, but 

plants can only absorb orthophosphate (Pi), a form also essential for microbial 

proliferation4, 5 and scarce in soil6. Thus, plants possess adaptive phosphate starvation 

responses (PSR) to manage low Pi availability that typically occurs in the presence of plant-

associated microbes. Common strategies for increasing Pi uptake capacity include rapid 

extension of lateral roots foraging into topsoil where Pi accumulates7 and establishment of 

beneficial relationships with some soil microorganisms8, 9. For example, the capacity of a 

specific mutualistic fungus to colonize Arabidopsis roots is modulated by plant phosphate 

status implying coordination between the PSR and the immune system8, 10. Descriptions of 

pathogen exploitation of PSR-immune system coordination are emerging11, 12.

We demonstrate that Arabidopsis mutants with altered phosphate starvation responses (PSR) 

assemble atypical microbiomes, either in phosphate-replete wild soil, or during in vitro 
colonization with a synthetic bacterial community (SynCom). This SynCom competes for 

phosphate with the plant and induces PSR in limiting phosphate. PSR in these conditions 

requires the master transcriptional regulator PHR1 and its weakly redundant paralog, PHL1. 

The severely reduced PSR observed in phr1 phl1 mutants is accompanied by transcriptional 

changes in plant defense leading to enhanced immune function. Negative regulation of 

immune system components by PHR1 is direct, as measured by target gene promoter 

occupancy, and functional, as validated by pathology phenotypes. Thus, PHR1 directly 

activates microbiome-enhanced response to phosphate limitation while repressing 

microbially-driven plant immune system outputs.
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The root microbiome in plants with altered phosphate stress response

We linked PSR to the root microbiome by contrasting the root bacterial community of wild-

type Arabidopsis Col-0 with three types of PSR mutants (Fig. 1a, b, Supplementary Text 1; 

Extended Data Fig. 1; Supplementary Table 1). PSR, historically defined in axenic seedlings 

and measured by Pi concentration in the plant shoot, is variable across these mutants. In 

replete Pi and axenic conditions, phr1 plants accumulate less free Pi than wild-type13; 

pht1;1, pht1;1 pht1;4 and phf1 accumulate very low Pi levels and express constitutive 

PSR14, 15; and pho2, nla and spx1 spx2 express diverse magnitudes of Pi hyper-

accumulation16– 18. We grew plants in a previously characterized wild soil19 that is not 

overtly phosphate deficient (Extended Data Fig. 2). Generally, the Pi concentration of PSR 

mutants grown in this wild soil recapitulated those defined in axenic conditions, except for 

phf1 and nla which displayed the opposite phenotype to that observed in axenic agar, and 

phr1 which accumulated the same Pi concentration as Col-0 (Fig. 1b). These results suggest 

that complex chemical conditions, soil microbes, or a combination of these can alter Pi 

metabolism in these mutants.

Bacterial root endophytic (EC) community profiles were consistent with previous 

studies2, 19. Constrained ordination revealed significant differences between bacterial 

communities across the Pi accumulation gradient represented by these PSR mutants [5.3 % 

constrained variance, canonical analysis of principal coordinates (CAP)] (Fig. 1c). 

Additionally, CAP confirmed that phr1 and spx1 spx2 carried different communities, as 

evidenced by their separation on the first three ordination axes, and that phf1 was the most 

affected of Pi-transport mutant (Fig. 1c). Specific bacterial taxa had differential abundances 

inside the roots of mutant plants compared to wild-type. Mutants from the same PSR type 

had a similar effect on the root microbiome at a low taxonomic level [97 % identity 

Operational Taxonomic Unit (OTU)] (Fig. 1d), while they had no overlapping effect at a 

higher taxonomic level (Family, Extended Data Fig. 1g). This suggests that closely related 

groups of bacteria have differential colonization patterns on the same host genotypes. 

Importantly, we found that the enrichment and depletion profiles were better explained by 

PSR mutant signaling type rather than the mutant’s capacity for Pi accumulation: all of the 

Pi-transport-related mutants had a similar effect on the root microbiome, and the 

antagonistic PSR regulators phr1 and spx1 spx2 each exhibited unique patterns (Fig. 1a, d 

and Extended Data Fig. 1f, g). Our results indicate that PSR components influence root 

microbiome composition in plants grown in a phosphate-replete wild soil, leading to 

alteration of the abundance of specific microbes across diverse levels of Pi accumulation 

representing diverse magnitudes of PSR.

Phosphate starvation response in a microcosm reconstitution

Our observations in a wild soil suggested complex interplay between PSR and the presence 

of a microbial community. Thus, we deployed a tractable but complex bacterial synthetic 

community (SynCom) of 35 taxonomically diverse, genome-sequenced bacteria isolated 

from the roots of Brassicaceae (nearly all from Arabidopsis) and two wild soils. This 

SynCom approximates the phylum level distribution observed in wild-type root endophytic 

compartments (Extended Data Fig. 3, Supplementary Table 1, Supplementary Table 2). We 
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inoculated seedlings of Col-0, phf1 and the double mutant phr1 phl1 (a redundant paralogue 

of phr113) grown on agar plates in low or high Pi (Supplementary Text 2). Twelve days later, 

we noted that the SynCom had a negative effect on shoot Pi accumulation of Col-0 plants 

grown on low Pi, but not on plants grown on replete phosphate (Fig. 2a). As expected, both 

PSR mutants accumulated less Pi than Col-0; the SynCom did not rescue this defect. Thus, 

in this microcosm, plant-associated microbes drive a context-dependent competition with the 

plant for Pi.

We sought to establish whether PSR was activated by the SynCom. We generated a 

literature-based core set of 193 PSR transcriptional markers and explored their expression in 

transcriptomic experiments (Extended Data Fig. 4a, b, Supplementary Table 3). In axenic 

low Pi conditions, only the constitutive Pi-stressed mutant phf1 exhibited induction of these 

PSR markers. By contrast, Col-0 plants expressed only a marginal induction of PSR markers 

compared to those plants grown at high Pi (Fig. 2b). This is explained by the purposeful 

absence of sucrose, a key component for the PSR induction in vitro20 (Supplementary Text 

2; Extended Data Fig. 5) that cannot be used in combination with bacterial SynCom 

colonization protocols. Remarkably, the SynCom greatly enhanced the canonical 

transcriptional response to Pi starvation in Col-0 (Fig. 2b); this was dependent on PHR1 and 

PHL1 (Fig. 2b; Extended Data Fig. 4b). Various controls validated these conclusions 

(Supplementary Text 2; Extended Data Fig. 4–Fig. 6). Importantly, shoots of plants pre-

colonized with SynCom on 0 or 50 µM Pi, but not on 650 µM Pi, accumulated 20–40 times 

more Pi than shoots from similarly treated non-colonized plants when subsequently 

transferred to full Pi conditions in the absence of additional bacteria (Fig. 2c and 

Supplementary Table 4). This demonstrates functional PSR activation by the SynCom. We 

thus propose that the transcriptional response to low Pi induced by our SynCom reflects an 

integral microbial element of normal PSR in complex biotic environments.

We evaluated agar- and root-associated microbiomes of plants grown with the SynCom 

(Supplementary Text 3; Fig. 2d, e; Extended Data Fig. 7e, f; Supplementary Table 5). In line 

with results from plants grown in wild soil, we found that PSR mutants failed to assemble a 

wild-type SynCom microbiome (Fig. 2f). Some strains were differentially abundant across 

PSR mutants phf1 and phr1 phl1 (Fig. 2e, f; Extended Data Fig. 7c), Pi concentration (Fig. 

2g; Extended Data Fig. 7d), or sample fraction (Extended Data Fig. 7b, e, f). These results 

established a microcosm reconstitution system to study plant PSR under chronic competition 

with plant-associated microbes and allowed us to confirm that the tested PSR mutants 

influence root microbiome membership.

Coordination between phosphate stress response and immune system 

output

We noted that phr1 phl1 and phf1 differentially activated transcriptional PSR in the presence 

of our SynCom (Fig. 2b). Therefore, we investigated the transcriptomes of plants growing in 

the SynCom to understand how these microbes activate PHR1-dependent PSR. We identified 

differentially expressed genes (DEGs) that responded to either low Pi, presence of the 

SynCom, or the combination of both (hereafter PSR-SynCom DEGs) (Supplementary Text 
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4; Extended Data Fig. 8a, b; Supplementary Table 6). Hierarchical clustering (Fig. 3a, 

Supplementary Table 7) revealed gene sets (c1, c2, c7 and c10) that were more strongly 

activated in Col-0 than in phr1 or phr1 phl1. These clusters contained most of the core PSR 

markers regulated by PHR1 (Fig. 3b). They were also enriched in PHR1 direct targets 

identified in an independent ChIP-seq experiment (Fig. 3c, Supplementary Table 8), PHR1 

promoter binding motifs (Extended Data Fig. 4c), and genes involved in biological processes 

related to PSR (Fig. 3d and Supplementary Table 9). PHR1 surprisingly contributed to 

transcriptional regulation of plant immunity. Five of the twelve clusters (Fig. 3a; c3, c6, c7, 

c8 and c11) were enriched in genes related to plant immune system output; four of these 

were over-represented for jasmonic acid (JA) and/or salicylic acid (SA) pathway markers 

(Fig. 3d, c3, c7, c8, and c11; Supplementary Table 9) and three of these four were enriched 

for PHR1 direct targets (Fig. 3c). SA and JA are plant hormone regulators of immunity and 

at least SA modulates Arabidopsis root microbiome composition2.

