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ABSTRACT

We report the discovery of 42 white dwarfs in the original Kepler mission field, including
nine new confirmed pulsating hydrogen-atmosphere white dwarfs (ZZ Ceti stars). Guided by
the Kepler-Isaac Newton Telescope Survey, we selected white dwarf candidates on the basis
of their U — g, g — r, and r — Ho photometric colours. We followed up these candidates
with high-signal-to-noise optical spectroscopy from the 4.2-m William Herschel Telescope.
Using ground-based, time series photometry, we put our sample of new spectroscopically
characterized white dwarfs in the context of the empirical ZZ Ceti instability strip. Prior to
our search, only two pulsating white dwarfs had been observed by Kepler. Ultimately, four of
our new ZZ Cetis were observed from space. These rich data sets are helping initiate a rapid
advancement in the asteroseismic investigation of pulsating white dwarfs, which continues
with the extended Kepler mission, K2.

Key words: asteroseismology — surveys —white dwarfs.

1 INTRODUCTION

White dwarfs are the end points of all low- to intermediate-mass
stars, which are the majority of stars in the Universe. They are
dense stellar remnants composed of electron degenerate cores sur-
rounded by non-degenerate envelopes. These evolved stars provide
key insight into Galactic star formation and evolution.

To use white dwarfs as tracers of Galactic evolution, we must
determine their basic physical parameters, such as effective tem-
peratures (7), surface gravities (log g) and masses. More than
80 per cent of white dwarfs have hydrogen-rich atmospheres, known
as DA white dwarfs (Giammichele, Bergeron & Dufour 2012;
Kleinman et al. 2013). Spectroscopy has been a successful tool
in obtaining DA atmospheric parameters, yet it only provides a
view of the outermost layers of the white dwarf, and it is subject
to systematic problems that require correction if the star is cooler
than roughly 13 000 K and the surface is convective (Tremblay et al.
2010, 2013).

Asteroseismology, however, can probe deep into the interior of
a white dwarf and provide information on its composition, rotation
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period, magnetic field strength, mass, temperature and luminosity,
by matching the observed non-radial g-mode pulsations to theoret-
ical models (see reviews by Fontaine & Brassard 2008; Winget &
Kepler 2008; Althaus et al. 2010).

As white dwarfs cool, they pass through instability strips depend-
ing on their outermost envelope composition, which coincides with
the onset of a partial ionization zone. This zone efficiently drives
pulsations, which cause periodic brightness variations of the white
dwarf (Brickhill 1991). The variable DA white dwarfs (DAVSs), also
known as ZZ Ceti stars, are the most commonly found and studied
type of pulsating white dwarfs. Their effective temperatures range
between =~ 12300-10900 K for a typical mass of M ~ 0.6 Mg,
with pulsation periods ranging from 100-1400 s (Mukadam et al.
2006; Gianninas, Bergeron & Ruiz 2011).

Ground-based studies of ZZ Ceti stars have been carried out for
decades, but very few have been observed long enough to resolve
more than six pulsation modes. Crucially, there are potentially nine
free parameters in the asteroseismic modelling of pulsating white
dwarfs (Bradley 2001), which has required holding fixed many
parameters in order to constrain the internal properties of ZZ Cetis.
It is clear that fully constraining these free parameters and thus the
internal white dwarf structure and evolution will require a larger
sample of rich asteroseismic observations.
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Considerable effort has been expended to obtain uninterrupted
photometry from coordinated, multisite, ground-based campaigns
to study pulsating white dwarfs, especially through the Whole Earth
Telescope (Nather et al. 1990), which has been operating for more
than two decades (e.g. Winget et al. 1991; Provencal et al. 2012).
However, the Kepler planet-hunting spacecraft offers a unique op-
portunity to obtain high-quality, space-based light curves of variable
stars, white dwarfs included.

