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Abstract

Numerous centrality measures have been developed to quantify the importances of nodes in time-

independent networks, and many of them can be expressed as the leading eigenvector of some 

matrix. With the increasing availability of network data that changes in time, it is important to 

extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we 

introduce a principled generalization of network centrality measures that is valid for any 

eigenvector-based centrality. We consider a temporal network with N nodes as a sequence of T 
layers that describe the network during different time windows, and we couple centrality matrices 

for the layers into a supra-centrality matrix of size NT × NT whose dominant eigenvector gives the 

centrality of each node i at each time t. We refer to this eigenvector and its components as a joint 
centrality, as it reflects the importances of both the node i and the time layer t. We also introduce 

the concepts of marginal and conditional centralities, which facilitate the study of centrality 

trajectories over time. We find that the strength of coupling between layers is important for 

determining multiscale properties of centrality, such as localization phenomena and the time scale 

of centrality changes. In the strong-coupling regime, we derive expressions for time-averaged 
centralities, which are given by the zeroth-order terms of a singular perturbation expansion. We 

also study first-order terms to obtain first-order-mover scores, which concisely describe the 
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magnitude of nodes’ centrality changes over time. As examples, we apply our method to three 

empirical temporal networks: the United States Ph.D. exchange in mathematics, costarring 

relationships among top-billed actors during the Golden Age of Hollywood, and citations of 

decisions from the United States Supreme Court.
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1. Introduction

The study of centrality [94]—that is, determining the importances of different nodes, edges 

and other structures in a network—has widespread applications in the identification and 

ranking of important agents (or interactions) in a network. These applications include 

ranking sports teams or individual athletes [14, 16, 110], the identification of influential 

people [70], critical infrastructures that are susceptible to congestion [53, 59], impactful 

United States Supreme Court cases [41,42,79], genetic and protein targets [65], impactful 

scientific journals [7], and much more. An especially important type of centrality measure 

are ones that arise as a solution of an eigenvalue problem [46], with nodes’ importances 

given by the entries of the dominant eigenvector of a so-called centrality matrix. Prominent 

examples include eigenvector centrality [9], PageRank [12, 95] (which provides the 

mathematical foundation to the Web search engine Google [46, 78]), hub and authority (i.e., 

HITS) scores [73], and Eigenfactor [7]. However, despite the fact that real-world networks 

change with time [60 – 62], most methods for centrality (and node rankings that are derived 

from them) have been restricted to time-independent networks. Extending such ideas to 

time-dependent networks (i.e., so-called temporal networks) has recently become a very 

active research area [1,33,51,52,71,80,90,96,107,108,116,117,127,128].

In the present paper, we develop a generalization of eigenvector-based centralities to ordered 

multilayer networks such as temporal networks. Akin to multilayer modularity [92], a 

critical underpinning of our approach is that we treat inter-layer and intra-layer connections 

as fundamentally different [26, 72]. For the purpose of generalizing centrality, we implement 

this idea by coupling centrality matrices for temporal layers in a supra-centrality matrix. For 

a temporal network with N nodes and T time layers, we obtain a supra-centrality matrix of 

size NT × NT. To use this matrix, we represent the temporal network as a sequence of 

network layers, which is appropriate for discrete-time temporal networks and continuous-

time networks whose edges have been binned to produce a discrete-time temporal network. 

Importantly, our methodology is independent of the particular choice of centrality matrix, so 

it can be used, for example, with ordinary eigenvector centrality [9], hub and authority 
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scores [73], PageRank [95], or any other centralities that are given by components of the 

dominant eigenvector of a matrix.

The dominant eigenvector of a supra-centrality matrix characterizes the joint centrality of 

each node-layer pair (i, t)—that is, the centrality of node i at time step t—and thus reflects 

the importances of both node i and layer t. We also introduce the concepts of marginal 
centrality and conditional centrality, which allow one to (1) study the decoupled centrality of 

just the nodes (or just the time layers) and (2) study a node’s centrality with respect to other 

nodes’ centralities at a particular time t (i.e., the centralities are conditional on a particular 

time layer). These notions make it possible to develop a broad description for studying 

nodes’ centrality trajectories across time. Although we develop this formalism for temporal 

networks, we note that our approach is also applicable to multiplex and general multilayer 

networks, which are two additional scenarios in which the generalization of centrality 

measures is important. (See, e.g., [54,112,113] for multiplex centralities and [30,114] for 

general multilayer centralities.)

Similar to the construction of supra-adjacency matrices [49, 72, 92] (see Sec. 2.2 for 

definition), we couple nearest-neighbor temporal layers using inter-layer edges of weight ω, 

which leads to a family of centrality measures that are parameterized by ω. The parameter ω 
controls the coupling of each node’s eigenvector-based centrality through time and can be 

used to tune the extent to which a node’s centrality changes over time. The limiting cases ω 
→ 0+ and ω → ∞ are particularly interesting, as the former represents the regime of 

complete decoupling of the layers and the latter represents a regime of dominating coupling 

of the layers. As part of the present paper, we conduct a perturbative analysis for the ω → 
∞limit. (For notational convenience, we study ε → 0+ for ε = 1/ω.) This allows us to derive 

principled expressions for the nodes’ time-averaged centralities (given by the zeroth-order 

expansion) and first-order-mover scores, which are derived from the first-order expansion. 

Time-averaged centrality ranks nodes so that their centralities are constant across time, and 

first-order-mover scores rank nodes according to the extent to which their centralities change 

in time. The computation of both time-averaged centralities and first-order-mover scores can 

be very efficient, because they only require the numerical solution of linear-algebraic 

problems of size N × N, which is ordinarily much smaller than the full supra-centrality 

matrix of size NT × NT. Moreover, our perturbative approach also alleviates the need to 

demand a particular choice of intra-layer coupling weight ω. Note that our methodology is a 

retrospective analysis and complements alternative temporal generalizations that take a 

causal approach.

The remainder of our paper is organized as follows. In Sec. 2, we provide further 

background information. In Sec. 3, we present our generalization of eigenvector-based 

centralities for temporal networks. In Sec. 4, we derive principled expressions for time-

averaged centralities and first-order-mover scores based on a singular perturbation 

expansion. In Sec. 5, we illustrate our approach using three examples from empirical data: 

Ph.D. exchange using data from the Mathematics Genealogy Project [101] (see Fig. 1.1), top 

billing in the Golden Age of Hollywood using the Internet Movie Database (IMDb) [63], 

and citations of United States Supreme Court decisions [40, 64]. We conclude in Sec. 6 and 

provide further details of our perturbation expansion in the appendix.
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2. Background Information and a Naive Approach

In Sec. 2.1, we provide additional background information. In Sec. 2.2, we discuss a naive 

approach for temporal eigenvector centrality that motivates our approach, and introduces our 

mathematical notation and terminology.

2.1. Background Information

The analysis of large networks is ubiquitous in science, engineering, medicine, and 

numerous other areas [94]. In the social sciences, for example, the abundance of data that 

describes the social behavior of individuals in academia [13, 15, 19, 93, 97, 101], show 

business [111], politics [8, 41, 42, 79, 100], and just about every other arena offers exciting 

avenues for the quantitative study of social systems. For these and many other applications, 

it is important to develop (and improve) mathematical techniques to extract concise and 

intuitive information from large network data. From the interdisciplinary pursuit of what is 

now often called network science, we know—from theory, computation, and data analysis—

that many network properties (e.g., degree heterogeneity, local clustering, community 

structure, and others [94]) have significant effects on dynamical processes on networks (e.g., 

information dissemination and disease spreading) [20, 99, 125]. Although the vast majority 

of research in network science has focused on time-independent networks, increased effort 

in recent years has aimed to generalize network analyses to “temporal networks” [4,60 – 

62,69], in which network entities and/or interactions change in time.

In the study of time-independent networks, numerous centrality measures have been 

developed to try to quantify the relative importances of nodes [94, 125]. There are seemingly 

as many centrality measures as applications [6, 9, 10, 34, 43, 67], and different types of 

centrality are appropriate for different situations. Importantly, one can construct centrality 

measures not only from the direct consideration of network structure but also based on 

studying an appropriate dynamical process on a network [45, 95, 105]. In our paper, we 

focus on eigenvector-based centralities. Although eigenvectors can obviously be used in 

different ways to introduce different notions of centrality, we reserve the term eigenvector-
based centrality to refer only to centrality measures in which the nodes’ centralities are given 

by the entries of the dominant eigenvector of a matrix, which we call a centrality matrix. 

Centrality matrices include a network’s adjacency matrix A (which indicates which nodes 

share a common edge) and various functions of A [6, 35], such as the hub and authority 

matrices [73] and PageRank matrices [46, 78, 95]. Eigenvector-based centralities reflect a 

network’s global structure and are often preferable to other types of centralities, because 

there are a large number of computationally efficient algorithms for computing spectral 

properties of matrices (e.g., the power method for computing the dominant eigenvector 

[48]). An eigenvector-based centrality is also a key component to the function of major Web 

search engines, including Google [46, 73, 95].

Although the study of centrality measures in time-independent networks has been insightful 

for numerous applications, most networks are time-dependent, and it is important to 

generalize centrality measures for temporal networks. This has been a very active area of 

research in recent years. Many approaches consider a temporal network as a sequence of 

network layers, and initial studies examined centralities of such uncoupled individual 
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network layers [11]. It was found, for example, that in the absence of coupling between 

network layers, centrality scores can fluctuate significantly from one time step to the next 

due to stochasticity in the appearance and disappearance of edges. Rankings can of course 

change over time (either slowly or rapidly). To give an example that is directly relevant to 

one of our case studies, it was demonstrated recently that uncoupled university rankings can 

fluctuate significantly from year to year [115], which we consider to be a suboptimal 

description for the temporal evolution of departmental prestige.

The most popular temporal extensions of centrality measures involve considering notions of 

centrality based on paths in a time-independent network and generalizing them using time-
respecting paths in a temporal network [74, 75]. We point out temporal extensions to 

PageRank that have been introduced to counteract age bias [85, 124, 128], capture temporal 

changes for the external interests of nodes via dynamic teleportation [108], and study 

random walks taking place on temporal networks [108]. We also highlight temporally 

extended versions of betweenness centrality [1, 71, 117, 127], closeness centrality [71, 96, 

117, 127], Bonacich centrality [80], win/lose centrality [90], communicability [33,50,52], 

Katz centrality [51], and coverage centrality [116]. These research efforts have extended 

centrality measures in different ways, which one can relate partly to the fact that one can 

define time-respecting paths in different ways. A time-respecting path can allow one, 

several, or an unlimited number of edge traversals during a particular time step. Moreover, 

the length of a time-respecting path—which one can use to provide a notion of “distance” 

between nodes—can also be measured in different ways [127]. For instance, the length of a 

time-respecting path can describe the number of edges that are traversed by the path, latency 

between the initialization and termination times of the path, or a combination of such ideas. 

For temporal networks, even the notion of a “shortest path” lacks an unambiguous 

definition, which subsequently can also introduce ambiguity into dynamical processes and 

network measures derived from them.