To further explore PHR1 function in the regulation of plant immunity, we generated 

transcriptomic time course data for treatment-matched Col-0 seedlings following application 

of Methyl Jasmonate (MeJA) or the SA analogue Benzothiadiazole (BTH; Supplementary 

Table 10). We found a considerable over-representation of SA- and JA-activated genes 

among the PSR-SynCom DEGs (468 versus 251 predicted for SA and 165 vs. 80 predicted 

for JA; p<0.0001, hypergeometric test) (Extended Data Fig. 8c–h, Supplementary Table 7). 

A large proportion of SA-responsive genes were more strongly expressed in phr1 and phr1 
phl1 than in Col-0; these were strongly enriched for classical SA-dependent defense genes 

(Extended Data Fig. 8d, e). A second group of SA-responsive genes that were less expressed 

in phr1 and phr1 phl1 than in Col-0 lacked classical SA-dependent defense genes and were 

weakly enriched for genes likely contributing to PSR (Extended Data Fig. 8d). By contrast, 

most JA-responsive genes exhibited lower expression in phr1 and phr1 phl1 (Extended Data 

Fig. 8g, h), including a subset of 18 of 46 genes known or predicted to mediate biosynthesis 

of defense-related glucosinolates (Extended Data Fig. 8i)21. This agrees with the recent 

observation that phr1 exhibited decreased glucosinolate levels during Pi starvation22. 

Analyses of SA- and JA- up-regulated genes revealed enrichment of direct PHR1 targets 

(Fig. 3e), consistent with the converse observation that some PHR1-regulated clusters 

enriched in direct targets were also enriched in defense genes (Fig. 3c, d). Many of the SA- 

and JA- responsive genes were PSR-SynCom DEGs (Fig. 3f; Extended Data Fig. 8c–h, 

Supplementary Table 7). Thus, PHR1 directly regulates an unexpected proportion of the 

plant immune system during PSR triggered by our SynCom.

PHR1 integrates plant immune system output and phosphate stress 

response

We tested whether PHR1 also controls the expression of plant defense genes under 

conditions typically used to study PSR (axenic growth, sucrose present, no microbiota 

involved). We performed RNA-seq in response to low Pi in these conditions and identified 

1482 DEGs in Col-0 and 1161 DEGs in phr1 phl1 (Fig. 4a, b; Extended Data Fig. 9, 

Supplementary Table 11). A significant number of our BTH/SA-activated genes were also 

up-regulated in phr1 phl1, but not in Col-0 in response to low Pi (Fig. 4a, b; Supplementary 
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Table 12). A large number of these overlapped with the defense genes induced in phr1 phl1 
by our SymCom (Fig. 4c; red ellipse, 113/337 = 33%; clusters c3 and c8 from Fig. 3a). At 

least 14/113 are direct PHR1 targets (Supplementary Table 12).

To underscore the role of PHR1 in the regulation of response to microbes, we analyzed the 

transcriptional profile of Col-0 and phr1 phl1 plants exposed to the flagellin peptide flg22. 

We chose a chronic exposure to flg22 to mimic the condition of plants in contact with a 

microbiome. We found that phr1 phl1 plants displayed higher expression of flg22-responsive 

genes23 than Col-0, independent of phosphate status (Supplementary Text 5; Fig. 4d; 

Extended Data Fig. 9a, b; Supplementary Table 11; Supplementary Table 13). This indicates 

that PHR1 negatively regulates the immune response triggered by flg22.

We hypothesized that phr1 phl1 would express an altered response to pathogen infection. 

The phr1 and phr1 phl1 mutants exhibited enhanced disease resistance against both 

Hyaloperonospora arabidopsidis isolate Noco2, and Pseudomonas syringae DC3000 (Fig. 

4e, f). Collectively, these results confirm the role of PHR1 as a direct integrator of PSR and 

the plant immune system.

Conclusions

Plant responses to phosphate stress are inextricably linked to life in microbe-rich soil. We 

demonstrate that genes controlling PSR contribute to assembly of a normal root microbiome. 

Surprisingly, our SynCom enhanced the activity of PHR1, the master regulator of the PSR, 

in plants grown under limited phosphate. This led to our discovery that PHR1 is a direct 

regulator of a functionally relevant set of plant immune system genes. Despite being 

required for the activation of JA-responsive genes during PSR24, we found that PHR1 is 

unlikely to be a general regulator of this response (Extended Data Fig. 9c–e, Supplementary 

Table 12), but rather may fine-tune JA response in specific biological contexts.

We demonstrate that PSR and immune system outputs are directly integrated by PHR1 (and, 

likely, PHL1). We provide a mechanistic explanation for previous disparate observations that 

PSR and defense regulation are coordinated and implications that PHR1 is the key 

regulator8, 11, 12, 24. We provide new insight into the intersection of plant nutritional stress 

response, immune system function, and microbiome assembly and maintenance; systems 

that must act simultaneously and coordinately in natural and agricultural settings. Our 

findings will drive investigations aimed at enhancing phosphate use efficiency using 

microbes.

Online Content Methods, along with any additional Extended Data display items and Source 

Data, are available in the online version of the paper; references unique to these sections 

appear only in the online paper.

METHODS

Census study experimental procedures

For experiments in wild soil, we collected the top-soil (approx. 20 cm) from a site free of 

pesticide and fertilizer at Mason Farm (MF; North Carolina, USA; +35° 53′ 30.40′′, −79° 
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1′ 5.37′′) 19. Soil was dried, crushed and sifted to remove debris. To improve drainage, soil 

was mixed 2:1 volume with autoclaved sand. Square pots (2 × 2 inch square) were filled 

with the soil mixture and used to grow plants. Soil micronutrient analysis is published by 

Lundberg, D.S. et al. 19.

All Arabidopsis thaliana mutants used in this study were in the Columbia (Col-0) 

background (Supplementary Table 16). All seeds were surface-sterilized with 70 % bleach, 

0.2 % Tween-20 for 8 minutes, and rinsed 3X with sterile distilled water to eliminate any 

seed-borne microbes on the seed surface. Seeds were stratified at 4 °C in the dark for 2 days.

To determine the role of phosphate starvation response in controlling microbiome 

composition, we analyzed five mutants related to the Pi-transport system (pht1;1, pht1;1 
pht1;4, phf1, nla, and pho2) and two mutants directly involved in the transcriptional 

regulation of the Pi-starvation response (phr1 and spx1 spx2). All these genes are expressed 

in roots 13– 18.

Seeds were germinated in sterile square pots filled with MF soil prepared as described 

above. We also used pots without plants as “bulk soil” controls. All pots, including controls, 

were watered from the top with non-sterile distilled water to avoid chlorine and other tap 

water additives 2 times a week. Plants were grown in growth chambers with a 16-h dark/8-h 

light regime at 21 °C day 18 °C night for 7 weeks. In all experiments, pots with plants of 

different genotypes were randomly placed in trays according to true random numbers 

derived from atmospheric noise; we obtained those numbers from www.random.org. We 

positioned trays in the growth chamber without paying attention to the pots they contained, 

and we periodically reshuffled them without paying attention to the pot labels.

Plants and bulk soil controls were harvested and their endophytic compartment (EC) 

microbial communities isolated as described19. DNA extraction was performed using 96-

well format MoBio PowerSoil Kit (MOBIO Laboratories) following the manufacturer’s 

instruction.

The method of Ames25 was used to determine the phosphate concentration in the shoots of 

seedlings grown on different Pi regimens and treatments. Main root length elongation was 

measured using ImageJ software26 and for shoot area and number of lateral roots WinRhizo 

software27 was used.

Processing of 16S sequencing data

For wild soil experiment 16S sequencing, we processed libraries according to Caporaso, et 
al.28. Three sets of index primers were used to amplify the V4 (515F-806R) region of the 

16S rRNA gene of each sample. In each case, the reverse primer had a unique molecular 

barcode for each sample28. PCR reactions with ∼20 ng template were performed with 5 

Prime Hot Master Mix in triplicate using plates 2, 4 and 5 from the 16S rRNA Amplification 

Protocol28. PCR blockers mPNA and pPNA29 were used to reduce contamination by plant 

host plastid and mitochondrial 16S amplicon. The PCR program used was:

Temperature cycling
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95 °C for 3 min

35 cycles of

95 °C for 45 seconds

78 °C (PNA) for 30 seconds

50 °C for 60 seconds

72 °C for 90 seconds

4 °C until use

Reactions were purified using AMPure XP magnetic beads and quantified with Quant IT 

Picogreen. Amplicons were pooled in equal amounts and then diluted to 5.5 pM for 

sequencing. Samples were sequenced on an Illumina MiSeq machine at UNC, using a 500-

cycle V2 chemistry kit. The library was spiked with 25 % PhiX control to increase sequence 

diversity. The raw data for the wild soil experiments is available in the EBI Sequence Read 

Archive (accession PRJEB15671).