Unfortunately, few white dwarfs were known in the original
Kepler mission field, and only two pulsating white dwarfs were
discovered within the first two years of the mission (Hermes et al.
2011; Dstensen et al. 2011b). In order to increase this sample, we
began the search for all white dwarfs in the original field of the
Kepler mission, and more specifically any possible ZZ Ceti stars.
We created the Kepler-INT Survey (KIS; Greiss et al. 2012a) in or-
der to select white dwarf candidates using colour—colour diagrams,
and report on that search here.

In Sections 2 and 3, we describe the selection method of our white
dwarfs and present their spectroscopic observations. In Section 4,
we focus on the nine new pulsating white dwarfs. We conclude in
Section 5.

2 TARGET SELECTION

We selected our white dwarf candidates using U — g, ¢ — r and
r — Ha, r — i colour—colour diagrams using data from KIS, shown
in Fig. 1. KIS is a deep optical survey using the Wide Field Camera
(WFC) on the 2.5-m Isaac Newton Telescope (INT), taken through
four broad-band filters (U, g, r, i) and one narrowband filter (H «),
covering more than 97 per cent of the original Kepler field down
to ~20th mag (Greiss et al. 2012a,b). All magnitudes for the KIS
survey are expressed in the Vega system.

White dwarfs have bluer colours than main-sequence stars, and
most single DA white dwarfs also have strong H « absorption
lines, leading to r — Ha < O (see bottom panel of Fig. 1). We
have integrated the atmospheric models of canonical-mass 0.6 M
(log g =8.0) white dwarfs of Koester (2010) with the various filter
profiles to guide our colour cuts, similar to Groot et al. (2009).

Our photometric selection recovered KIC 4552982, the first
77 Ceti star in the Kepler field (Hermes et al. 2011; Bell et al. 2015).
We narrowed our selection to a small region around KIC 4552982
and to candidates close to the empirical (7., log g) instability strip
projected into U — g, g — r space. This left more than 60 white dwarf
candidates, 43 of which we were able to follow up spectroscopically
(Table 2).

3 SPECTROSCOPY

3.1 WHT observations

We were awarded a total of eight nights on the 4.2-m William Her-
schel Telescope (WHT) in 2012, 2013, and 2014, where we obtained
intermediate resolution spectra of 43 of our candidates in order to
confirm their identities as white dwarf stars and to characterize their
atmospheric parameters, especially their effective temperatures and
surface gravities. We used the Intermediate-dispersion Spectrograph
and Imaging System! (ISIS), with the R600R and R600B gratings
on the red and blue arms, respectively.

! http://www.ing.iac.es/Astronomy/instruments/isis/
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Figure 1. U — g, ¢ — r (top) and r — He, r — i (bottom) colour—colour
diagrams of point sources from KIS (grey-scale), with log ¢ =8.0 DA white
dwarf cooling tracks overplotted as a dashed line (the dotted line marks the
region expected of main-sequence dwarfs). Narrowing our colour selection
around the first ZZ Ceti in the field identified by Hermes et al. (2011) left
~60 white dwarf candidates (open circles). The red open squares correspond
to the nine ZZ Ceti stars we confirmed in the Kepler field; two have identical
U — g, g — rcolours.

Table 1. Journal of spectroscopic observations.

Night ut Date Slit Seeing Notes
(arcsec) (arcsec)
a 2012 August 9 1.2 1.6 Clouds
b 2012 August 10 1.2 2.5-4.5 Haze
c 2012 August 11 1.2 0.7-1.1 Thin
d 2013 June 6 1.0 0.8-1.0 Clear
e 2013 June 7 1.0 0.8-1.0 Clear
f 2013 June 8 1.0 0.8-1.0 Clear
g 2014 July 25 0.8 0.6-0.8 Clear
h 2014 July 26 0.8 0.4-0.6 Clear