One common feature of existing generalizations of centralities for temporal networks is that 

they illustrate the importance of studying an entire temporal network, as opposed to 

aggregating temporal layers into a single (time-independent) network or analyzing the time 

layers in isolation from one another [60,61]. Specifically, studying a layer-aggregated 

network prevents one from studying centrality trajectories (i.e., how centrality changes over 

time), and studying the time layers in isolation does not account for the temporal orderings 

of edges, which can be crucial for determining centralities in a temporal setting [33, 38, 50, 

51, 84]. To provide additional context, we highlight that dynamical processes can behave 

vastly differently on temporal versus layer-aggregated networks.1 For example, a random 

walk—a process on which many eigenvector-based centralities rely—on a temporal network 

is affected fundamentally by the temporal ordering and time scale of the appearances and 

disappearances of edges [57, 58, 60 – 62, 66]. Rankings, such as eigenvector-based 

centralities, that are derived from such dynamics are, in turn, affected fundamentally by the 

temporal structure of the networks, and aggregation (as well as isolation) can lead to 

1As discussed in, e.g., [26,72] and several references therein—and more recently in [27]—a similar issue arises more generally in 
multilayer networks, and one must also take into account the effects of inter-layer edges (which are fundamentally different from intra-
layer edges) when defining a dynamical process on a multilayer network.
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misleading or even simply wrong results. Additionally, if one starts with a Markovian 

process on a temporal network and then aggregates the network, then in general one does not 

obtain a Markovian process [62], so fundamental (and often desirable) properties of a 

dynamical process can be destroyed as a byproduct of neglecting a network’s inherent 

temporal structure.

Finally, although extending centrality to temporal networks has become a very active 

research area, one should expect different generalizations of eigenvector-based centralities to 

be appropriate for different applications. Existing papers have not always been clear about 

the modeling assumptions and tradeoffs of their approaches.

2.2. Naive Generalization of Eigenvector Centrality for Temporal Networks

Before we present our primary approach in Sec. 3, it is instructive to consider one possible 

way to generalize eigenvector-based centralities. This example motivates our approach and 

introduces mathematical notation and terminology. Importantly, it is naive in that it does not 

treat intra-layer edges and inter-layer edges as distinct types of edges, which causes 

problems when the network layers are strongly coupled.

We use a multilayer representation of networks and seek to identify the most central nodes 

of a temporal network with N distinct nodes (i.e., vertices or actors) across T time layers. We 

specify the network edges with a node-by-node-by-time (N × N × T) adjacency tensor in 

which nonzero elements  indicate the presence and weight of the edge from node i to 

node j in time layer t. That is, the adjacency matrix at time t is given by A(t). See Table 2.1 

for a summary of our mathematical notation. We refer to node i in layer t as a node-layer 
pair (i, t) and node i (regardless of layer) as a physical node. We are interested particularly in 

understanding the physical nodes’ centrality trajectories through time.

It is tempting to reshape a network’s associated adjacency tensor into an NT × NT supra-
adjacency matrix

(2.1)

which represents a collection of both the temporal network edges (i.e., intra-layer edges) and 

the “identity edges” (which are inter-layer edges) that couple the node-layer pairs {(i, t)} for 

the same physical node i across the T network layers. The identity edges of weight ω 
attempt to weight the persistence of a physical node through time by enforcing an 

identification with itself at consecutive times [5]. When there are inter-layer edges only 

between different instances of the same physical node, a multilayer network is said to exhibit 

diagonal coupling, and the use of a constant ω across all such inter-layer edges is sometimes 

known as layer coupling [72]. We restrict our attention to nonnegative inter-layer coupling ω 

TAYLOR et al. Page 6

Multiscale Model Simul. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



≥ 0. (One can consider ω < 0 to drive negative coupling between layers, but we do not 

examine such values in our applications.) One can construe ω as a parameter to tune 

interactions between network layers [2, 5, 91]. In the limit ω → 0+, the layers become 

uncoupled; in the limit ω → ∞, the layers are so strongly coupled that inter-layer weights 

dominate the intra-layer connections.

We also restrict ourselves to nearest-neighbor coupling of temporal layers, as we place the 

identity inter-layer edges only between node-layer pairs, (i, t) and (i, t ± 1), that are adjacent 

in time (where the t = 0 and t = T layers have inter-layer edges to one other layer rather than 

two). This results in the block structure in Eq. (2.1). Equivalently, we write

(2.2)

where ⊗ denotes the Kronecker product and A(chain) is the T × T adjacency matrix of an 

undirected chain, or “bucket brigade,” network whose T nodes are each adjacent to their 

nearest neighbors along an undirected chain. In this bucket brigade,  for j = i ± 1 

and  otherwise. Although one can choose inter-layer coupling matrices other than 

A(chain) for the inter-layer couplings [24, 72] (and much of our approach can be generalized 

to other choices of coupling), we restrict our attention to nearest-neighbor coupling of 

layers.

It is also tempting to directly apply a standard eigenvector-based centrality calculation to the 

supra-adjacency matrix  by treating it just like any other adjacency matrix despite its 

special structure. However, such an approach neglects to respect the fundamental distinction 

between intra-layer edges and inter-layer edges that arises from the block-diagonal structure 

of . That is, in such an approach, one treats the inter-layer couplings (i.e., identity arcs) just 

like any other edge. In general, however, one needs to be careful when studying a temporal 

network using a supra-adjacency matrix formalism because many basic network properties

—some of which carry strong implications about a time-independent network (e.g., its 

spectrum, connectedness properties, and so on)—do not carry over naturally without 

modification to the supra-adjacency matrix. This issue was discussed for multilayer 

networks more generally in Refs. [21, 26, 72] and more recently in Ref. [27].

As a concrete example, let’s examine hub and authority centralities (i.e., HITS [73]) for a 

directed temporal network using the supra-adjacency matrix in Eq. (2.1) by simply inserting 

it in place of a time-independent adjacency matrix in the standard formulas. In other words, 

we define the hub and authority matrices as T and T , respectively. At a glance, by 

noting that the inter-layer couplings are undirected but that the intra-layer edges are directed, 

we already see that it is not clear whether standard interpretations of hub and authority 

rankings are still sensible. Nevertheless, one can try this approach for computing generalized 

hub and authority scores as the dominant eigenvectors of the symmetric matrices T and 
T . The simplicity of this approach makes it pleasing (and tempting), and the two 

symmetric matrices do have a block structure. However, in contrast to  (whose blocks on 

TAYLOR et al. Page 7

Multiscale Model Simul. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and off of the main diagonal encode intra-layer and inter-layer edges, respectively), the 

blocks in the matrices T and T  no longer separate neatly into describing only a single 

type of edge (i.e., inter-layer versus intra-layer edges).

The problem with this construction becomes particularly clear in the limit of strong inter-

layer coupling (i.e., as ω → ∞), for which  ≈ ω(A(chain) ⊗ I). Because A(chain) is 

symmetric, it follows that T ≈ T  ≈ ω2(A(chain)(A(chain))T ⊗ I). Unfortunately, it is 

useless to compute hub and authority scores of an undirected chain. Specifically, the 

corresponding hub/authority centrality matrix (whose dominant eigenvector gives the hub/

authority scores) of the undirected chain becomes

(2.3)

revealing that the hub/authority scores of the even-indexed and odd-indexed nodes decouple 

from each other. The resulting matrix is no longer irreducible, which can lead to 

nonuniqueness of dominant eigenvectors and/or can also cause the entries of a dominant 

eigenvector to be identically 0 for a large number of nodes.2 Both issues are detrimental if 

one wants to rank nodes based on some notion of importance. For example, for large values 

of ω, we observe oscillations and numerical instabilities when attempting to generalize hub 

and authority centralities in this way.

3. Temporal Coupling of Eigenvector-Based Centralities

In this section, we present a mathematical formalism for eigenvector-based centralities in 

temporal networks that treats inter-layer and intra-layer edges as distinct types of edges and 

ensures appropriate behavior for all ω > 0. Similar to prior investigations using multilayer 

representations of temporal networks [72, 92], we seek to develop an approach that involves 

neither a heuristic averaging of centralities from individual layers nor invokes the centrality 

for a single network obtained from the aggregation of network layers (e.g., summing the 

network edges across time).

2By inspection, the matrix in Eq. (2.3) is not irreducible, so we cannot apply the Perron – Frobenius theorem for irreducible 
nonnegative matrices [87]. There exist many variations of Perron – Frobenius theory, including ones that are applicable to reducible 
matrices (e.g., see Sec. 8.3.1 of [87]), which one can use to study phenomena that arise in the absence of irreducibility. In our case, we 
find two types of scenarios, depending on whether N is odd or even. For even N, the largest eigenvalue of A(chain)(A(chain))T has a 
multiplicity of two and a corresponding two-dimensional eigenspace that is spanned by vectors in which either the even-indexed or 
odd-indexed entries are 0. Consequently, there is not a unique dominant eigenvector, so there is not a unique ranking of nodes. For odd 
N, there is a single dominant eigenvalue; however, its eigenvector has entries that are identically 0 for even-indexed nodes, so only half 
of the nodes are ranked in a nontrivial way.
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The remainder of this section is organized as follows. In Sec. 3.1, we present our 

methodology for temporal eigenvector-based centrality in terms of the dominant eigenvector 

of a supra-centrality matrix. In Sec. 3.2, we introduce the concepts of joint, marginal, and 

conditional centrality, and we use them to study decoupled centralities of nodes and layers 

based on the centralities of node-layer pairs. In Sec. 3.3, we illustrate these concepts for an 

example synthetic network.

3.1. Inter-Layer Coupling of Centrality Matrices

To avoid the problems that arise from ignoring the distinction between inter-layer edges and 

intra-layer edges, we define a somewhat more nuanced generalization of eigenvector-based 

centralities. To preserve the special role of inter-layer edges, we directly couple the matrices 

that define the eigenvector-based centrality measure within each temporal layer (e.g., 

ordinary adjacency matrices for eigenvector centrality). That is, one can cast any 

eigenvector-based centrality in terms of some matrix C that is a function of the adjacency 

matrix A. For example, hub and authority scores are the leading eigenvectors of the matrices 

AAT and ATA, respectively (using the convention that elements Aij indicate i → j edges). 

Letting C(t) denote the centrality matrix for layer t, we couple these centrality matrices with 

inter-layer couplings of strength ω in a (rescaled) supra-centrality matrix

(3.1)

We are defining the supra-centrality matrix using a scaling factor ε = 1/ω, because it gives 

convenient mathematical notation for our forthcoming singular perturbation analysis. 

However, because it is more intuitive (and standard) to describe layers as being coupled 

together by weight ω, we refer to the limit ε → 0+ (i.e., ω → ∞) as the strong-coupling 

regime.