For SynCom experiment 16S library, we amplified the V3-V4 regions of the bacterial 16S 

rRNA gene using primers 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’). Libraries were created using a modified version of the 

Lundberg, D.S. et al.29. Basically, the molecule-tagging step was changed to an exponential 

amplification to account for low DNA yields with the following reaction:

Reaction

5 µL Kapa Enhancer

5 µL Kapa Buffer A

1.25 µL 5 µM 338F

1.25 µL 5 µM 806R

0.375 µL mixed PNAs (1:1 mix of 100 µM pPNA and 100 µM mPNA)

0.5 µL Kapa dNTPs

0.2 µL Kapa Robust Taq

8 µL dH2O

5 µL DNA

Temperature cycling

95 °C for 60 seconds

24 cycles of

95 °C for 15 seconds

78 °C (PNA) for 10 seconds

50 °C for 30 seconds

72 °C for 30 seconds
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4 °C until use

Bead cleaning

Following PCR cleanup to remove primer dimers, the PCR product was indexed using the 

same reaction and 9 cycles of the cycling conditions described in Lundberg, D.S. et al.29. 

Sequencing was performed at UNC on an Illumina MiSeq instrument using a 600-cycle V3 

chemistry kit. The raw data for the SynCom experiments is available in the EBI Sequence 

Read Archive accession PRJEB15671.

For wild soil census analysis, sequences from each experiment were pre-processed following 

standard method pipelines from2, 19. Briefly, sequence pairs were merged, quality-filtered 

and de-multiplexed according to their barcodes. The resulting sequences were then clustered 

into Operational Taxonomic Unit (OTUs) using UPARSE30 implemented with 

USEARCH7.1090, at 97 % percent identity. Representative OTU sequences (Supplementary 

Dataset 1) were taxonomically annotated with the RDP classifier31 trained on the 

Greengenes database (4/February/2011; Supplemental Dataset 1). We used a custom script 

(https://github.com/surh/pbi/blob/master/census/1.filter_contaminants.r) to remove 

organellar OTUs, and OTUs that had no more than a kingdom-level classification, and an 

OTU count table was generated (Supplementary Table 1, Supplementary Dataset 1).

SynCom sequencing data were processed with MT-Toolbox32. Categorizable reads from 

MT-Toolbox (i.e. reads with correct primer and primer sequences that successfully merged 

with their pair) were quality filtered with Sickle by not allowing any window with Q-score 

under 20, and trimmed from the 5’ end to a final length of 270 bp. The resulting sequences 

were matched to a reference set of the strains in the SynCom generated from Sanger 

sequences, the sequence from a contaminant strain (47Yellow) that grew in the plate from 

strain 47 (Supplementary Table 2) and Arabidopsis organellar sequences. Sequence mapping 

was done with USEARCH7.1090 with the option –”usearch_global” at a 98 % identity 

threshold. 90 % of sequences matched an expected isolate, and those sequence mapping 

results were used to produce an isolate abundance table. The remaining unmapped 

sequences were clustered into OTUs with the same settings used for the census experiment, 

the vast majority of those OTUs belonged to the same families as isolates in the SynCom, 

and were probably unmapped due to PCR and/or sequencing errors. We combined the isolate 

and OTU count tables into a single master table. The resulting table was processed and 

analyzed with the code at (https://github.com/surh/pbi/blob/master/syncom/

7.syncomP_16S.r). Matches to Arabidopsis organelles were discarded. PCR blanks were 

included in the sequencing and the average counts per strain observed on those blanks were 

subtracted from the rest of the samples following33. Extended Data Fig. 7a shows the 

number of usable reads across samples, and the remaining number after subtracting sterile 

controls (blanks).

In vitro plant growth conditions

For physiological, transcriptional analysis or pathology experiments, we used phr1, phr1 
phl1, phf1, and coi1–16, sid2-1 mutants, which are all in the Col-0 genetic background 

(Supplementary Table 16). For all physiological and transcriptional analysis in vitro, 

Arabidopsis seedlings were grown on Johnson medium [KNO3 (0.6 g/L), Ca(NO3)2
.4H2O 
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(0.9 g/L), MgSO4
.7H2O (0.2 g/L), KCl (3.8 mg/L), H3BO3 (1.5 mg/L), MnSO4

.H2O (0.8 

mg/L), ZnSO4
.7H2O (0.6 mg/L), CuSO4

. 5H2O (0.1 mg/L), H2MoO4 (16.1 µg/L), 

FeSO4
.7H2O (1.1 mg/L), Myo-Inositol (0.1 g/L), MES (0.5 g/L), pH 5.6 – 5.7] solidified 

with 1 % bacto-agar (BD, Difco). Media were supplemented with Pi (KH2PO4) at distinct 

concentrations depending on the experiment; 1 mM Pi was used for complete medium and 

approximately 5 µM Pi (traces of Pi in the agar) was the Pi concentration in the medium not 

supplemented with Pi. Unless otherwise stated, plants were grown in a growth chamber in a 

15-h dark/9-h light regime (21 °C day /18 °C night).

For Synthetic Community experiments, plants were germinated on Johnson medium 

containing 0.5 % sucrose, with 1 mM Pi, 5 µM Pi or supplemented with KH2PO3 

(phosphite) at 1 mM for 7 d in a vertical position, then transferred to 50 µM Pi or 625 µM Pi 

media (without sucrose) alone or with the Synthetic Community at 105 c.f.u/mL, for another 

12 d. For the heat-killed SynCom experiments, plants were grown as above. Heat-killed 

SynComs were obtained by heating different concentrations of bacteria: 105 c.f.u/mL, 106 

c.f.u/mL and 107 c.f.u/mL at 95 °C for 2 h in an oven. The whole content of the heat-killed 

SynCom solutions were added to the media.

For the functional activation of the PSR by the SynCom, plants were germinated on Johnson 

medium containing 0.5 % sucrose, 1 mM Pi for 7 d in a vertical position, then transferred to 

0, 10, 30, 50 and 625 µM Pi alone, or to 0, 50 and 625 µM Pi with the Synthetic Community 

at 105 c.f.u / mL, for another 12 d. At this point, we harvested our time zero (3 replica per 

conditions, each replica was 5 shoots harvested across all plates used). The remaining plants 

were transferred again to 1mM Pi to evaluate the capacity of the plants for Pi accumulation 

in a time series analysis. We harvested plant shoots every 24 h for 3 days and Pi-

concentration was determined. Pi increase was calculated as: (Pi concentration day n – Pi 

concentration day 0) / Pi-concentration day 0. Relative increase in Pi concentration is plotted 

in Fig. 2c. Both relative and absolute Pi concentration values are provided in Supplementary 

Table 4.

We repeated this experiment twice. For the first experiment, we used 6 plates with 10 plants 

per condition (48 plates and 480 plants in total). We harvested three replicas per time point 

with 5 shoots each. In all cases, shoots were harvested across all plates used. For the second 

experiment, we used 11 plates with 10 plants per condition (88 plates and 880 plants). In this 

case, we harvested 6 replicas for 1, 2 and 3 days after the re-feeding with Pi, and three 

replicas for time zero. Each replica contains 5 shoots harvested across all the plates used.

For the demonstration that sucrose is required for the induction of PSR in sterile conditions, 

plants overexpressing the PSR reporter construct IPS1:GUS13 were grown in Johnson 

medium containing 1 mM Pi or 5 µM Pi supplemented with different concentrations of 

sucrose. After 12 days, the expression of the reporter constructs IPS1:GUS, highly induced 

by low Pi, was followed by GUS staining. Plants were grown in a growth chamber in a 15-h 

light/9-h dark regime (21 °C day /18 °C night).

For the ChIP-seq experiment, phr1 harboring the PromPHR1:PHR1-MYC construct18 and 

Col-0 seedlings were grown on Johnson medium 1 mM Pi, 1 % sucrose for 7 days and then 
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transferred to a media not supplemented with Pi for another 5 days. Plants were grown in a 

growth chamber in a 15-h light/9-h dark regime (21 °C day /18 °C night). A total of 2364 

genes were identified as regulated by PHR1. The ChIP-seq data will be fully presented in de 

Lorenzo, et al.34.

For the transcriptional analysis under conditions typically used to study PSR (axenic growth 

with sucrose present; no microbiota involved), with Methyl Jasmonate (MeJA) and the 22-

amino acid flagellin peptide (flg22), plants were germinated on Johnson medium (1 % 

sucrose) containing 1 mM Pi for 7 d in a vertical position and then transferred to 1 mM Pi 

and 5 µM Pi media containing 1 % sucrose either alone or supplemented with 10 µM MeJA 

(Sigma) or 1 µM flg22 (Sigma) for 12 d.

For growth inhibition assays, seedlings were grown on Johnson medium (1 % Sucrose) in 1 

mM Pi and 5 µM Pi conditions for 5 d, transferred to 1 mM Pi and 5 µM Pi media 

supplemented or not with 10 µM MeJA for 5 d. Main root length was then measured using 

ImageJ software26.

Bacterial isolation and culture

For Synthetic Community experiments, we selected 35 diverse bacterial strains. 32 of them 

were isolated from roots of Arabidopsis and other Brassicaceae species grown in two wild 

soils19. Two strains came from Mason Farm unplanted soil19, and Escherichia coli DH5α 
was included as a control (Supplementary Table 2). More than half (19/35) of the strains 

belonged to families enriched in the EC of plants grown in Mason Farm soil (Supplementary 

Table 2)2, 19. The strains were chosen from a larger isolate collection in a way that 

maximizes SynCom diversity while retaining enough differences in their 16S rRNA gene to 

allow for easy and unambiguous identification.