The slit widths were chosen close to the seeing of each night
to maximize spectral resolution (~ 1.5-2.0 A). A full journal of
observations is included in Table 1. The blue arm was centred at
4351 A and the red arm at 6562 A. The spectra covered a wavelength
range from roughly 3800-5100 A in the blue (see Fig. 2), and
roughly 5600-7100 A in the red. However, since the higher order
Balmer lines contain the most information about the atmospheric
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Figure 2. A representative WHT/ISIS spectrum from our sample,
KISJ19234-3929 (g = 19.4 mag, S/N~~12), obtained in a single 1800 s
exposure on 2013 June 8 confirming the star to be a DA white dwarf. The
best-fitting atmosphere parameters (e =11 160 + 140 K, logg =7.90 £+
0.04), shown in red and detailed in Table 3, place the star within the em-
pirical ZZ Ceti instability strip, and pulsations were subsequently detected
from the ground (see Fig. 4).

parameters (e.g. Bergeron, Saffer & Liebert 1992), we only used
the blue arm for our Balmer profile fits (Section 3.2).

All our spectra were debiased and flat-fielded within standard
STARLINK> packages KAPPA, FIGARO and, CONVERT. They were then
optimally extracted using paMELA® (Marsh 1989). Copper—argon arc
lamp exposures were taken at the start and end of each night for
the wavelength calibration of the spectra. We also observed several
standard stars at the beginning, middle and, end of each night: Feige
34, Grw+70 5824, LB 1240, G191—B2B and L1512—34. We used
MoLLy* for the wavelength and flux calibration of the extracted 1D
spectra obtained.

All 43 observed targets were confirmed to be DA white dwarfs,
verifying our colour-selection methods. We provide the coordinates
and U, g, r, i, He magnitudes of our targets in Table 2, and detail the
spectroscopic observations and the derived atmospheric parameters
in Table 3. Only one object we observed was a previously known
white dwarf: KISJ1909+-4717, also known as KIC 10198116, which
was previously discovered by @stensen et al. (2011a) and observed
for one month with Kepler.

3.2 Atmospheric parameters

We were primarily interested in the potential ZZ Ceti stars within
our DA white dwarf sample, and spectroscopically determining
temperatures is the most efficient way to find new pulsating white
dwarfs (e.g. Mukadam et al. 2004a). Because pulsations in ZZ Cetis
are driven by a hydrogen partial-ionization zone they are confined
to a narrow instability strip in (T.g,log g) space (Gianninas et al.
2011), making it possible to select ZZ Ceti candidates from our
sample of white dwarfs on the basis of those parameters.

We fitted 1D model atmospheres to our spectra in order to ob-
tain their effective temperatures and surface gravities. To derive the

2The  sTARLINK  Software  Group
http://starlink.jach.hawaii.edu/starlink

3 paMELA was written by T. R. Marsh and can be found in the STARLINK
distribution Hawaiki and later releases.

4MorLy was written by T. R. Marsh and is available from
http://www.warwick.ac.uk/go/trmarsh/software.

homepage website  is
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most robust atmospheric parameters, we have fitted the six Balmer
lines H f—H9 using synthetic spectra computed by two indepen-
dent groups. The first fits use the pure hydrogen atmosphere models
and fitting procedure described in Tremblay, Bergeron & Gianninas
(2011) and references therein, which employ the ML2/« = 0.8 pre-
scription of the mixing-length theory (Tremblay et al. 2010). The
second set of fits use the pure hydrogen atmosphere models detailed
in Koester (2010), which also employ ML2/a = 0.8, following the
procedure described in Napiwotzki et al. (2004). Since the empirical
instability strip has most thoroughly been defined by the first set of
models, our final determinations use the models described in Trem-
blay et al. (2011). If the parameters found from the Koester (2010)
models differ by more than 1o, we have increased the parameter
uncertainties to compensate for this disagreement.

When multiple exposures were taken for a given star, we cal-
culated the atmospheric parameters for each individual spectrum,
and then took the weighted mean as a final value. The results from
the fits to the spectra of all our observed white dwarfs are given in
Table 3. These parameters have been corrected for the 3D depen-
dence of convection described by Tremblay et al. (2013). Addition-
ally, we include in Table 3 estimated spectroscopic masses of our 43
white dwarfs, found using the mass—radius relation and the evolu-
tionary cooling models from Fontaine, Brassard & Bergeron (2001)
with a carbon—oxygen core (Bergeron, Leggett & Ruiz 2001).