One can interpret the parameter ε > 0 as a tuning parameter that controls how strongly a 

given physical node’s centrality is coupled to itself between neighboring time layers. (See 

the related discussions in [2, 5] in the context of multilayer community structure.) That is, 

the intuition for a specified eigenvector-based centrality proceeds within each individual 

layer as in the associated centrality’s original definition, and the additional inter-layer 

coupling introduces contributions to centrality from the network structure in neighboring 

layers. Of particular interest are the limits in which ε → ∞ (i.e., decoupling of layers) and ε 
→ 0+ (i.e., a particular notion of order-preserving aggregation). See the related discussions 

in [102, 103]. We expect the ε → 0+ limit to yield principled time-averaged centralities of 

nodes. Note that such a notion reflects the layers having an intrinsic temporal ordering and 

should in general yield different results from calculating the centralities of summed 

adjacency layers (i.e., directly summing the corresponding entries in these matrices) or from 

an unweighted averaging of centralities across otherwise uncoupled layers.
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The notation of Eq. (3.1) assumes implicitly that every physical node i appears in every time 

layer t (where i ∈ {1, …, N} and t ∈ {1, …, T}). Although this notation is consistent with 

that used in the development of multilayer modularity [92], it is important to call attention to 

practical issues in treating situations in which some physical nodes do not appear across all 

layers [21, 26, 72]. When defining multilayer modularity, there are no difficulties with 

removing nodes from the layers in which they do not appear as long as the correct identity 

inter-layer edges are coded appropriately. (Indeed, see the U.S. Senate roll-call voting 

example of [92].) In contrast, for reasons that will become clearer as we develop our singular 

perturbation analysis in the strong-coupling limit (see Sec. 4), temporal generalization of 

eigenvector-based centralities in this limit requires that all physical nodes are taken into 

account across all layers, even when they do not appear in a layer. In other words, one must 

account for each physical node i as a “ghost node” in any layer in which i does not appear in 

the data. The ghost node is adjacent to its counterparts in neighboring layers via inter-layer 

edges, and it therefore maintains connectivity to the full multilayer network; however, it 

does not have any intra-layer edges, as such edges are “forbidden.”

Before continuing, we briefly comment on assumptions that we make about the supra-

centrality matrix ℂ(ε). In the construction of eigenvector-based centralities for time-

independent networks, it is typically assumed that a given centrality matrix is nonnegative 

and irreducible [6, 35, 46, 73, 78, 95]. Similarly, we assume that ℂ(ε) is nonnegative and 

irreducible for any ε > 0. Our motivation is that the Perron–Frobenius theorem for 

nonnegative matrices [87] ensures that the largest (positive) eigenvalue has multiplicity one 

and that its corresponding eigenvector is nonnegative and unique, which are both beneficial 

properties for ranking nodes based on a notion of importance. Similar to the case of time-

independent networks, one can guarantee that the matrix ℂ(ε) is both nonnegative and 

irreducible by placing simple constraints on the properties of the temporal network. For 

example, consider the matrix ℂ(ε) and its associated network—that is, the network in which 

every nonzero entry of ℂ(ε) corresponds to an edge from some node i to some other node j, 
and the weight is given by the value of the entry. (In practice, one can use such an approach 

to study any matrix if one interprets its nonzero entries in terms of a network.) It follows that 

ℂ(ε) is irreducible and nonnegative if this associated network is strongly connected. A 

sufficient (but not necessary) condition to assure this is that all centrality matrices C(t) are 

nonnegative and the aggregated matrix Σt C(t) itself has an associated network that is 

strongly connected. For example, when computing eigenvector centrality for an undirected 

temporal network (i.e., C(t) = A(t)), this constraint implies that  and that the 

aggregation ΣtA(t) of the adjacency matrices yields an adjacency matrix with an associated 

strongly-connected network.3 In general, however, the irreducibility of ℂ(ε) depends on that 

of the centrality matrices (i.e., Σt C(t)), rather than on the adjacency matrices.

3There exist both stronger and weaker versions of such a relation between network structure and the dominant eigenspace of the 
matrices that are associated with a network. If a network is strongly connected, then the largest (positive) eigenvalue of the matrix has 
a multiplicity of one, and its corresponding eigenvector is guaranteed to be unique and strictly positive. If a network is weakly 
connected and if all nodes are contained in the union of the largest in-, out-, and strongly-connected components, then the matrix has a 
largest (positive) eigenvalue with a multiplicity of one, and its corresponding eigenvector is both unique and nonnegative. In other 
cases, the eigenvector corresponding to the largest eigenvalue may or may not be unique. If there are edges with negative values, the 
eigenvector corresponding to the largest eigenvalue may not be nonnegative.
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Our assumption that ℂ(ε) be irreducible places restrictions both on the set {C(t)} and on our 

choice for how to couple the layers. We choose to couple each time layer t to both layers t 
+ 1 and t − 1 (when present), so our temporal extension of eigenvector centrality is non-

causal; that is, the centralities are coupled both forward and backward in time. In principle, 

one could choose other strategies for coupling the layers. Note, however, that a causal 

strategy in the absence of other features (e.g., one could examine different types of 

“teleportation” [46]) forces ℂ(ε) to be reducible, because the centralities of past network 

layers cannot depend on future layers.

3.2. Joint, Marginal and Conditional Centrality for Multilayer Networks

We study the dominant eigenvector (ε) of ℂ(ε), with corresponding (and largest positive) 

eigenvalue λmax(ε) [i.e, ℂ(ε) (ε) = λmax(ε) (ε)]. The entries of the dominant eigenvector 

give the centralities of each node-layer pair (i, t); this represents the centrality of physical 

node i at time t. The dominant eigenvector (ε) of a supra-centrality matrix in Eq. (3.1) gives 

the centrality of node-layer pairs. That is, the eigenvalue entry vN(t − 1) + i(ε) indicates the 

centrality of node i at time t. Such a joint centrality, whether given by (ε) or any other 

centrality for node-layer pairs, reflects information about the importances of both the nodes 

and the layers. We develop a simple formalism to decouple these centralities. For 

concreteness, we use (ε), but this approach can be applied to any centrality measure of 

node-layer pairs in a multilayer (e.g., temporal) network including those not based on 

eigenvectors.

Our approach is inspired by multivariate statistics: we define “joint”, “marginal”, and 

“conditional” centralities. Joint centrality describes the importances of node-layer pairs, 

marginal centrality describes the uncoupled centrality of either nodes or layers, and 

conditional centrality describes the importance of a node-layer pair as compared to, for 

example, other node-layer pairs in that same layer.

To proceed, it is convenient to map the vector (ε), which has length NT, to an N × T matrix 

W, which we define entry-wise by

(3.2)

The scalar Wit gives the joint centrality of the node-layer pair (i, t); that is, it indicates the 

centrality of node i at time t. We define the marginal node centrality (MNC) xi and marginal 
layer centrality (MLC) yt by

(3.3)

The values {xi} and {yt} indicate the importances of nodes and layers, respectively, for a 

particular choice of ε. Although we use the summation to compute marginal node and layer 
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centralities, one can also consider other aggregation methods. We define the conditional 
centrality of node-layer pair (i, t), conditioned on layer t, by

(3.4)

The scalar Zit indicates the importance of physical node i relative to other physical nodes in 

layer t. For some applications, it can be beneficial to similarly study the conditional 

centrality of layers conditional on a given node, but we do not explore this notion in the 

present paper. For a given node i ∈ {1, …, N} and time t ∈ {1, …, T}, the sets {Wit} and 

{Zit} of centrality values indicate trajectories for how the importance of physical node i 
changes through time. We interpret conditional centrality trajectories as follows: for a given 

physical node i, we study a sequence of centralities in which the tth term indicates a 

centrality that is relative to centralities of node-layer pairs at time t. This contrasts with the 

joint node-layer centralities; because || (ε)||2 = 1, joint node-layer centralities indicate a 

notion of importance that is relative to all node-layers pairs.

3.3. Synthetic Temporal Network Example

We illustrate the concepts of joint, marginal, and conditional centrality with a toy example. 

The network, which we show in Fig. 3.1(a), consists of N = 4 physical nodes and T = 3 time 

layers. We compute eigenvector centralities of this (undirected) temporal network by setting 

each layer’s centrality matrix to be its adjacency matrix and solving the dominant-eigenvalue 

equation, ℂ(ε) (ε) = λmax(ε) (ε), for several choices of ε. In Fig. 3.1(b), we summarize the 

centrality measures for ε = 0.5 in a matrix. The entry in row i and column t gives Wit. The 

MNCs {xi} and the MLCs {yt} are in the shaded boxes, and they indicate the relative 

centralities of the physical nodes and layers, respectively, for the chosen value of ε.

In Fig. 3.1(c), we plot the dependence of the MNC (upper subpanel) and MLC (lower 

subpanel) on the coupling strength ε. For small ε, the dominant time layer is layer 2′; for 

large ε, the dominant layer is layer 1′. This is unsurprising: when considering the centrality 

matrices of the layers in isolation, the dominant eigenvalue of the centrality matrix of layer 

1′ is larger than that for the other layers. The choice of ε is very important, and centralities 

can depend discontinuously on ε because of eigenvalue crossings. In this example, we obtain 

three qualitatively different regimes: (i) a strong-coupling regime in which the centralities 

are similar to what we expect in the limit ε → 0+; (ii) a weak-coupling regime in which the 

centralities behave similarly to what they do in the ε → ∞limit; and (iii) an intermediate-

coupling regime in which the centralities transition between these two limiting cases. 

(Compare this result to the phase-transition phenomena for graph Laplacians of multilayer 

networks discussed in Refs. [102, 103].) We also explore these regimes for our case study 

with the MGP network in Sec. 5.1.

In Fig. 3.1(d), we plot joint node-layer centralities (upper subpanel) and the conditional 

node-layer centralities (lower subpanel) that correspond to the four physical nodes. We show 

results for ε = 0.5. Note that the conditional node-layer centralities for physical node 4 

increase over time, whereas they decrease for physical node 1. This is sensible for the 
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temporal network in Fig. 3.1(a): at time t = 1′, physical node 1 has the largest degree and 

physical node 4 has the smallest degree; however, at time t = 3′, physical node 1 has the 

smallest degree and physical node 4 has the largest degree.

4. Singular Perturbation in the Strong-Coupling Limit

Given the joint node-layer centralities and conditional node-layer centralities that correspond 

to a physical node i, it is possible to define a notion of “time-averaged centrality” by 

summing one of these centralities across the layers (e.g., the prior yields the MNC). 

However, it is not clear which is preferable, and these centralities are sensitive to the value 

of ε. Alternatively, one can define a time-averaged centrality by studying the limit ε → 0+. 

In this limit, the conditional node-layer centrality of every physical node i is constant across 

the time layers.

Examining centralities as ε → 0+ provides a principled approach for calculating time-

averaged centralities. However, the supra-centrality matrix ℂ(ε) given by Eq. (3.1) becomes 

singular at ε = 0, which complicates the consideration of this limit. The intra-layer 

connectivity is completely eliminated, and the network decomposes into N connected 

components. That is, the matrix is no longer irreducible, so the Perron – Frobenius theorem 

no longer holds. Indeed, at ε = 0, the dominant eigenvalue has an N-dimensional eigenspace. 

In contrast, for ε > 0, the dominant eigenvalue has a single eigenvector.

To overcome this issue, we derive a singular perturbation expansion in the limit ε → 0+. In 

Sec. 4.1, we further explore the singularity that arises in the strong-coupling limit. In Secs. 