A single colony of bacteria to be tested was inoculated in 4 mL of 2XYT medium (16 g/L 

Tryptone, 10 g/L Yeast Extract, 5 g/L NaCL, ∼5.5 mM Pi) in a test tube. Bacterial cultures 

were grown while shaking at 28°C overnight. At this point, the Pi concentration was reduced 

to by dilution to 5 mM Pi average in the supernatants (10 cultures used for the 

quantification). Cultures were then rinsed with a sterile solution of 10 mM MgCl2 followed 

by a centrifugation step at 2600 g for 8 min. This process was repeated twice. The 

concentration of Pi in the supernatant after the first wash with MgCL2 was 0.06 mM Pi and 

after the second wash it was reduced to 0.005 mM Pi. In the suspension of SynCom member 

cells in MgCl2, the average concentration of Pi was 0.08 mM. The OD600nm was measured 

and assuming that 1 OD600nm unit is equal to 109 c.f.u/mL we equalized individual 

bacterium concentration to a final value of 105 c.f.u/mL of medium. The concentration of Pi 

in the final SynCom was 0.09 µM Pi. Thus, based on these results, we were not Pi fertilizing 

the plant by adding the SynCom. Medium was cooled down (to 40–44°C) near the 

solidification point and then the bacteria mix was added to the medium with agitation. We 

monitored the pH in the media after adding 1, 5, 10 mL of 10 mM MgCl2 which represents 

almost ten times the volume we used to add the SynCom. After adding MgCl2 the pH in the 

media remained stable. We also analyzed the pH after adding the SynCom at 105, 106 and 

107 c.f.u/ml of media and found no pH changes. Therefore, we considered that the MES 

buffer we used was appropriate for this experiment.
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To isolate and quantify bacteria from plant roots in the SynCom experiment, plant roots 

were harvested, and rinsed 3 times with sterile distilled water to remove agar particles and 

weakly associated microbes. Plant material was then freeze-dried. Root pulverization and 

DNA extraction was conducted as described above.

To isolate and quantify bacteria from agar samples, a freeze and squeeze protocol was used. 

Syringes with a square of sterilized miracloth at the bottom were completely packed with 

agar and kept at −20 °C for a week. Samples were thawed at room temperature and syringes 

were squeezed gently into 50 mL tubes. Samples were centrifuged at max speed for 20 min 

and most of the supernatant discarded. The remaining 1–2 mL of supernatant, containing the 

pellet, was moved into clean microfuge tubes. Samples were centrifuged again, supernatant 

was removed, and pellets were used for DNA extraction. DNA extraction was performed 

using 96-well format MoBio PowerSoil Kit (MOBIO Laboratories).

Pathology studies

For oomycete pathology studies, Hyaloperonospora arabidopsidis (Hpa) isolate Noco2 was 

propagated on the susceptible Arabidopsis ecotype Col-0. Spores of Hpa were suspended in 

deionized sterile water at a concentration of 5×104 spores/mL. The solution containing 

spores was spray-inoculated onto 10-d-old seedlings of Arabidopsis grown in fertilized 

potting soil. Inoculated plants were grown at 21 °C under a 9-h light regime. Asexual 

sporangiophores were counted 5 d post-inoculation on at least 100 cotyledons for each 

genotype.

For bacterial pathology studies, Pseudomonas syringae pv. tomato DC3000 was suspended 

in 10 mM MgCl2 to a final concentration of 105 c.f.u/mL. 35–40-d-old plants of Arabidopsis 

grown on soil were hand-infiltrated using a needle-less syringe on the abaxial leaf surface. 

Leaf discs (10 mm diameter) were collected after 1 h and 3 d post inoculation, and bacterial 

growth was measured as described35.

Genome-wide gene expression analyses

We performed 3 different sets of RNA-seq experiments in this study. (I) The first set (Fig. 

2b, Fig. 3 and Extended Data Fig. 4b) evaluated the effect of the SynCom on the phosphate 

starvation response of Arabidopsis seedlings. In addition to wild-type Col-0 (4 replicates), 

phf1 (4 replicates) and phr1 phl1 (4 replicates) were included in the experiment shown in 

Fig. 2b, whereas Col-0 (10 replicates), phr1 (10 replicates) and phr1 phl1 (6 replicates) were 

used in the experiment shown in Fig. 3 and Extended Data Fig. 4b. (II) The second 

experiment (Extended Data Fig. 6a, b) is an expansion of the first and was designed to 

evaluate whether different pre-treatments (1 mM Pi, 5 µM Pi, 1 mM Phosphite [Phi]) 

influence the phosphate starvation response triggered by the SynCom. We used Col-0 (4 

replicates), phf1 (4 replicates) and phr1 phl1 (4 replicates) in this experiment. (III) Finally, 

the third experiment evaluated the effect of MeJA and flg22 on the phosphate starvation 

response (Fig. 4 and Extended Data Fig. 9) of Arabidopsis seedlings. The genotypes Col-0 

(6 replicates) and phr1 phl1 (6 replicates) were used. The experiments listed above were 

repeated between two and five independent times and each repetition (defined as “batch” in 

the generalized linear model, see RNA-seq data analysis, below) included two biological 
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replicates per genotype per condition. Supplementary Table 15 contains the metadata 

information of all RNA-seq experiments. Raw reads and read counts are available at the 

NCBI Gene Expression Omnibus under accession number GSE87339.

RNA isolation and RNA-seq library construction

Total RNA was extracted from roots of Arabidopsis according to Logemann, et al.36. Frozen 

seedlings were pulverized in liquid nitrogen. Samples were homogenized in 400 µl of Z6-

buffer; 8 M guanidinium-HCl, 20 mM MES, 20 mM EDTA pH 7.0. Following the addition 

of 400 µl phenol:chloroform:isoamylalcohol; 25:24:1, samples were vortexed and 

centrifuged (20000 g, 10 min) for phase separation. The aqueous phase was transferred to a 

new 1.5 ml tube and 0.05 volumes of 1N acetic acid and 0.7 volumes 96 % ethanol were 

added. The RNA was precipitated at −20 °C overnight. Following centrifugation, (20000 g, 

10 min, 4 °C) the pellet was washed with 200 µl sodium-acetate (pH 5.2) and 70 % ethanol. 

The RNA was dried, and dissolved in 30 µl of ultrapure water and stored at −80 °C until use.

Illumina-based mRNA-seq libraries were prepared from 1000 ng RNA. Briefly, mRNA was 

purified from total RNA using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life 

Sciences) and then fragmented in the presence of divalent cations (Mg2+) at 94 °C for 6 min. 

The resulting fragmented mRNA was used for first-strand cDNA synthesis using random 

hexamers and reverse transcriptase, followed by second strand cDNA synthesis using DNA 

Polymerase I and RNAseH. Double-stranded cDNA was end-repaired using T4 DNA 

polymerase, T4 polynucleotide kinase and Klenow polymerase. The DNA fragments were 

then adenylated using Klenow exo-polymerase to allow the ligation of Illumina Truseq HT 

adapters (D501–D508 and D701–D712). All enzymes were purchased from Enzymatics. 

Following library preparation, quality control and quantification were performed using a 

2100 Bioanalyzer instrument (Agilent) and the Quant-iT PicoGreen dsDNA Reagent 

(Invitrogen), respectively. Libraries were sequenced using Illumina HiSeq2500 sequencers 

to generate 50 bp single-end reads.

RNA-seq data analysis

Initial quality assessment of the Illumina RNA-seq reads was performed using the FASTX-

Toolkit. Cutadapt37 was used to identify and discard reads containing the Illumina adapter 

sequence. The resulting high-quality reads were then mapped against the TAIR10 

Arabidopsis reference genome using Tophat38, with parameters set to allow only one 

mismatch and discard any read that mapped to multiple positions in the reference. The 

Python package HTSeq39 was used to count reads that mapped to each one of the 27,206 

nuclear protein-coding genes. Extended Data Fig. 10 shows a summary of the uniquely 

mapped read counts per library. Raw sequencing data and read counts are available at the 

NCBI Gene Expression Omnibus accession number GSE87339.

Differential gene expression analyses were performed using the generalized linear model 

(glm) approach40 implemented in the edgeR package41. This software was specifically 

developed and optimized to deal with over-dispersed count data, which is produced by 

RNA-seq. Normalization was performed using the trimmed mean of M-values method 

(TMM42; function calcNormFactors in edgeR). The glmFit function was used to fit the 
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counts in a negative binomial generalized linear model with a log link function40. For the 

SynCom experiment (Fig. 3), the model includes the covariates: phosphate content (High or 

Low), bacteria (present or absent) and batch effect. A term for the interaction between 

Phosphate and Bacteria was included as represented below:

The model used to analyze the effect of MeJA and flg22 (Fig. 4) included the following 

covariates: phosphate content (High or Low), MeJA (present or absent), flg22 (present or 

absent) and batch effect.

In each model, the term “Batch” refers to independent repetitions of the experiment (see the 

Genome-wide gene expression analyses section). Data from the different genotypes were 

fitted independently with the same model variables. The Benjamini-Hochberg method (False 

Discovery Rate; FDR)43 was applied to correct the p-values after performing multiple 

comparisons. Genes with FDR below or equal to 0.01 and fold-change variation of at least 

1.5X were considered differentially expressed.

Transcriptional activation of the phosphate starvation response was studied using a 

literature-curated set of phosphate starvation marker genes (Extended Data Fig. 4a, 

Supplementary Table 3). This core set consists of 193 genes that were up-regulated by 

phosphate starvation stress across four different gene expression experiments13, 44– 46. The 

RPKM (Reads Per Kilobase of transcript per Million mapped reads) expression values of 

these 193 genes were z-score transformed and used to generate box and whiskers plots to 

show the distribution of the expression values of this gene set.

Hierarchical clustering analyses were performed with the heatmap.2 function in R from the 

gplots package47 using the sets of differentially expressed genes identified in each 

experiment. Genes were clustered based on the Euclidean distance and with the complete-

linkage method. Genes belonging to each cluster were submitted to Gene Ontology (GO) 

enrichment analyses on the PlantGSEA platform48 in order to identify over-represented 

biological processes.

Defining markers of the MeJA and SA responses

Genes whose transcription is induced by MeJA (672 genes), BTH/SA (2096 genes) or both 

hormones (261 genes) were used as markers of the activation of these immune response 

output sectors in Arabidopsis (Supplementary Table 10)49. These gene sets were defined 

using two-week old Col-0 seedlings grown on potting soil and sprayed with MeJA (50 µM; 

Sigma), BTH (300 µM; Actigard 50WG) or a mock solution (0.02 % Silwet, 0.1 % ethanol). 

Samples were harvested 1 h, 5 h and 8 h after the treatment in two independent experiments. 

Total RNA was extracted with the RNeasy Plant Mini kit (Qiagen) and then used to prepare 

Illumina mRNA-seq libraries. The bioinformatics pipeline to generate count tables and the 

criteria used to define differentially expressed genes between conditions (Hormone 
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treatment vs. Mock treatment) was the same as described above. Raw sequencing data are 

available at the NCBI Gene Expression Omnibus under the accession number GSE90077.

Statistical analyses

Most statistical analyses were performed in the R statistical environment50 and follow 

methods previously described2. As described in the following subsections, a number of 

packages were used, and many were called through AMOR-0.0–1451, which is based on 

code from Lebeis, et al.2. All scripts and knitr52 output from R scripts are available upon 

request. Most plots are ggplot253 objects generated with functions in AMOR51. For all linear 

modeling analyses (ANOVA, ZINB, GLM), terms for batch and biological replicate were 

included whenever appropriate. Code for both census and SynCom analysis is available at 

https://github.com/surh/pbi.

For wild soil and SynCom experiments, the number of samples per genotype and treatment 

was determined based on our previously published work, which showed that seven and five 

samples are enough to detect differences in wild soils and SynCom experiments, 

respectively.2, 19. For RNA-seq experiments, we used at least four replicates per condition, 

which is sufficient for parameter estimation with the edgeR software41.

Alpha and beta diversity were calculated on count tables that were rarefied to 1000 reads. 

Samples with less than this number of usable reads (i.e. high quality non-organellar reads) 

were discarded. Alpha diversity (Shannon index, richness) metrics were calculated using the 

“diversity” function in vegan54, and differences between groups were tested with ANOVA 

(Extended Data Fig. 1a). Site diversity (Extended Data Fig. 1b) was calculated with the 

“sitediv” function in AMOR51. Unconstrained ordination was performed with vegan (Bray-

Curtis), and Principal Coordinate Analysis (PCoA) was performed with AMOR (Extended 

Data Fig. 1d)51. Canonical Analysis of Principal Coordinates (CAP) is a form of constrained 

ordination55 and was performed using the “capscale” function of the vegan package in R54. 

CAP was performed on the full counts of the EC samples only, using the “Cao” distance. 

Constraining was done separately on plant genotype while conditioning on sequencing depth 

and biological replicate. This approach allowed us to focus on the portion of variation that is 

associated with plant genotype, conditionally, independent of other factors.

For the SynCom experiments, richness was directly calculated in R. Principal Coordinate 

Analysis was performed with the “PCO” function of AMOR51 using the “Cao” distance 

which was calculated with vegan54 on an abundance table rarefied to 1500 reads per sample. 

Canonical Analysis of Principal Coordinates (CAP) was performed using the “capscale” 

function of the vegan package54 in R. CAP was performed on the full counts of the root 

samples only, using the “Cao” distance. Constraining was done separately on Fraction, Pi 

level and plant genotype while conditioning on sequencing depth and the other covariates.

Differentially abundant bacterial taxa across fraction and genotype in the wild soil 

experiments were identified using the same approach as in Lebeis, et al.2. Briefly, we used a 

Zero-Inflated Negative Binomial (ZINB) framework that allowed us to test for the effect of 

specific variables, while both controlling for the other covariates and accounting for the 

excess of zero entries in the abundance tables. These zero-entries likely represented under-
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sampling and not true absences. The same analysis was performed at the family and OTU-

level on the measurable OTUs (taxa that have an abundance of at least 25 counts in at least 

five samples)19. Results are in Extended Data Fig. 1e–h, Supplementary Table 1. Extended 

Data Fig. 1h shows the distribution of significant genotypic effects on bacterial abundances 

at both taxonomic levels; in both cases the behavior is similar, indicating small and even 

effects of all genotypes.

For the comparison of enrichment profiles between genotypes, we followed the same Monte-

Carlo approach described in Lebeis, et al.2. Briefly we looked at the enrichment/depletion 

profile of bacterial taxa for each mutant compared to wild-type Col-0, and asked, for each 

pair of mutants, if they were more similar than expected by chance and assed significance by 

random permutation. Results are in Fig. 1d, Extended Data Fig. 1g.

To define differentially abundant strains in SynCom experiments, we found that a Negative 

Binomial GLM approach gave more stable results than the ZINB approach. We used the 

edgeR package41 to fit a quasi Negative Binomial GLM model with the glmQLFit function, 

and significance was tested with the glmQLFtest function56. Results of all relevant pairwise 

comparisons are in Extended Data Fig. 7 and Supplementary Table 5.

For the definition of robust colonizers in synthetic community experiments, we calculated 

the average relative abundance of E. coli on all root samples and counted, for each strain, 

how many times it was more abundant than E. coli’s average on the same set of root 

samples. Then we used a one-sided binomial test to ask if the probability of a given strain to 

be more abundant than the average E.coli was significantly higher than a coin toss (50%). 

Strains that passed the test were labeled as robust-colonizers, the rest of the strains were 

labeled as Sporadic or Non-Colonizers. The results are indicated in Fig. 2e and 

Supplementary Table 2.

Data and software accessibility

All data generated from this project is publicly available. Raw sequences from soil census 

and SynCom colonization are available at the EBI Sequence Read Archive under accession 

PRJEB15671. Count tables, metadata, taxonomic annotations and OTU representative 

sequences from the Mason Farm census and Syncom experiments are available as 

Supplementary Datasets 1 and Supplementary Datasets 2 respectively. Custom scripts used 

for statistical analysis and plotting are available at (https://github.com/surh/pbi). Raw 

sequences from transcriptomic experiments are available at the NCBI Gene Expression 

Omnibus under the accession number GSE87339. The corresponding metadata information 

is provided in Supplementary Table 15. All code is available upon request.
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Extended Data

Extended Data Figure 1. The Arabidopsis PSR alters highly specific bacterial taxa abundances
a, Alpha diversity of bacterial root microbiome in wild-type Col-0, PSR mutants and bulk 

soil samples. We used ANOVA methods and no statistical differences were detected between 

plant genotypes after controlling for experiment. b, Additive beta-diversity curves showing 

how many OTUs are found in bulk soil samples or root endophytic (EC) samples of the 

same genotype as more samples (pots) are added. The curves show the mean and the 95 % 
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confidence interval calculated from 20 permutations. c, Phylum-level distributions of plant 

root endophytic communities from different plant genotypes and bulk soil samples. d, 

Principal Coordinates Analysis based on Bray-Curtis dissimilarity of root and bulk soil 

bacterial communities showing a large effect of experiment on variation, as expected 

according to previous studies19. For a-d the number of biological replicates per genotype and 

soil are: Col-0 (n=17), pht1;1 (n=18), pht1;1 pht1;4 (n=17), phf1 (n=13), nla (n=16), pho2 
(n=16), phr1 (n=18), spx1 spx2 (n=14) and Soil (n=17) e, Bacterial taxa that are 

differentially abundant (DA) between PSR mutants and Col-0. Each row represents a 

bacterial Family (left) or OTU (right) that shows a significant abundance difference between 