4.2 and 4.3, we give zeroth-order and first-order perturbation expansions, which lead to 

principled expressions for time-averaged centralities and first-order-mover scores, 

respectively. We give higher-order expansions in an appendix. In Sec. 4.4, we summarize our 

procedure and discuss the computational complexity of computing time-averaged centralities 

and first-order-mover scores.

4.1. Singularity at Infinite Inter-Layer Coupling

In this section, we develop a perturbation analysis of the dominant eigenspace (i.e., the 

eigenspace of the largest positive eigenvalue) of ℂ(ε) [see Eq. (3.1)] in the limit ε → 0+. To 

allow this analysis to have more broad applicability, we do a perturbation expansion using 

the following general form of coupling of block matrices:

(4.1)

where  = diag[M(1), …, M(T)],  = A ⊗ I, and the T × T matrix A (recall Table 2.1) 

encodes the inter-layer coupling, where entry Att′ indicates how layer t is coupled to layer t′. 

We recover the supra-centrality matrix ℂ(ε) in Eq. (3.1) by using nearest-neighbor layer 

coupling, A = A(chain), and centrality matrices along the diagonal (i.e., M(t) = C(t)). 

Additionally, similar to our assumptions for Eq. (3.1), we assume that (ε) is nonnegative 

and irreducible for any ε > 0. These assumptions hold as long as the summation of matrices 
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(ΣtM(t)) and inter-layer coupling matrix A each correspond to a strongly connected network 

(see footnote 3 in Sec. 3.2).

We begin by studying the dominant eigenspace for the matrix (ε) at ε = 0. We thus 

consider the matrix

(4.2)

and we will show that the dominant eigenspace of (0) is N-dimensional, implying that one 

cannot obtain the unique dominant eigenvector of (ε) for the ε → 0+ limit simply by 

setting ε = 0. Instead, one needs to do a singular perturbation analysis. To facilitate our 

discussion, we define an NT × NT stride permutation matrix ℙ [48] with entries Pkl = 1 for l 
= ⌈ k/N ⌉ + T [(k − 1) mod N] and Pkl = 0 otherwise. (Recall that ⌈ · ⌉ denotes the ceiling 

function.) Note that ℙ permutes node-layer indices, so we can easily go back and forth 

between ordering the node-layer pairs first by time and then by physical node index, or vice 

versa (i.e., ordering them first by physical node index and then by time). The main benefit of 

defining ℙ is that one can express (0) in the form (0) = ℙ (I ⊗ A) ℙT [28], where

(4.3)

Clearly, I ⊗ A decouples into N identical eigenvalue equations for the inter-layer coupling 

matrix A. Because ℙ is a unitary matrix, this decoupling also occurs for (0). Specifically, 

the NT eigenvalues of I ⊗ A are given by the T eigenvalues of A, where each eigenvalue has 

multiplicity N and a corresponding N-dimensional eigenspace spanned by the vectors that 

can be constructed using the eigenvectors of A (i.e., with appended 0 values in appropriate 

coordinates).

We explain this construction in more detail for the dominant eigenspace. Let ν denote the 

largest positive eigenvalue of A, and let u = [u1, …, uT ]T denote its corresponding 

eigenvector. Because of the block-diagonal structure of Eq. (4.3), the largest eigenvalue λ0 

of I⊗A is λ0 = ν, and its corresponding eigenspace is spanned by the N eigenvectors { i}, 

where i = [0T, … , 0T,uT, 0T, … , 0T]T. That is, the ith block of i is given by u, and all of 

the other blocks are vectors of zeros. Consequently, one can obtain the N dominant 

eigenvectors of  (0) = A⊗I using the permutations {ℙ i}. That is, they have the general 

form Σj αjℙ j, where the constants {αi} must satisfy  to ensure that the vector is 

normalized. Because there does not exist a unique dominant eigenvector of (0) since its 

dominant eigenspace is N dimensional, we need to develop a singular perturbation analysis 

to obtain a unique solution for the dominant eigenvector of (ε) in the ε → 0+ limit.
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When the network layers are coupled by an undirected chain network, the interlayer 

coupling matrix is given by A = A(chain), which has N eigenvalues and eigenvectors given by 

[82]

(4.4)

(4.5)

where n ∈ {1, …,N} and the normalization constant is . Setting 

n = 1 gives the dominant eigenvalue and its corresponding eigenvector..

4.2. Zeroth-Order Expansion and Time-Averaged Centrality

In this section, we study the zeroth-order expansion of the dominant eigenvector (ε) in the 

limit ε → 0+. As we now show, the conditional node-layer centralities {Zit} corresponding 

to a given physical node i become constant across time in this limit. (Recall our definitions 

of joint, marginal and conditional centralities in Sec. 3.2.) For each physical node, we refer 

to this limiting value as its time-averaged centrality. By examining the first-order expansion 

of (ε) in the limit ε → 0+, we show in Eq. (4.12) that one can obtain the time-averaged 

centralities as the eigenvector components corresponding to the largest eigenvalue of a 

matrix of size N × N.

We consider the dominant-eigenvalue equation

(4.6)

We expand λmax(ε) and (ε) for small ε by writing λmax(ε) = λ0 + ελ1 + · · · and (ε) =  0 

+ ε 1 + · · · to obtain kth-order approximations:  and . 

We use superscripts to indicate powers of ε in the terms in the expansion, and we use 

subscripts for the terms that are multiplied by the power of ε. Note that λ0 and 0 

respectively indicate the dominant eigenvalue and corresponding eigenvector in the limit ε 
→ 0+. Successive terms in these expansions represent higher-order derivatives of λmax(ε) 

and (ε), and each term assumes appropriate smoothness of these functions.

Our strategy is to develop consistent solutions to Eq. (4.6) for increasing values of k. 

Starting with the first-order approximation, we substitute λmax(ε) ≈ λ0 + ελ1 and (ε) ≈ 0 

+ ε 1 into Eq. (4.6) and collect the zeroth-order and first-order terms in ε to obtain
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(4.7)

(4.8)

where  is the NT ×NT identity matrix. Equation (4.7) is exactly the system that we studied 

in Sec. 4.1 [see Eq. (4.1) with ε = 0], where we found that the operator λ0 −ℕ is singular 

and has an N-dimensional null space. (This is the dominant eigenspace of .) We also found 

that Eq. (4.7) has a general solution of the form

(4.9)

where {αi} are constants that satisfy the constraint that 0 has magnitude 1 (i.e., ). 

We defined i just below Eq. (4.3).

To find the set {αi} of unique constants that determine 0, we seek a solvability condition in 

the first-order terms. Using the fact that the null space of λ0  − ℕ is span(ℙ 1, … , ℙ N) for 

any physical node i, it follows that (ℙ i)T (λ0  − ) 1 = 0, and left-multiplying Eq. (4.8) by 

(ℙ i)T leads to

(4.10)

Using the solution of 0 in Eq. (4.9), we obtain

(4.11)

because ℙT ℙ = ℙℙT =  and , where δij is the Kronecker delta. Letting α = [α1, … , 
αN]T, Eq. (4.11) corresponds to an N-dimensional eigenvalue equation,

(4.12)

where the matrix X(1) has elements

TAYLOR et al. Page 16

Multiscale Model Simul. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4.13)

Our assumption that (ε) is nonnegative and irreducible for any ε > 0 ensures that X(1) is 

also nonnegative and irreducible. By the Perron–Frobenius theorem for non-negative 

matrices [87], the largest positive eigenvalue λ1 of X(1) has a multiplicity of one, and its 

eigenvector α is unique and has nonnegative entries. (See Sec. 3.1 and footnote 3.) We 

normalize the solution α to Eq. (4.12) by  and substitute the normalized solution 

into Eq. (4.9) to obtain the zeroth-order term 0.

When the layers are coupled by an undirected chain and the block matrices are the layers’ 

centrality matrices (i.e., M(t) = C(t)), we obtain

(4.14)

where  is the normalization constant for the dominant eigenvector 

u(chain) given by n = 1 in Eq. (4.5). In this case, recall that the vector 0 is the dominant 

eigenvector of ℂ (ε) in the limit ε → 0+ and gives the joint node-layer centralities in this 

limit. By inspection, we see that the elements of 0 are αi sin(πt/(T +1)) for node-layer pair 

(i, t). Because these correspond to the limiting ε → 0+ entries of vector ℂ (ε), they are 

independent of ε. At the same time, conditional centrality of node-layer pair (i, t) is αi (up to 

a normalization constant), independent of the layer t. That is, the conditional node centrality 

trajectories become constant across time in the limit ε → 0+. These values of {αi} arise 

naturally from our perturbative expansion in the supra-centrality framework, independently 

of the value of ε. By contrast, recall that the marginal node centralities (MNCs) reflect 

averaging the joint centralities across time layers for a specific choice of ε. Accordingly, we 

hereafter refer to the entry αi in the vector α as the time-averaged node centrality of physical 

node i. Because our approach can also be applied to multilayer networks that are not 

necessarily temporal, we call αi the layer-averaged node centrality for these situations.

4.3. First-Order Expansion and First-Order-Mover Scores

In this section, we show that the first-order expansion of Eq. (4.6) leads to a linear system 

[see Eq. (4.24)], which we solve to obtain a measurement of the variation over time of each 

physical node’s centrality trajectory [see Eq. (4.26)]. Specifically, as one increases ε above 

0+, the first-order expansion, (which accounts for first derivatives with respect to ε), captures 

the dominant changes in centrality trajectories for small values of ε. (In the appendix, we 

derive expressions for higher-order terms that account for higher-order derivatives with 

respect to ε.)
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In Sec. 4.2, we derived closed-form expressions for λ0 and 0 and an eigenvalue equation 

satisfied by λ1. We now solve for 1 to complete our first-order approximation. For 

notational convenience, we define 0 = λ0  − ℕ and 1 =  − λ1 , so Eq. (4.8) becomes 

0 1 = 1 0. Letting  denote the Moore–Penrose pseudoinverse of 0, we write

(4.15)

We simplify the first term in Eq. (4.15) using 1 =  − λ1  and 0 = Σj αjℙ j and noting that 

each vector ℙ j lies in the null space of each of the matrices 0 and . The second term in 

Eq. (4.15) accounts for the projection of 1 onto the null space of 0, where the constants βi 

= (ℙ i)T 1 indicate the projections onto the spanning vectors of the null space. To ensure 

numerical stability and computational efficiency in practice, we calculate  using the identity 

[28]

(4.16)

Note that  depends only on the inter-layer coupling matrix A (e.g., for nearest-neighbor-in-

time coupling, A = A(chain)), which one can compute and save in memory prior to analyzing 

network data.

Just as we examined first-order terms to solve for constants {αi}, we now seek a solvability 

condition in the second-order terms to determine {βi} in Eq. (4.15). Substituting λmax(ε) = 

λ0 +ελ1 +ε2λ2 and (ε) = 0 +ε 1 +ε2
2 into Eq. (4.6) and collecting the second-order 

terms yields

(4.17)

Similar to before, we left-multiply Eq. (4.17) by (ℙ i)T and require both sides to be 

identically 0 to obtain

(4.18)

Using  and , it then follows that

(4.19)
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Substituting the expressions for 0 from Eq. (4.9) and 1 from Eq. (4.15) into Eq. (4.19) then 

yields

(4.20)

After some rearranging, we obtain

(4.21)

where the matrix X(1) was defined by Eq. (4.13), and the elements of the matrix X(2) are

(4.22)

Recalling that we determined α as the solution of X(1)α = λ1α such that , we left-

multiply Eq. (4.21) by αT to obtain

(4.23)

We thereby obtain

(4.24)

where the constant b = αTβ describes the (possibly nonzero) projection of β onto the null 

space of (X(1) − λ1I) [see Eq. (4.12)].