Col-0 and at least one mutant. The heat-map grey scale shows the mean abundance of the 

given taxa in the corresponding genotype, and significant enrichments and depletions with 

respect to Col-0 are indicated with a red or blue rectangle, respectively. Taxa are organized 

by phylum shown on the right bar colored according to f. f, Doughnut plot showing Family-

level (top) and OTUs- level (bottom) differences in endophytic root microbiome 

compositions between mutants (columns) and Col-0 plants. The number inside each 

doughnut indicates how many bacterial Families are enriched or depleted in each mutant 

with respect to Col-0, and the colors in the doughnut show the phylum level distribution of 

those differential abundances. g, Tables of p-values from Monte Carlo pairwise comparisons 

between mutants. A significant p-value (cyan) indicates that two genotypes are more similar 

than expected by chance. Results of Family level comparison are shown. This plot should be 

compared with the corresponding OTU-level plot in Fig. 1d. h, Distributions of plant 

genotypic effects on taxonomic abundances at the Family (up) or OTU (down) level. For 

each genotype, the value of the linear model coefficients for individual OTUs or Families is 

plotted grouped by their sign. Positive values indicate that a given taxon has increased 

abundance in a mutant with respect to Col-0, while a negative value represents the inverse 

pattern. Only coefficients from significant comparisons are shown. The number of taxa (ie. 

points) on each box and whisker plots is indicated in the corresponding doughnut plot in f.
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Extended Data Figure 2. Plants grown in Mason Farm wild soil or phosphate (Pi) replete potting 
soil do not induce PSR and accumulate the same amount of Pi
a, Plants overexpressing the PSR reporter construct IPS1:GUS grown in Mason Farm wild 

soil (MF) or in phosphate (Pi) replete potting soil (GH) (250 ppm of 20-20-20 Peters 

Professional Fertilizer). b, Expression analysis of the reporter constructs IPS1:GUS (n= 12) 

shows lack of induction of PSR for both soils analyzed. In this construct, the promoter 

region of IPS1, highly induced by low Pi, drives the expression of GUS. Plants were grown 

in the conditions described in a. The number of GUS positive plants relative to the total 
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number of plants analyzed in each condition is shown in parenthesis. c, Phosphate (Pi) 

concentration in shoots (n= 6) of plants grown in both soils analyzed shows no differences. 

Plants were grown in a growth chamber in a 15-h light/9-h dark regime (21 °C day /18 °C 

night). Images shown here are representative of the 12 plants analyzed in each case. Bars 

mean standard deviation.

Extended Data Figure 3. Phylogenetic composition of the 35-member synthetic community 
(SynCom)
Left: Comparison of taxonomic composition of soil (S), rhizosphere (R) and endophyte (EC) 

communities from 19, with the taxonomic composition of the isolate collection obtained 

from the same samples and the SynCom selected from within it and used in this work. Right: 

Maximum likelihood phylogenetic tree of the 35-member SynCom based on a concatenated 

alignment of 31 single copy core proteins.
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Extended Data Figure 4. Induction of the PSR triggered by the SynCom is mediated by PHR1 
activity
a, Venn diagram with the overlap among genes found up-regulated during phosphate 

starvation in four different gene expression experiments 13, 44–46. The intersection (193 

genes) was used as a robust core set of PSR for the analysis of our transcriptional data 

(Supplementary Table 3). b, Expression profile of the 193 core PSR genes indicating that the 

SynCom triggers phosphate starvation under Low Pi conditions in a manner that depends on 

PHR1 activity. The RPKM expression values of these genes were z-score transformed and 

used to generate box and whiskers plots that show the distribution of the expression values 

of this gene set. Col-0, the single mutant phr1 and the double mutant phr1 phl1 were 

germinated at 1 mM Pi with sucrose and then transferred to low Pi (50 µM) and high Pi (625 

µM Pi) alone or with the SynCom. The figure shows the average measurement of ten 

biological replicates for Col-0 and phr1 and six for phr1 phl1c, Percentage of genes per 

cluster (from figure 3) containing the PHR1 binding site (P1BS, GNATATNC) within 1000 

bp of their promoters. The red line indicates the percentage of Arabidopsis genes in the 

whole genome that contain the analyzed feature. Asterisk denotes significant enrichment or 

depletion (p ≤ 0.05; hypergeometric test).
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Extended Data Figure 5. The SynCom induces PSR independently of sucrose in Arabidopsis
a, Expression analysis of a core of 193 PSR marker genes in an RNA-seq experiment using 

Col-0 plants. The RPKM expression values of these genes were z-score transformed and 

used to generate box and whiskers plots that show the distribution of the expression values 

of this gene set. Plants were grown in Johnson medium containing replete [1 mM Pi; (+Pi)] 

or stress [5 µM Pi; (−Pi)] Pi concentrations with (+Suc) or without (−Suc) 1 % sucrose. b, 

Expression analysis of the reporter constructs IPS1:GUS (n=20). In this construct, the 

promoter region of IPS1, highly induced by low Pi, drives the expression of GUS. Plants 
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were grown in Johnson medium +Pi or -Pi at different percentages of sucrose. These results 

show that sucrose is required for the induction of the PSR in typical sterile conditions. 

Images shown are representative of the 20 plants analyzed in each case c, Top: Plants grown 

in sterile conditions at different Pi concentrations [left (No Bacteria)] or with a SynCom 

[right (+SynCom)]. Bottom: Histochemical analysis of Beta-glucoronidase (GUS) activity in 

overexpressing IPS1:GUS plants (n=20) from top panel. Images shown are representative of 

the 20 plants analyzed in each case. d, Pi concentration in plant shoots from c , in all cases 

n=5. Analysis of Variance indicated a significant effect of the Pi level in the media (F = 

44.12, df = 1, p-value = 9.72e-8), the presence of SynCom (F = 32.61, df = 1, p-value = 

1.69e-6) and a significant interaction between those two terms (F = 4.748, df = 1, p-value = 

0.036) on Pi accumulation. e, Top: Plants grown in axenic conditions (No Bacteria), with a 

concentration gradient of heat-killed SynCom [2 h at 95 °C, (+Heat killed SynCom)] or with 

SynCom alive. Bottom: Histochemical analysis of GUS activity in overexpressing 

IPS1:GUS plants (n=15) from top panel. All plants were grown at 50 µM Pi. Images shown 

are representative of the 15 plants analyzed in each case f, Quantification of Pi concentration 

in plant shoots from e, (in call cases n=5). The SynCom effect on Pi concentration requires 

live bacteria. Plants were germinated on Johnson medium containing 0.5 % sucrose, with 1 

mM Pi for 7 d in a vertical position, then transferred to 0, 10, 30, 50, 625 µM Pi media 

(without sucrose) alone or with the Synthetic Community at 105 c.f.u/mL (only for the 

conditions 0, 50 and 625 µM Pi), for another 12 d. For the heat-killed SynCom experiments, 

plants were grown as above. Heat-killed SynComs were obtained by heating different 

concentrations of bacteria 105 c.f.u / mL, 106 c.f.u / mL and 107 c.f.u / mL at 95 °C for 2 h 

in an oven. The whole content of the heat-killed SynCom solutions were add to the media. In 

all cases, addition of the SynCom did not change significantly the final Pi concentration or 

the pH in the media. Letters indicates grouping based on ANOVA and Tukey post-hoc test at 

95 % confidence, conditions with the same letter are statistically indistinguishable.
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Extended Data Figure 6. Bacteria induce the PSR using the canonical pathway in Arabidopsis
a, Pi concentration in the shoot of Col-0 plants germinated in three different conditions, 5 

µM Pi (−Pi) (n=14), 1 mM Pi (+Pi) (n=15) and 1 mM KH2PO3 (Phi) (n=15) for 7 days. Phi 

is a non-metabolizable analog of Pi; its accumulation delays the response to phosphate 

stress. b, Expression profile analysis of a core of PSR-marker genes in Col-0, phf1 and phr1 
phl1. The RPKM expression values of these genes were z-score transformed and used to 

generate box and whiskers plots that show the distribution of the expression values of this 

gene set. Plants were germinated in three different conditions, 5 µM Pi (−Pi), 1 mM Pi (+Pi) 
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and 1 mM KH2PO3 (Phi) and then transferred to low Pi (50 µM Pi) and high Pi (625 µM Pi) 

alone or with the SynCom for another 12 d. The figure shows the average measurement of 

four biological replicates. c, Phenotype of plants grown in axenic conditions at 625 µM Pi 

(Top) or at 50 µM Pi (Bottom) [left (No Bacteria)] or with a SynCom [right (+SynCom)]. 

Images showed here are representative of the total number of plants analyzed in each case as 

noted below d, Quantification of the main root elongation, e, Number of lateral roots per 

plant, and f, Number of lateral roots per cm of main root in plants from c. For d, e and f the 

number of biological replicates are: 625 uM No Bacteria (n=48), 625 uM + SynCom (n=46), 

50 uM No Bacteria (n=73), and 50 uM SynCom (n=56), distributed across two independent 

experiments indicated with different shades of color. Measurements were analyzed with 

ANOVA while controlling for biological replicate. Asterisks denote a significant effect (p-

value < 1e-16) of treatment with SynCom for the three phenotypes in d, e and f. In all cases, 

neither the interaction between Pi and Bacteria, nor Pi concentrations alone had a significant 

effect and were dropped from the ANOVA model. In all cases, residual quantiles from the 

ANOVA model were compared with residuals from a Normal distribution to confirm that the 

assumptions made by ANOVA hold (see code on GitHub for details, see Methods).

Extended Data Figure 7. Plant genotype and Pi concentration alter SynCom strain abundances
a, Number of bacterial reads in samples of different types (left) and number of reads after 

blank normalization (right, see Methods). The number of biological replicates are: Inoculum 

(n=8), Agar + SynCom (n=41), Agar No Bacteria (n=2), Root + SynCom (n=36), Root No 

Bacteria (n=6) and Blank (n = 3), across two independent experiments b, Richness (number 

Castrillo et al. Page 25

Nature. Author manuscript; available in PMC 2017 September 15.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



of isolates detected) in SynCom samples. No differences were observed between plant 

genotypes. The number of biological replicates per group is n=12 except for Inoculum (n=4) 

and phf1 (n=11) c, Exemplary SynCom strains that show quantitative abundance differences 

between genotypes. Genotypes with the same letter are statistically indistinguishable. d, 

Exemplary SynCom strains that show quantitative abundance differences depending on Pi 

concentration in the media. Asterisks note statistically significant differences between the 

two Pi concentrations. e, CAP analysis of Agar vs Root difference in SynCom communities. 

These differences explained 9.1 % of the variance. The number of biological replicates per 

fraction is: Agar (n=12) and Root (n=35), distributed across two independent experiments f, 
Exemplary SynCom strain that shows a statistically significant differential abundance 

between Root and Agar samples. Statistically significant differences are defined as FDR < 

0.05. For c, d and f the number of biological replicates for every combination of genotype 

and Pi level is always n=6, evenly distributed across two independent experiments.
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Extended Data Figure 8. PHR1 controls the balance between the SA and JA regulons during the 
PSR induced by a 35-member SynCom
a, Total number of differentially expressed genes (FDR ≤ 0.01 and minimum of 1.5X fold-

change) in Col-0, phr1 and phr1 phl1 with respect to Low Pi (50 µM Pi), bacteria presence 

and the interaction between low Pi and bacteria. In this experiment, plants were grown for 7 

days in Johnson medium containing 1 mM Pi, and then transferred for 12 days to low (50 

µM Pi) and high Pi (625 µM Pi) conditions alone or with the SynCom. No sucrose was 

added to the medium. b, Venn diagram showing the overlap between the PSR marker genes 
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(Core Pi) and the genes that were up-regulated in Col-0 by each of the three variables 

analyzed. The combination of bacteria and low Pi induced the majority (85 %) of the marker 

genes. c, PHR1 negatively regulates the expression of a set of SA-responsive genes during 

co-cultivation with the SynCom. Venn diagram showing the overlap among PSR-SynCom 

DEGs, genes up-regulated by BTH treatment of Arabidopsis seedlings, and the direct targets 

of PHR1 identified by ChIP-seq. The red ellipse indicates the 468 BTH/SA-responsive genes 

that were differentially expressed. A total of 99 of these genes (21 %) are likely direct 

targets of PHR1. The yellow ellipse indicates 272 SA-responsive genes that were bound by 

PHR1 in a ChIP-seq experiment (see Fig. 3e). Approximately one-third of them (99/272) 

were differentially expressed in the SynCom experiment. d, Hierarchical clustering analysis 

showed that nearly half of the BTH/SA-induced genes that were differentially expressed in 

our experiment are more expressed in phr1 or phr1 phl1 mutants compared to Col-0 (dashed 

box). The columns on the right indicate those genes that belong to the core PSR marker 

genes (‘core’ lane) or that contain a PHR1 ChIP-seq peak (‘ChIP-seq’ lane). A subset of the 

SA marker genes is less expressed in the mutant lines (thin dashed box). This set of genes is 

also enriched in the core PSR markers and in PHR1 direct targets (p<0.001; hypergeometric 

test), indicating that PHR1 can function as a positive activator of a subset of SA-responsive 

genes. Importantly, these genes are not typical components of the plant immune system but 

rather encode proteins that play a role in the physiological response to low phosphate 

availability (e.g., phosphatases and transporters). e, Examples of typical SA-responsive 

genes are shown on the right along with their expression profiles in response to MeJA or 

BTH/SA treatment compared to Col-0. f, PHR1 activity is required for the activation of JA-

responsive genes during co-cultivation with the SynCom. Venn diagram showing the overlap 

among DEG from this work (PSR-SynCom), genes up-regulated by MeJA treatment of 

Arabidopsis seedlings and the genes bound by PHR1 in a ChIP-seq analysis. Red ellipse 

indicates 165 JA-responsive genes that were differentially expressed. Thirty-one of these 

(19 %) were defined as direct targets of PHR1. The yellow ellipse indicates 96 JA-

responsive genes that were bound by PHR1 in a ChIP-seq experiment. Approximately one-

third of them (31/96) were differentially expressed in the SynCom experiment. g, 

Hierarchical clustering analysis showed that almost 75 % of the JA-induced genes that were 

differentially expressed in our experiment are less expressed in the phr1 mutants (dashed 

box). The columns on the right indicate those genes that belong to the core PSR marker 

genes (‘core’ lane) or that contain a PHR1 ChIP-seq peak (‘ChIP-seq’ lane). h, Examples of 

well-characterized JA-responsive genes are shown on the right along with their expression 

profiles in response to BTH and MeJA treatments obtained in an independent experiment. i, 
Heatmap showing the expression profile of the 18 genes that were differentially expressed in 

our experiment and participate in the biosynthesis of glucosinolates21. In general, these 

genes showed lower expression in the phr1 mutants indicating that PHR1 activity is required 

for the activation of a sub-set of JA-responsive genes that mediate glucosinolate 

biosynthesis. The transcriptional response to BTH/SA and MeJA treatments is shown on the 

right and was determined in an independent experiment in which Arabidopsis seedlings were 

sprayed with either hormone. MeJA induces the expression of these glucosinolate 

biosynthetic genes, whereas BTH represses many of them. The gene IDs and the enzymatic 

activity of the encoded proteins are shown on the right. Results presented in this figure are 

based on ten biological replicates for Col-0 and phr1 and six for phr1 phl1. The color key 
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(blue to red) related to d, e, g, h, i represents gene expression as Z-scores and the color key 

(green to purple) related to e, h, i represents gene expression as log2 fold-changes.

Extended Data Figure 9. PHR1 activity effects on flg22 and MeJA-induced transcriptional 
responses
a, Total number of differentially expressed genes (FDR ≤ 0.01 and minimum of 1.5X fold-

change) in Col-0 and phr1 phl1 with respect to low Pi (50 µM Pi), flg22 treatment (1 µM) 

and MeJA (10 µM). In this experiment, plants were grown for 7 days in Johnson medium 

containing 1 mM Pi, and then transferred for 12 days to low (50 µM Pi) and high Pi (625 µM 

Pi) conditions alone, or in combination with each treatment. Sucrose was added to the 

medium at a final concentration of 1 %. b, Venn diagram showing the overlap among genes 

that were up-regulated by chronic exposure to flg22 in Col-0 and in phr1 phl1 and a 

literature-based set of genes that were up-regulated by acute exposure (between 8 to 180 

min) to flg2223. The red ellipse indicates the 251 chronic flg22-responsive genes defined 

here. c, Venn diagram showing the overlap among genes that were up-regulated by chronic 

exposure to MeJA in Col-0 and in phr1 phl1 in this work and a set of genes that were up-

regulated by MeJA treatment of Arabidopsis seedlings (between 1 and 8 hours). The red 

ellipse indicates the intersection of JA-responsive genes identified in both experiments. d, 

Col-0 and phr1 phl1 exhibit similar transcriptional activation of 426 common JA-marker 

genes (c) independent of phosphate concentration. As a control we used coi1-16, a mutant 

impaired in the perception of JA. The gene expression results are based on six biological 
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replicates per condition. e, Growth inhibition of primary roots by MeJA. Root length of 

wild-type Col-0 (n= 125 (+ Pi - MeJA), 120 (+ Pi + MeJA), 126 (− Pi - MeJA), 125 (− Pi + 

MeJA)), phr1 phl1 (n=85, 103, 90, 80) and the JA perception mutant coi1-16 (n= 125, 120, 

124, 119) was measured after 4 days of growth in the presence or not of MeJA with or 

without 1 mM Pi. Letters indicate grouping based on multiple comparisons from a Tukey 

post-hoc test at 95 % confidence. In agreement with the RNA-seq results, no difference in 

root length inhibition was observed between Col-0 and phr1 phl1.
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Extended Data Figure 10. Number of mapped reads for each RNA-seq library used in this study
The figure shows the maximum, minimum, average and median number of reads mapping 

per gene for all RNA-seq libraries generated. The total number of reads mapping to genes is 

also shown for each library. With the exception of the minimum number of mapped reads, 

which is zero for all libraries, all values are shown in a log scale.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Phosphate Stress Response (PSR) mutants assemble an altered root microbiota
a, Diagram of PSR regulation in Arabidopsis. Red and blue stripes indicate whether these 

mutants hyper- or hypo-accumulate Pi, respectively, in axenic, Pi replete conditions. The 

master PSR regulator PHR1 is a Myb-CC family transcription factor13 bound under 

phosphate replete conditions by the negative regulators SPX1 and SPX2 in the nucleus18. 