We now show that b = 0 in Eq. (4.24), by virtue of the requirement that the eigenvector 

obtained at first-order has a norm of 1. That is, we require that 1 = || 0 + ε 1||2 = || 0||2 

+ 2ε〈 0, 1〉 + O(ε2). However, || 0||2 = 1, so 〈 0, 1〉 = 0, where we use the notation 〈·, ·〉 to 

denote the dot product between inputs. Using the definitions of 0 and 1, we see that

(4.25)
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because the vectors {ℙ j} are orthonormal and lie in the null space of 0. (In other words, 

(ℙ i)T ℙ j = δij and .)

In practice, we solve Eq. (4.24) using a linear solver (see, e.g., [48]) rather than the 

pseudoinverse to avoid computing the inverse of (X(1)−λ1I). We then ensure that the 

solution is orthogonal to α by projecting it onto the subspace that is orthogonal to α.

One can substitute the solution β to Eq. (4.24) with b = 0 into Eq. (4.15) to obtain the first-

order term 1 in the expansion for  (ε). This first-order term, which yields the strongest 

temporal variation of the conditional centralities at small ε, is a concise representation of 

temporal changes in centrality. There are multiple possible ways to use 1 to quantify the 

role of physical node i across the T layers. We define a measure mi that equals the square 

root of the sum of the squares of the entries in 1 that correspond to physical node i. 
Specifically, we define the first-order-mover score mi ≥ 0 of physical node i by

(4.26)

where [·]i denotes the ith entry in a vector and i = diag[0, … , 0, I, 0, … , 0] is a matrix of 

size NT × NT that contains all 0 entries except for the ith block, which is an identity matrix I 
of size T × T. In other words, we measure the variation of 1 with respect to a physical node 

i by examining the 2-norm of the entries in 1 that correspond to the node-layer pairs (i, t) 
that are relevant to physical node i (i.e., entries j such that j = N(t − 1) + i, with t = 1, … , 
T ). In principle, one can also use a different vector norm or a heuristic method for 

aggregating centrality. Our choice has the virtue that it is mathematically consistent with our 

definition for the time-averaged centralities {αi} [see Eq. (4.12)]. Specifically, . 

Therefore, one can naturally extend our approach for quantifying the contribution of the 

first-order correction given by Eq. (4.26) to higher-order corrections. We also note that first-

order-mover scores rank the nodes according to the magnitudes of their corresponding 

entries in 1. Therefore, the associated centralities (ε) can either increase or decrease over 

time. One can easily check whether there is an increase or a decrease by examining the 

corresponding entries of (ε).

4.4. Procedure for Computing Time-Averaged Centrality and First-Order-Mover Scores

We summarize our procedure for computing time-averaged centrality and first-order-mover 

scores:

1. Construct the matrix X(1) using Eq. (4.14):
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When layers are coupled by a layer-adjacency matrix A (which is not necessarily 

an undirected chain A(chain)), it follows that , where  = diag[C(1), 
… ,C(T)] and ℙ and i are defined just before and after, respectively, Eq. (4.3).

2. Solve for the time-averaged centralities {αi} using Eq. (4.12):

3. Construct the matrix X(2) using Eq. (4.22):

where .

4. Solve for β in Eq. (4.21):

where λ2 = αTX(2)α.

5. Solve for the first-order-mover scores {mi} using Eq. (4.26):

where 0 = Σj αjℙ j.

We comment briefly on the computational costs of the above procedure. The supra-centrality 

matrix [see Eq. (3.1)], whose dominant eigenvector gives the joint node-layer centralities, 

has size NT ×NT, and that can be problematic for large networks with many time layers (i.e., 

when T ≫ 1). The time-averaged node centralities are given by the solution to Eq. (4.12), 

which is a dominant eigenvalue problem for a matrix of size N ×N. To examine which 

physical nodes have centralities that change significantly over time, we examine the first-

order-mover scores given by Eq. (4.26); this requires one to solve the N-dimensional linear 

system given by Eq. (4.24). Because , , and 0 are known prior to solving Eq. (4.24), one 

can directly compute the second term in Eq. (4.26). For sparse networks [i.e., those in which 

the number of edges at a given time is (N)], the matrices that we have discussed in this 

section are typically also sparse. One can thus solve Eqs. (4.12), (4.14), (4.21), (4.22), and 

(4.26) efficiently using data structures that are designed for sparse matrices, including direct 

methods [23], iterative methods [109], and methods designed for particular network 
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structures (e.g., nested dissection for planar networks [81]). In particular, the power method 

for computing a dominant eigenvalue and eigenvector of a sparse matrix reduces the per-

iteration complexity from (N2) to (M), where M is the number of nonzero entries in the 

sparse matrix. However, the actual scaling can be much larger, because the number of 

iterations required for convergence depends on the gap between the largest and second-

largest eigenvalues.

5. Case Studies with Empirical Network Data

In this section, we examine temporal centrality in case studies with three sets of empirical 

data: the Mathematics Genealogy Project (MGP; see Sec. 5.1) of Ph.D. receipt in the 

mathematical sciences in U.S. universities, top billing in the Golden Age of Hollywood 

(GAH; see Sec. 5.2), and citations of U.S. Supreme Court decisions (SCD; see Sec. 5.3). We 

have posted Matlab software at [118] that implements our calculations and can be used to 

reproduce the results of this section.

Most of our calculations for these examples use a temporal generalization of hub and 

authority scores [73], which are particularly appropriate for directed networks (such as our 

three examples). We also note that hub and authority scores have been used previously to 

examine time-independent faculty-hiring networks [39,93] and Supreme Court decisions 

[39, 41]. To illustrate a comparison with another choice of centrality, we also study a 

temporal generalization of PageRank for the MGP network.

We compute hub and authority scores independently using two supra-centrality matrices, 

A(t)[A(t)]T and [A(t)]TA(t). For a single-layer network, it is possible to simultaneously 

compute hub and authority scores by studying the single system . In general, 

however, a supra-centrality matrix that uses this alternative formulation yields different time-

dependent centralities from ones based on independent computations of hub and authority 

scores. For each centrality that we compute, we also examine the induced ranking of nodes 

in which the highest-ranked nodes (i.e., those with ranks 1, 2, and so on) correspond to the 

largest centralities, whereas the lowest-ranked nodes correspond to the smallest centralities.

5.1. Doctoral Degree Exchange in the Mathematics Genealogy Project (MGP)

Our first case study uses a network that encodes the exchange of mathematicians (and other 

mathematical scientists) who have obtained a Ph.D. (or equivalent doctoral degree) between 

universities to study the academic prestige of those universities. We study data provided by 

the Mathematics Genealogy Project (MGP) [101], which collects information for 

mathematicians (and members of related fields who are listed in the MGP) with doctorates. 

For each mathematical scientist, the information includes graduation year, his/her official 

academic advisor(s), the degree-granting university, and a list of his/her students who have 

also obtained doctoral degrees. A subset of the present authors previously utilized this data 

to approximate the flow of doctorates between universities—that is, a person graduates from 

one university and is then hired at a second university—and quantified the resulting hub and 

authority scores for the total flow during a specified time period as a candidate measure of 
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these universities’ relative mathematical prestige [93]. Moreover, hub and authority scores 

have been used previously to study Ph.D. exchange networks in other disciplines [39]. See 

[55] for a comparison of the hiring market for different academic disciplines, and see [44, 

83] for other analyses and visualization of data from the MGP. See [76] for an application of 

PageRank centrality to ranking world universities using data from Wikipedia.

It is well-documented that graduates typically obtain faculty positions at universities that are 

either comparable to or less prestigious than the one from which they graduate [13, 15, 19, 

29, 39, 97], and we study university prestige as indicated by the exchange between 

universities of mathematicians with doctoral degrees. We generalize a previous study of the 

MGP data in [93] by keeping the year that each faculty member graduated with his/her 

Ph.D. degree. We focus on the years 1946–2010, which includes all post-World War II 

information available in the data set.4 This yields T = 65 time layers, and we restrict our 

attention to a set of N = 227 U.S. universities that were connected during this period. To 

construct the network, we create directed intra-layer edges i → j at time t to represent a 

doctoral degree in the MGP data awarded to a mathematical scientist from university j in 

year t who later advised at least one student at university i. Therefore, to contribute a 

directed edge, the mathematician must have at least one student in the MGP data. We weight 

edges to indicate the number of doctorates from university j in year t awarded to faculty who 

later advise students at university i. Our construction aligns edge directions to be opposite to 

that of the flow of people, so a node with large in-degree (i.e., with many graduates who 

later advise students elsewhere) is considered both an academic authority as well as an 

authority with respect to HITS centrality [73]. See Fig. 1.1 for a visualization of this 

network; due to the difficulty of visualizing temporal networks [25], we show a network 

corresponding to the aggregation ΣtA(t) of the adjacency matrices. Although one could 

define the multilayer network in more intricate ways (e.g., by normalizing edge weights 

using the number of graduates) and examine how the results vary for different choices, we 

wish to keep the present manuscript focused on introducing and demonstrating our temporal 

generalization of eigenvector-based centralities. Therefore, we leave such detailed analyses 

for future work. We make the MGP temporal network available as a Supplementary Material 

and online at [119].

5.1.1. MGP: Centrality in the Strong-Coupling Regime—We begin by identifying 

the universities that have the largest time-averaged authority centralities {αi}, which we 

obtain from the dominant eigenvector of the matrix X(1) [see Eq. (4.14)] using C(t) = 

(A(t))TA(t) [73]. For notational convenience, we use t to denote the graduation year rather 

than the time layer. For example, we use A(1946) to denote the network adjacency matrix for 

time layer 1 (i.e., year 1946). We summarize these authority values in Table 5.1, and we note 

that the most central universities according to this measure are all widely-accepted top-tier 

programs in mathematics. The time-averaged authorities identify the four most central 

mathematics universities for this time period as MIT, UC Berkeley, Stanford, and Princeton. 

Although the results in Table 5.1 are interesting, time-averaged centrality (by definition) 

4The data set was provided to us in 2009, although it includes information up to 2010. The year 2006 is the last year in which a Ph.D. 
degree was awarded to someone who was subsequently a Ph.D. advisor in the data, so it is also the last year in which intra-layers 
edges are present. Additionally, we decided to be optimistic and include Ph.D. degrees that were projected for the year 2010.
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does not provide information about temporal trajectories of the universities’ authorities, and 

this is the type of idea that we seek to explore. We thus calculate the first-order-mover scores 

{mi} from Eq. (4.26), and we list the universities with the top first-order-mover scores in the 

right column of Table 5.1. Note the similarity between the two lists; that is, universities with 

largest αi tend to also have large mi.

In Fig. 5.1, we show further results for prestige (as revealed by Ph.D. exchange). In Fig. 

5.1(a), we plot university ranking according to {mi} versus its ranking according to {αi}. 

Note in the bottom left corner that MIT is ranked first for both quantities, and that in general 

there is a strong linear correlation between rank according to αi and rank according to mi. 

Intuitively, this suggests that shifts in centrality include a natural effect that is related 

directly to the centrality score itself. (In other words, large centrality values tend to also 

include large fluctuations, whereas small centrality values typically have only small 

fluctuations.) Deviations from the observed nearly-linear relation indicate universities whose 

centrality trajectory exhibits larger variations over time, and it is worthwhile to look at these 

universities in more detail for potentially interesting insights. For example, the universities 

with high rank according to mi (i.e., large mi) but comparatively low rank according to αi 

(i.e., small αi) include Georgia Tech and CUNY, and it is known that Georgia Tech’s 

mathematics department transitioned from a primarily teaching-oriented department to a 

much more research-oriented department with a newly restructured doctoral degree program 

starting in the late 1970s [32].

In Fig. 5.1(b), we plot the conditional authority centralities at ε = 10−4 of universities versus 

time for six of the universities with the largest first-order-mover scores mi. This includes the 

four universities with the top time-averaged centralities, as well as Georgia Tech and CUNY 

(which do not have highly-ranked time-averaged centralities). As we expect, the conditional 

centralities for Georgia Tech and CUNY change drastically over time, whereas the 

trajectories for the others remain relatively constant.

5.1.2. MGP: Some Properties of Authority Centrality—As we showed in Sec. 3.3 for 

a synthetic network, the choice of inter-layer coupling strength ε strongly affects the 

temporal behavior of a node’s centrality trajectory. We expect to observe three qualitative 

regimes: (i) the strong-coupling (ε → 0+) regime that we studied in Sec. 4; (ii) a weak-

coupling (ε → ∞) regime; and (iii) an intermediate-coupling regime, in which the 

centralities behave differently than expected for either the strong-coupling or weak-coupling 

regimes. In Fig. 5.1(b), we show results for ε = 10−4, and we observe that the universities 

tend to have slowly-varying centrality trajectories. However, the choice of ε should depend 

both on the application and on the question of interest. As we are about to illustrate, it is 

important to consider what values of ε are appropriate.

In Fig. 5.2, we study centrality trajectories for Georgia Tech for various choices for ε. In Fig. 

5.2(a), we show the conditional node-layer centralities for Georgia Tech versus time t. Recall 

that the conditional node-layer centrality indicates the centrality of node-layer pair (i, t) with 

respect to all node-layer pairs (j, t) at time t. We also show the value of αi (rescaled for 

normalization), which gives the conditional node-layer centrality of Georgia Tech in the 

limit ε → 0+. For small but nonzero ε (e.g., ε = 10−3), note that we obtain a similar 
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trajectory as for ε = 0+. For example, the trajectory varies slowly over time, so the 

conditional node-layer centrality of Georgia Tech at times t and t + 1 are approximately 

equal for all t. However, as we increase ε, we lose the slow temporal variation over time. For 

example, when ε ≥ 10−1, the conditional centrality of Georgia Tech at times t and t+1 are 

typically very dissimilar, which appears to be a consistent property of conditional node-layer 

centralities in the limit ε → ∞. It is our believe that the highly volatile rankings for large ε 
do not appropriately describe the dynamics of department prestige [115]; this observation 

has motivated us to focus on the small ε (i.e., strong coupling) regime in this paper. The 

limiting cases ε → 0+ and ε → ∞, respectively, do a good job of describing regimes with 

very small and very large ε, but the intermediate (“transitional”) regime between these 

extremes is not straightforward to interpret. Even the boundaries between the two extreme 

qualitative regimes are not clear and are open to interpretation.

In Fig. 5.2(b), we plot the joint node-layer centralities for Georgia Tech for various values of 

ε. Recall that the joint node-layer centrality of the node-layer pair (i, t) reflects information 

about both the physical node i and the time layer t. In the ε → 0+ limit, the joint node-layer 

centrality trajectory is given by αiu(chain), which we show using a dashed line. Interestingly, 

for the ε values that exhibit slowly-varying conditional-node-layer-centrality trajectories in 

panel (a) (i.e., ε ≤ 10−3), we find that the joint node-layer centralities have a similar order of 

magnitude across the T time layers. For example, when ε = 10−4, the joint node-layer 

centrality of Georgia Tech at time t = 1945 is roughly one tenth that of Georgia Tech at time 

t = 1965. In contrast, when ε ≥ 10−1, the joint node-layer centralities for Georgia Tech are 

concentrated at just a few time layers near t = 1982. Note that the dominant eigenvalue of the 

centrality matrix C(1982) for this time layer is larger than those for the other time layers. 

Thus, we find that the joint node-layer centralities to localize at layer t = 1982 as ε → ∞, a 

phenomenon that can be described using Perron–Frobenius theory [87]. This localization 

implies that a single time layer is dominating the joint node-layer centralities, which we 

confirm with the observation that the marginal layer centralities are also localized at layers 

near t = 1982 (not shown).

5.1.3. MGP: PageRank Centrality—We also examine temporal centralities in the MGP 

network using centrality matrices given by PageRank matrices

(5.1)

where  is the out-degree of node j, the quantity 1 − p ∈ [0, 1] is the so-called 

teleportation parameter (also called the damping coefficient), 1 is a vector of ones, and v is 

the personalized PageRank vector (which we set to be v = N−11). We handle dangling nodes 
(i.e., nodes with out-degree 0) by adding a single self-edge for each of these nodes. (This 

process of adding self-edges is sometimes called sink preferential PageRank [46].) By 

adding these edges,  is guaranteed to be column stochastic, so its 

spectral radius is 1. PageRank centrality is equal to the right dominant eigenvector of the 
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PageRank matrix. In our usage, C(t) in Eq. (3.1) is given by P(t), and the temporal extension 

of PageRank is the right dominant eigenvector of the corresponding supra-centrality matrix 

ℂ(ε).

In Table 5.2, we show the universities with top time-averaged PageRank centrality and first-

order-mover scores in the MGP Ph.D. exchange network. We identify similar top 

universities with PageRank as we did with authority scores (see Table 5.1). For example, 

both tables identify MIT as the university with the top time-averaged centrality. 

Interestingly, the gap between αi for MIT and the second-ranked university is much smaller 

for PageRank than it is for authority scores. We hypothesize that one major factor that 

contributes to this difference is the impact of self-edges. In particular, we identify 172 self-

edges for MIT during the period 1946–2010, whereas the second-largest number of self-

edges is only 59 (for both Stanford and UC Berkeley). This suggests that it may be 

interesting to examine variants of PageRank that use a different strategy to deal with 

dangling nodes.

5.1.4. MGP: Summary—Our case study illustrates practical considerations and 

techniques that are useful for understanding centrality in temporal (and other multilayer) 

networks. In our analysis of authority centralities, we identified two important 

characteristics of centrality trajectories: “slow variation” and “layer localization”, which we 

observe, respectively, in the limits ε → 0+ and ε → ∞. As we have demonstrated, a 

qualitative comparison of centrality trajectories to these limiting cases is helpful for 

quantifying regimes of large and small ε (e.g., ε ≥ 10−1 and ε ≤ 10−3 for Fig. 5.2). In this 

example, we found for sufficiently small ε that the centrality trajectories vary slowly with 

time. As ε increases, we found a transition, which we observed in two ways: the joint 

centrality localizes to just a few layers, and the conditional centrality begins to exhibit large 

fluctuations from one time layer to the next (i.e., trajectories no longer vary slowly). We 

believe this weak-coupling regime to be inappropriate for the MGP Ph.D. exchange network, 

as mathematics department prestige should not fluctuate wildly from one year to the next 

[115]. Instead, it should change on a slower time scale. The strong-coupling regime is 

described by our singular perturbation (ε → 0+) analysis. The transition between the weak-

coupling and strong-coupling regimes can be rather complicated. For example, see our 

calculations for Georgia Tech in Fig. 5.2. Obtaining a complete description of the 

dependency on ε of centrality trajectories for all universities (i.e., not just Georgia Tech) is 

even more complicated. For scenarios in which exploring various ε is not computationally 

feasible, we highlight that restricting one’s attention to the limit ε → 0+ can still yield very 

informative results (e.g., see Fig. 5.1), and obviously it is much more efficient 

computationally.

We have also observed fascinating phenomena, and such phenomena and our techniques for 

investigating them provide avenues for further study. One phenomenon is eigenvector 

localization for multilayer networks. Eigenvector localization is well-known and has 

received considerable attention for time-independent, single-layer networks 

[17,22,31,37,47,68,86,88,89,98,104]. Localization can arise from various forms of structural 

heterogeneity—including the presence of high-degree nodes, community structure, 

clustering, core–periphery structure, and edge weighting. For the purpose of ranking nodes 
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with an eigenvector-based centrality, localization can sometimes be problematic, because the 

centrality concentrates onto a (potentially very small) subset of the nodes, and this makes it 

difficult to reliably rank nodes outside of that subset. This has prompted the introduction and 

investigation of new centrality measures that, for example, do not exhibit localization (or at 

least exhibit less severe localization) due to the presence of nodes with large degree [68, 86], 

although localization can still arise due to other network structures [98]. We also remark that 

the “non-backtracking centrality” (also called “Hashimoto centrality”) introduced in Ref. 

[86] is based on an eigenvector, and the framework of the present paper thus allows us to 

generalize it for temporal networks.

For our numerical experiments in Fig. 5.2, in the limit of large ε, we observe localization of 

the eigenvector (ε) onto layer t = 1982, which is the layer whose centrality matrix C(1982) 

has the largest spectral radius. Given that the layers decouple in the limit ε → ∞, and (ε) 

thus becomes block diagonal in that limit, localization to layer t = 1982 is well-described by 

Perron-Frobenius theory. Interestingly, we find for moderate ε (e.g., ε = 0.01) that 

localization appears to first occur for layer 1967, which also corresponds to a centrality 

matrix with a large spectral radius. Therefore, localization in this context depends both on a 

supra-centrality matrix’s block-diagonal structure (e.g., similar to localization with 

community structure [17]) and on the presence of nodes with high degree (which contribute 

to large eigenvalues in the centrality matrices {C(t)} of the layers [106,121,122]). These 

preliminary findings identify eigenvector localization in multilayer networks as an exciting 

direction for further study. We do not observe a similar localization phenomenon for our 

temporal generalization of PageRank, because the spectral radii of the PageRank centrality 

matrices that we couple into supra-centrality matrices are all equal to 1, so no single layer 

dominates. Given this observation, we expect that it can be beneficial for certain applications 

to weight the layers’ centrality matrices to control their relative importances.