During PSR, PHR1 is released from SPX and regulates genes whose products include high-

affinity phosphate transporters (PHT1;1 and PHT1;4)13. Transporter accumulation at the 

plasma membrane is controlled by PHF117, while PHO2 and NLA mediate PHT1 
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degradation16, 17b, Phosphate (Pi) concentration in shoots of plant genotypes (grown in 

growth chambers, 16-h dark/8-h light regime, 21°C day 18°C night for 7 weeks) in a natural 

soil. Statistical significance was determined by ANOVA while controlling for experiment 

(indicated by point shape); genotype grouping is based on a post-hoc Tukey test, and is 

indicated by letters at the top; genotypes with the same letter are indistinguishable at 95% 

confidence. Biological replicate numbers are: Col-0 (n=12), pht1:1 (n=13), pht1;1 pht1;4 
(n=14), phf1 (n=9), nla (n=13), pho2 (n=11), phr1 (n=14) and spx1 spx2 (n=11) distributed 

across two independent experiments. c, Constrained ordination of root microbiome 

composition showing the effect of plant genotype: phr1 separates on the first two axes, spx1 
spx2 on the third axis and phf1 on the fourth axis. Ellipses show the parametric smallest area 

around the mean that contains 50% of the probability mass for each genotype. Biological 

replicate numbers are: Col-0 (n=17), pht1:1 (n=18), pht1;1 pht1;4 (n=17), phf1 (n=13), nla 
(n=16), pho2 (n=16), phr1 (n=18) and spx1 spx2 (n=14) distributed across two independent 

experiments d, Table of p-values from Monte Carlo pairwise comparisons between mutants 

at the OTU level. A significant p-value (cyan) indicates that two genotypes are more similar 

than expected by chance.
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Figure 2. A bacterial Synthetic Community (SynCom) differentially colonizes PSR mutants
a, Pi concentration in shoots of plants grown on different Pi regimens with or without the 

SynCom. Plants were germinated on Johnson medium containing 0.5 % sucrose, 

supplemented with 1 mM Pi for 7 d in a vertical position, then transferred to 50 µM Pi or 

625 µM Pi media (without sucrose) alone or with the SynCom at 105 c.f.u/mL, for another 

12 d. Biological replicates numbers are: Col-0 (n=16 (625 µM Pi), 24 (625 µM Pi + 

SynCom), 12 (50 µM Pi), 24 (50 µM Pi + SynCom)), phf1 (n=16, 18, 12, 24) and phr1 phl1 
(n=16, 18, 12, 24) from three independent experiments. Statistical significance was 

determined via ANOVA while controlling for experiment, and the letters indicate the results 

of a post-hoc Tukey test. Groups of samples that share at least one letter are statistically 

indistinguishable. b, Expression levels of 193 core PSR genes. The RPKM expression values 

of these genes were z-score transformed and used to generate box and whiskers plots that 

show the distribution of the expression values of this gene set. Boxes at bottom indicate 

presence/absence of SynCom and Pi at the concentration indicated. This labeling is 

maintained throughout. Data is the average of 4 biological replicates. c, Functional 

activation of PSR by the SynCom. Plants were grown on five different Pi levels (0 µM Pi, 10 

µM Pi, 30 µM Pi, 50 µM Pi and 625 µM Pi) without the SynCom (left) and on three different 

Pi levels (0 µM Pi, 50 µM Pi and 625 µM Pi) with the SynCom (right). Plants were then 

transferred to full (1 mM Pi) condition to evaluate the capacity of the plants for Pi 
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accumulation over time (Methods). Shoots were harvested every 24 h for 3 days and Pi 

concentration was measured. Pi increase represents the normalized difference in Pi content 

at day n with respect to the Pi content on the day of transfer to 1 mM Pi. Shoots with 

SynCom-activated PSR accumulated approximately 20–40 times more Pi than non-

inoculated shoots. Absolute Pi concentration values are available in Supplementary Table 4. 

For all Pi concentrations and SynCom treatments n=6 at day 0, and n=9 at all other time 

points, distributed across two independent experiments. d, PCoA of SynCom experiments 

showing that Agar and Root samples are different from starting inoculum. Biological 

replicate numbers are: Inoculum (n=4), Agar (n=12) and Root (n=35) across two 

independent experiments. e, Heatmap showing percent abundances of SynCom isolates 

(columns) in all samples (rows). Strain name colors correspond to Phylum (bottom left). 

Within each block, samples are sorted by experiment. For each combination of genotype and 

Pi level, there are n=6 biological replicates evenly distributed across two independent 

experiments, except for Inoculum for which there are n=4 technical replicates evenly 

distributed across two independent experiments. f, Constrained ordination showing the effect 

of plant genotype and g, media Pi concentration effect on the root communities. The 

proportion of total variance explained (constrained) by each variable is indicated on top of 

each plot; for g, remaining unconstrained ordination was subjected to multi-dimensional 

scaling (MDS); the first MDS axis (MDS1) is shown. For f and g, biological replicate 

numbers are: Col-0 (n=12), phf1 (n=11), phr1 phl1 (n=12), 50uM Pi (n=24) and 625uM Pi 

(n=23) distributed across two independent experiments.
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Figure 3. PHR1 mediates interaction of the PSR and plant immune system outputs
a, Hierarchical clustering of 3257 genes that were differentially expressed in the RNA-seq 

experiment. Plants were germinated on Johnson medium containing 0.5 % sucrose 

supplemented with 1 mM Pi for 7 d, then transferred to 50 µM Pi or 625 µM Pi media 

(without sucrose) alone or with the Synthetic Community at 105 c.f.u/mL, for another 12 d 

(plates vertical). Columns on the right indicate genes that are core PSR markers (‘core’ lane) 

or had a PHR1 binding peak (‘PHR1 ChIP’ lane). b, Proportion of PSR marker genes per 

cluster. c, Proportion of PHR1 direct targets genes per cluster. The red line in b and c 
denotes the proportion of genes in the whole Arabidopsis genome that contain the analyzed 

feature. Asterisk denotes significant enrichment or depletion (p ≤ 0.05; hypergeometric test). 

d, Summary of the Gene Ontology enrichment analysis for each of the twelve clusters. The 

enrichment significance is shown as -log2(FDR). White means no enrichment. The complete 

results are in Supplementary Table 9. e, The set of genes bound by PHR1 (At4g28610) in 

ChIP-seq experiments is enriched in genes that are up-regulated by BTH/SA and/or MeJA. 

Red nodes are core PSR marker genes. f, Example of genes bound by PHR1 and 
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differentially expressed in our experiment. PSR marker genes (top) and JA response 

(middle) are more expressed in wild-type plants, whereas SA-responsive genes (bottom) 

exhibit higher transcript levels in phr1 and phr1 phl1. The heatmaps show the average 

measurement of ten biological replicates for Col-0 and phr1 and six for phr1 phl1. The color 

key (blue to red) related to a, and f, represents gene expression as Z-scores.
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Figure 4. Loss of PHR1 activity results in enhanced activation of plant immunity
a, Venn diagram (left) showing the overlap between genes up-regulated and down-regulated 

in Col-0 and phr1 phl1 in response to phosphate starvation. Gene ontology enrichment 

(right) analyses indicate that defense-related genes are up-regulated exclusively in phr1 phl1. 

The complete enrichment results are shown in Supplementary Table 14. Color key (white to 

red) represents the gene ontology enrichment significance shown as -log2(FDR). White 

means no enrichment. b, Fold-change of genes differentially expressed in Col-0, phr1 phl1 
or in both genotypes in response to phosphate starvation. Columns on the right indicate 

whether each gene is also up-regulated by MeJA or BTH/SA. Arabidopsis plants were 

germinated on Johnson medium (1 % sucrose) containing 1 mM Pi for 7 d in a vertical 

position and then transferred to the same medium containing 1 % sucrose either alone or 

supplemented with 1 mM Pi for 12 d. c, Venn diagram showing the overlap among genes up-

regulated in Col-0 and phr1 phl1 during a typical PSR (from a) and the defense genes up-

regulated in phr1 phl1 in response to the SynCom (from Fig. 3a; clusters c3 and c8). The red 

ellipse indicates 113 defense genes that were up-regulated in phr1 phl1 during classical PSR 

and during PSR triggered by the SynCom; yellow ellipse indicates the 14 genes up-regulated 

genes under the same conditions. p-values refer to enrichment results using hypergeometric 

tests. dphr1 phl1 exhibits enhanced transcriptional activation of 251 genes differentially 

expressed following chronic flg22 exposure. Averaged from six biological replicates. ephr1 
exhibits enhanced disease resistance to the biotrophic oomycete pathogen Hyaloperonospora 
arabidopsidis isolate Noco2. Infection classes were defined by the number of asexual 

sporangiophores (Sp) per cotyledon and displayed as a color gradient from green (more 

resistant) to red (more susceptible); the mean number of sporangiophores per cotyledon is 

noted above each bar. Col-0 and Ws-2 represent susceptible and resistant controls, 

respectively. More than 100 cotyledons counted per genotype; the experiment was 

performed at least five times with similar results. fphr1 mutants exhibit enhanced disease 
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resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae DC3000. The 

coi1-16 (n= 9 (day zero), 13 (day three)) and sid2-1 (n= 16, 20) mutants were controls for 

resistance and susceptibility, respectively. Col-0 (n=16, 20), phr1 (n=17, 20), phr1 phl1 
(n=16, 20) and control plants were inoculated under typical experimental conditions: 

phosphate replete in non-axenic potting soil (Extended Data Fig. 2). The experiment 

includes at least 9 biological replicates from three independent experiments. Statistical 

comparisons among genotypes were one-way ANOVA tests followed by a post-hoc Tukey 

analysis; genotypes with the same letter above the graph are statistically indistinguishable at 

95 % confidence.
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