5.2. Top Billing in the Golden Age of Hollywood (GAH)

In our second case study, we examine the centralities of actors who are known for their 

performances during the so-called “Golden Age of Hollywood” (GAH)—a time period 

spanning roughly 1920–1960. To focus on the most important actors of this period, we 

restrict our study to 55 movies stars (26 female and 29 male) identified by Wikipedia [126] 

as being notable within Hollywood’s Golden Age. For these individuals, we use the Internet 

Movie Database (IMDb) [63] to define a weighted, directed, temporal network in which 

each node represents a movie star and each edge encodes the number of times that a pair of 

individuals costarred in a movie during a given time window. We consider all movies 

involving this set of movie stars, and we bin the data by decade over the time period 1909–

2009. That is, for each 10-year5 time window t, we include a directed edge (and add a unit 

weight to the edge) i → j (with i ≠ j) for each instance in which the billing position of actor j 
is equal to or higher than that of i (i.e., actor j appears earlier in the credits). If the relative 

billing position is unknown, we add unit weight to the edges i ↔ j (i.e., we include both 

directed edges). It would be interesting to explore the effect of different binning and 

5To incorporate all available data in IMDb, our first layer represents the 11-year time window 1909–1919. All subsequent layers 
correspond to 10-year time windows.
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network-construction strategies. We have made the temporal network data available as 

Supplementary Material and at [18].

Because the temporal GAH network is directed, we again choose to use a supracentrality 

matrix in which the authority matrices are along the diagonal blocks. In Table 5.3, we list the 

actors with the top time-averaged authority centralities and the top first-order-mover 

authority scores. All of these actors appeared in some of their most famous roles during the 

1930s and 1940s, and many of these roles led to prestigious awards (e.g., Oscar nominations 

and wins). Interestingly, the ten actors actors with highest time-averaged centralities also 

have the highest first-order-mover scores, and we thus do not identify any major shifts in the 

centrality trajectories of these top actors over time. During this time period, men were nearly 

always billed higher than women, so it is not surprising that only two women appear in 

Table 5.3.

Further study of the GAH network reveals additional insights about actor centralities. 

Specifically (see Table 5.3), Clark Gable has the highest time-averaged centrality αi 

(0.3683), but the αi value (0.3627) for Groucho Marx, and both of these values are much 

larger than that (0.2844) for the third-ranked actor, Harpo Marx. In Fig. 5.3, we plot the 

conditional-centrality and joint-centrality trajectories for these three actors. The columns 

show centralities for several choices of ε, which increase from left to right. For ε = 0.00001 

(left column), the relative centralities—that is, the rank order of actors and the ratio of one 

actor’s centrality versus any other’s—are very similar to the limiting values (see Table 5.3) 

that one obtains for ε → 0. However, there exist values of ε in which the centrality 

trajectory for Groucho Marx is consistently higher than that for Clark Gable. For example, 

see the second column (for which ε = 0.001) in Fig. 5.3. This observation supports our belief 

that the examination of a single centrality measure (or, more generally, methodology for 

ranking) is insufficient to fully describe the importances of nodes in a network. In particular, 

ranking nodes based on any centrality calculation is sensitive to the choices that are made 

when defining the centrality. Investigating the robustness of centrality measures is an 

important open question in network science (see e.g., [36]).

5.3. Citations of United States Supreme Court Decisions (SCD)

In our final case study, we investigate the interconnectedness of Supreme Court decisions 

(SCD) in the Unites States by examining networks that encode citations of decisions 

[8,41,42,79]. Such an investigation can reveal a variety of insights about the decisions, 

including identifying which ones build on one another and illuminating the rise and fall of 

importance of decisions. One can also try to reveal insights into large-scale social processes 

during a given time period (e.g., the identification of which social issues are considered to be 

important and/or controversial).

We study the data set that was made available by Fowler et al. [40, 41], and we note that the 

complete decisions are available online from the U.S. government [64]. We examine 

temporal citation networks for the time range 1800–2002, which we bin into decades to give 

T = 20 time layers.6 We construct a directed temporal network in which we include a 

6The final time layer is slightly longer than a decade, because it encompasses the years 1990–2002.
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directed edge from node i to node j at time t if decision i cites decision j and decision i was 

written during the tth decade. To study centrality in such a temporal network, we restrict our 

attention to the largest weakly-connected component, which contains N = 25, 389 nodes. We 

study our temporal generalization of authority scores [73], as high authority nodes should 

correspond to highly-cited, influential decisions.

In Table 5.4, we indicate the decisions that have the top time-averaged authority scores and 

those that have the top first-order-mover authority scores. We identify the top-ranking 

decision to be Gibbons v. Ogden (22 U.S. 1, 1824), which is well-known to be a highly 

influential commerce case [41, 42]. (Note that we use standard case notation, so for this 

example citation, 22 is the volume, 1 is the page, and 1824 is the year.) The decisions with 

the top time-average centralities tend to be decisions from before 1900. In contrast, the 

nodes with the top first-order-mover scores tend to be decisions from the period 1920–1940. 

These decisions initially have very low centralities because they do not exist early in the 

network, but influential decisions from this period later achieve high authorities. For 

example, see Table 2 in Ref. [41], which identified Cantwell v. Connecticut (310 U.S. 296, 

1940) as the node with top authority for a network in which there exists an edge i → j if and 

only if decision i cites decision j during the years t ∈ [1754, 2002]. This decision is the only 

one that makes both of our top-10 lists in Table 5.4. Interestingly, the cases with top time-

averaged centralities deal mostly with interstate commerce and the limits of state 

governments in regulating it, and the cases with top first-order-mover scores deal primarily 

with First-Amendment rights.

6. Conclusions

We developed and analyzed a generalization of eigenvector-based centrality measures for 

temporal networks, and we demonstrated the utility of such temporal centralities for 

identifying important entities in three case studies: the Ph.D. exchange network for 

mathematical sciences in the United States, costarring in the Golden Age of Hollywood, and 

citations of decisions in the United States Supreme Court. Consistent with the lessons from 

the development of multilayer generalizations of modularity [2, 5, 92], an essential 

ingredient of generalizing centrality measures to multilayer representations of temporal 

networks is to give different treatment to intra-layer edges between different physical nodes 

and inter-layer edges that connect the same node across time. We incorporated inter-layer 

edges by constructing a supra-centrality matrix, which requires a network to either have 

discrete time or be binned (i.e, aggregated) into discrete times using time windows (e.g., 

using summation or another process [120, 123]). Constructing this matrix requires making a 

choice of centrality matrix (e.g., authority, hub, adjacency, PageRank, and so on), and one 

then couples these matrices using an inter-layer coupling of strength ω (i.e., 1/ε).

We showed that the dominant eigenvector of a supra-centrality matrix characterizes the 

“joint centralities” of node-layer pairs, and we introduced the concepts of “marginal 

centralities” and “conditional centralities” to study (1) the decoupled importances of nodes 

and layers and (2) the nodes’ centrality trajectories over time. One needs to be cautious 

about interpreting joint centralities, as there is a bias towards the middle layers [e.g., see 

Figs. 3.1(a) and 5.2(b)], but conditional centralities do not seem to have a similar bias. In our 
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temporal centralities, we observe properties such as localization (which is an important issue 

for centrality measures more generally [68, 86, 98, 120]) and different time scales for how 

node centrality changes over time. For example, we observed eigenvector localization, 

amounting to localization in time layers, in the limit ω → 0. Further research is important to 

explore eigenvector localization in temporal and multilayer networks and to examine the 

results from generalizing different types of eigenvector-based centralities. It would also be 

worthwhile to explore whether concepts from statistics about smoothing, such as using 

cross-validation to choose bandwidth parameters, can be used to help guide the selection of 

values of ω.

By focusing on the strong-coupling limit—including the construction of a perturbation 

expansion in this singular limit—we derived simple, principled formulas to define time-

averaged centralities and first-order-mover scores (which measure the magnitude of a 

physical node’s centrality changes over time). This makes it possible to easily identify not 

only which entities are most central in a temporal network but also which ones are the “top 

movers” in centrality over time. Our methodology works for any eigenvector-based 

centrality, which we define as centrality measures in which the nodes’ centralities are given 

by the entries of the dominant eigenvector of a matrix. There are numerous popular types of 

eigenvector-based centralities (including PageRank centralities [95], hub and authority 

centralities [73], and eigenvector centrality [9]), and new centralities of this form continue to 

be developed [86]. We have also provided Matlab software [118] that implements our 

methodology. It can be used to extend any eigenvector-based centrality to temporal 

networks.

An important direction for future work is to explore different strategies for the construction 

of inter-layer edges. We have studied inter-layer edges between nearest-neighbor node-layer 

pairs; that is, a node-layer pair (i, t) is adjacent to (i, t − 1) and (i, t+1), so the edges form an 

undirected chain that bridges physical node i across the T time layers. Other strategies 

should be explored (see discussions in [72]), including ones with inter-layer edges that are 

directed (e.g., other temporal generalizations of communicability centrality [38]). Directed 

inter-layer edges are able to represent causal scenarios, but such causal coupling can yield 

(supra-centrality) matrices that are not irreducible, which is a problematic situation for 

eigenvector-based centrality measures. Specifically, one would need to construct an 

associated network structure that satisfies strong connectivity (e.g., using ideas such as 

teleportation [46, 77]). Developing eigenvector-based centrality measures that respect 

causality is thus one exciting direction, although one then needs to keep careful track of the 

biases caused by the choice of teleportation strategy. We note that we have developed our 

perturbation analyses for general inter-layer coupling, so they can be applied to such 

scenarios. Finally, it is worth exploring our approach for different applications such as 

change-point detection and for a variety of example networks such data streams and as those 

with a large number of time layer.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix: Higher-Order Terms

In Secs. 4.2 and 4.3, we derived zeroth-order and first-order solutions to the dominant-

eigenvalue equation, Eq. (4.6), for the supra-centrality matrix. These led to principled 

expressions for time-averaged centralities [see Eq. (4.12)] and first-order-mover scores [see 

Eq. (4.26)]. We now derive and solve higher-order terms in our singular perturbation 

expansion. Such terms can be useful for approximating (ε) for fixed ε > 0. Similar to the 

expressions that we derived in Sec. 4, we obtain expressions in the form of linear equations 

of dimension N. For longitudinal data, these equations are much more computationally 

efficient to solve than directly solving Eq. (4.6), which is an eigenvalue equation of 

dimension NT.

From the eigenvalue equation given by Eq. (4.6), we now derive kth-order expansions of the 

form  and . We can consider arbitrarily large nonnegative 

integers k. We derived zeroth-order (k = 0) and first-order (k = 1) approximations in Sec. 4, 

and we now derive the second-order (k = 2) expansion. Because we already showed that λ2 

= αTX(2)α in Eq. (4.23), all that is left is to derive an expression for 2. Starting from Eq. 

(4.17), we write

(6.1)

where the sum with constants γj = (ℙ j)T 2 accounts for the projection of 2 onto the null 

space of . We solve for the constants {γj} by examing the third-order (k = 3) expansion, 

which leads to

(6.2)

In general,

(6.3)
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We left-multiply Eq. (6.2) by (ℙ i)T and note that ℙ i is in the null space of 0 to obtain

(6.4)

Using the solution for 2 given by Eq. (6.1), it then follows that

(6.5)

Recalling that , Eq. (6.5) becomes

(6.6)

where q = [q1, . . . , qN]T and . We now solve for λ3. Using the fact that α is 

in the null space of (X(1) − λ1I), left-multiplication of Eq. (6.6) by αT gives

(6.7)

where we have used the relation αTβ = 0. As before, we solve for γ using the Moore–

Penrose pseudoinverse:

(6.8)

where c = αT γ is the (possibly nonzero) projection of γ onto α.

Similar to our calculation of b = αTβ = 0 in Sec. 4.3, we solve for the constant c by 

examining the norm of the vector (ε) ≈ 0 + ε 1 + ε2
2. We require that

(6.9)

We substitute || 0|| = 1 and 〈 0, 1〉 = αTβ = 0 into Eq. (6.9) and equate the (ε2) terms to 

obtain
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(6.10)

This completes the second-order approximation.

We now derive the third-order (k = 3) approximation. Having solved λ3 in Eq. (6.7), we seek 

to find an expression for 3. Starting from Eq. (6.2), we write

(6.11)

where the sum with constants ξj = (ℙ j)T 3 accounts for the projection of 3 onto the null 

space of . Using the general form given by Eq. (6.3) for k = 4 yields

(6.12)

We left-multiply Eq. (6.12) by (ℙ i)T to obtain

(6.13)

We next substitute our solution for 3 given by Eq. (6.11) into Eq. (6.13) to obtain

(6.14)

which in matrix notation is

(6.15)

where we define r = [r1, . . . , rN]T and . As before, we use the 

Moore–Penrose psuedoinverse to obtain

(6.16)
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which uses the fact that α is in the null space of (X(1) −λ1I). The constant d = αT ξ gives the 

projection of ξ onto α, and we calculate it by constraining the third-order expansion for (ε) 

to have a norm of 1. This yields

(6.17)

Recall that normalization of the zeroth-, first-, and second-order expansions, respectively, 

yields the relations || 0||2 = 1, 〈 0, 1〉 = 0, and 〈 0, 2〉 = −(1/2)|| 1||2. Equating the third-

order terms in Eq. (6.17) then necessitates that

(6.18)

This completes the third-order approximation.

In Figs. 6.1(a) and 6.1(b), we validate the above results using the MGP and GAH networks, 

which we studied in Sec. 5.1 and Sec. 5.2, respectively. We plot the L2 error for the kth-

order approximation  to the dominant eigenvector. We plot these 

approximations for several choices of k and several values of ε. When ε is sufficiently small 

(i.e., ε ⪅ 3 × 10−4 for the MGP and ε & x02A85; 10−3 for the GAH), we observe (as 

expected) that the error decreases with increasing k. We derived our approximate 

expressions in the limit ε → 0+, so we only expect them to be accurate for sufficiently small 

ε (although asymptotic expressions do have a long history of often being accurate even in 

many situations in which there are no guarantees for such success [56]). We also obtain the 

expected decay rates in the error as ε → 0+. We find linear decay for the zeroth-order 

approximation, quadratic decay for the first-order approximation, and so on.
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Fig. 1.1. 
As one case study for our generalization of eigenvector-based centralities to temporal 

networks, we examine a multilayer temporal network that we construct from data obtained 

from the Mathematics Genealogy Project (MGP) [101]. (See the Supplementary Material or 

[119] to download the temporal network data.) We study a temporal network with T = 65 

time layers (corresponding to the years 1946 – 2010), in which a given edge j → i in time 

layer t signifies the number of graduating doctoral students in year t at university i who later 

supervise a graduating doctoral student at university j. The nodes’ sizes and colors indicate 

what we call “time-averaged centrality” (see Sec. 4), which we calculate for the type of 

centrality matrix known as an authority matrix [73]. We do not show self-edges. Because 

visualizing a temporal network is difficult [25], we show the network that we obtain by 

aggregating the adjacency matrices across time layers. Studying such an aggregated network 

neglects the time-ordered structure of a temporal network. In our paper, we study trajectories 

of node centralities (which represent importances) over time. See Sec. 5.1 for additional 

discussion of the MGP network. (We created this image using the software Gephi [3].)
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Fig. 3.1. 
Eigenvector centralities for an example undirected temporal network, with N = 4 nodes and 

T = 3 layers, in which we use the layers’ adjacency matrices as the centrality matrices. (a) A 

temporal network with intra-layer edges (black lines) and inter-layer identity edges (gray 

lines). (b) For ε = 0.5, we indicate the joint node-layer centralities {Wit} (white boxes), 

which correspond to the entries in (ε) and represent the centralities of each physical node in 

each layer (there are N × T such centralities). We refer to the marginal centralities {xi} and 

{yt} (shaded boxes) that one obtains by summing rows and columns, respectively, as the 

“marginal node centralities” (MNC) and “marginal layer centralities” (MLC). (c) MNC and 

MLC versus the coupling parameter ε. For small ε, the dominant time layer is the central 

layer (2′); for large ε, the dominant layer is layer 1′, which contains the centrality matrix 

with the dominant (i.e., largest positive) eigenvalue. The vertical dashed line indicates the 

value ε = 0.5 that we use in panels (b) and (d). (d) We examine the nodes’ centrality 

trajectories by plotting the joint node-layer centralities (upper subpanel) and conditional 

node-layer centralities (lower subpanel) versus time.
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Fig. 5.1. 
University rankings in the Mathematics Genealogy Project (MGP) [101] according to time-

averaged centralities and first-order-mover scores. We give results for our temporal 

generalization [see Eq. (3.1)] of authority scores [73]. (a) We plot the first-order-mover 

ranking of nodes (i.e., ranked according to {mi}) versus the time-averaged ranking of nodes 

(i.e., ranked according to {αi}). As shown in the inset, nodes with large time-averaged rank 

tend to also have large first-order-mover rank (e.g., MIT ranks first in both). However, there 

are nodes that have a much higher first-order-mover rank than time-averaged centrality rank 

(e.g., Georgia Tech and CUNY). In panel (a), we show a magnification of the gray box in the 

subpanel. (b) We plot the conditional node-layer centralities (i.e., the centrality of node-layer 

pairs normalized by the centrality of each time layer) to study the universities’ centrality 

trajectories over time. We show results for some of the top ranked first-order-movers. Most 

of these top first-order-movers are also top time-averaged authorities (e.g., MIT). In contrast, 

Georgia Tech and CUNY rank in the top six of the first-order-movers ranking, but they are 

in the lower reaches of the top 40 for the time-averaged ranking. As expected, this ranking 

difference reflects the fact that their centrality trajectories exhibit a significant change over 

time. Georgia Tech rises in rank when t ∈ [1965, 1985], whereas CUNY’s rank drops during 

this time period.
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Fig. 5.2. 
Centrality trajectories for Georgia Tech illustrate that one can construe ε as a tuning 

parameter that controls how much centrality can vary between neighboring time layers. (a) 

To study the trajectory of university authorities over time, we examine the conditional node-

layer centralities. For sufficiently small ε, we observe a steady increase in ranking with time 

for Georgia Tech. Varying ε changes the coupling strength between temporal layers. If ε is 

too large (e.g., ε ≥ 0.01), then the coupling between layers is so weak that the conditional 

node-layer centrality of the two node-layer pairs at times t and t + 1 are no longer similar in 

value. As ε → 0+, the conditional node-layer centrality approaches the stationary, time-

average ranking given by αi (horizontal dashed line), but we still observe significant 

variation even for ε = 0.0001. (b) We plot the joint node-layer centrality of the T node-layer 

pairs that correspond to Georgia Tech across the time layers for several values of ε. For 

small ε, the joint node-layer centralities are determined by the chain of identity edges (which 

leads to the sinusoidal dependence given by Eq. (4.5) with n = 1 and magnitude αi). For 

large values of ε, the node-layer pairs in time layer t = 1982 dominate the joint node-layer 

centralities, so all universities have their highest values in this layer.
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Fig. 5.3. 
(Top) Conditional-centrality and (bottom) joint-centrality trajectories for the actors in Table 

5.3 with the highest time-averaged centralities. The columns depict centrality trajectories for 

various values of ε, which increase from left to right. Note that although Clark Gable has the 

highest time-averaged centrality, there exist values of ε (e.g., ε = 0.001) for which Groucho 

Marx has higher conditional and joint centralities at all instances in time, indicating that 

there is insufficient evident in our study to conclude objectively which actor is more 

significant.
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Fig. 6.1. 
We show, for several values of inter-layer coupling weight ε > 0, the accuracy of kth-order 

approximate solutions to Eq. (4.6) for k ∈ {0, 1, 2, 3}. We show results for (a) the MGP 

network studied in Sec. 5.1 and (b) the GAH network studied in Sec. 5.2. In both panels, we 

measure the error by calculating the L2 norm  of the difference between 

the approximate and actual dominant eigenvector. As expected, we find for sufficiently small 

ε that the error decreases with increasing approximation order. The decay rate of the L2 error 

as ε → 0+ also follows the expected scaling.
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Table 2.1

A summary of our mathematical notation.

Typeface Class Dimensionality

matrix NT × NT

M matrix N × N

M matrix T × T

vector NT × 1

v vector N × 1

v vector T × 1

Mij scalar 1

vi scalar 1
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Table 5.4

Top time-averaged centralities (αi) and first-order-mover scores (mi) for Supreme Court decisions [64]. We 

give results for our temporal generalization [see Eq. (3.1)] of authority scores [73].

Top Time-Averaged Centralities

Rank Decision αi mi

1 Gibbons v. Ogden (22 U.S. 1, 1824) 0.172 284.8

2 Minnesota Rate Case (230 U.S. 352, 1913) 0.160 214.2

3 McCulloch v. Maryland (17 U.S. 316, 1819) 0.157 173.3

4 Brown v. Maryland (25 U.S. 419, 1827) 0.107 212.7

5 Robbins v. Shelby County Tax. Distr. (120 U.S. 489, 1887) 0.096 192.0

6 Cooley v. Board of Wardens (53 U.S. 12, 1851) 0.096 191.2

7 Ex parte Young (209 U.S. 123, 1908) 0.086 53.8

8 Galveston & S.A. Ry. Co. v. Texas (210 U.S. 217, 1908) 0.083 126.6

9 Cantwell v. Connecticut (310 U.S. 296, 1940) 0.082 516.2

10 Welton v. State of Missouri (91 U.S. 275, 1875) 0.082 168.5

Top First-Order-Mover Scores

Rank Decision mi αi

1 Cantwell v. Connecticut (310 U.S. 296, 1940) 516.21 0.0822

2 Schneider v. State (308 U.S. 147, 1939) 439.73 0.0707

3 Thornhill v. Alabama (310 U.S. 88, 1940) 388.08 0.0633

4 Lovell v. City of Griffin (303 U.S. 444, 1938) 369.00 0.0632

5 Near v. Minnesota (283 U.S. 697, 1931) 344.06 0.0729

6 Gitlow v. New York (268 U.S. 652, 1925) 316.33 0.0626

7 DeJonge v. Oregon (299 U.S. 353, 1937) 310.63 0.0554

8 Stromberg v. California (283 U.S. 359, 1931) 306.68 0.0563

9 Chaplinsky v. New Hampshire (315 U.S. 568, 1942) 302.71 0.0487

10 Whitney v. California (274 U.S. 357, 1927) 291.03 0.0582
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