In Fig. 2, we show the WHT spectrum of one of our nine new con-
firmed ZZ Ceti stars, overplotted with the best-fitting atmospheric
parameters. Several of the most promising candidates were followed
up with ground-based time series photometry, which we describe
in the following section. Fig. 3 shows our atmospheric parameters
and subsequent high-speed photometry in the context of the ZZ Ceti
instability strip.

4 GROUND-BASED HIGH-SPEED
PHOTOMETRY

We obtained ground-based optical time series photometry for 17
of our 43 ZZ Ceti candidates, in order to check for variability.
The ground-based observations of eight of our stars were obtained
using WFC mounted on the 2.5-m INT on La Palma. These INT
observations in 2012 were part of the RApid Temporal Survey
(RATS) (Ramsay et al. 2014), which is a deep optical high-cadence
survey of objects in the Kepler field using one-hour-long sequences
of 20 s g-band exposures.

Additionally, we obtained high-speed photometry using the Ar-
gos (Nather & Mukadam 2004) and later the ProEM camera
mounted on the 2.1-m Otto Struve Telescope at McDonald Ob-
servatory. These McDonald observations were obtained through a
3 mm BG40 filter to reduce the effects of transparency variations,
and were reduced using the external IRAF package ccd_hsp written
by Antonio Kanaan (Kanaan, Kepler & Winget 2002). For every
light curve, we divided the normalized, sky-subtracted target flux
by the measured flux for the brightest comparison star of similar
colour in the field.

In order to assess variability in these white dwarf stars, we com-
puted a relatively conservative significance threshold following the
method outlined in Greiss et al. (2014). In short, we randomly

5 The cooling models can be found on
http://www.astro.umontreal.ca/ bergeron/CoolingModels/.  Also  refer
to Holberg & Bergeron (2006), Tremblay et al. (2011), and Bergeron et al.
(2011) for colour and model calculations.
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Figure 3. (7., log g) diagram of the white dwarfs we observed spectroscopically with WHT/ISIS. The red circles correspond to new ZZ Ceti stars; the five
orange circles are ZZ Cetis ultimately observed by Kepler and include one not characterized here, KIC 4552982 (Bell et al. 2015). The objects marked as green
triangles were observed not to vary to at least less than 0.8 ppt amplitude, with limits detailed in Table 4. The objects marked as light blue squares have not
been observed with high-speed photometry. The small, dark grey points correspond to known ZZ Ceti stars with atmospheric parameters characterized in an
identical way (Gianninas et al. 2011; Tremblay et al. 2011), and the dark grey dash—dotted lines show cooling tracks of various masses (Fontaine et al. 2001).
The red and blue dashed lines correspond to the latest boundaries of the empirical ZZ Ceti instability strip (Tremblay et al. 2015). All parameters have been

corrected for the 3D dependence of convection (Tremblay et al. 2013).

permuted the fluxes for each time in the light curve, performed a
Fourier transform (FT), recorded the highest peak in the resultant
FT, and repeated the process 10 000 times. We derived a 30 thresh-
old as the value for which 9970 of these permuted FTs had a lower
maximum amplitude. We considered any peaks in the FT in the
original light curve above this value significant. The 30 threshold
also marks a useful limit for the maximum pulsation amplitudes we
would be sensitive to for the white dwarfs which we designate not
observed to vary (NOV).

We include a full summary of this high-speed photometry and
the appropriate 30 limits in Table 4. Our relative amplitude units
are in parts per thousands (ppt), where 1 ppt = 0.1 per cent.

4.1 Confirmation of Nine New ZZ Cetis

Nine of the 17 white dwarfs we have followed up with high-speed
photometry show significant photometric variations at periods con-
sistent with g-mode pulsations in typical white dwarfs (Mukadam
et al. 2004a). Some pulsational variability was immediately evident
in the light curve — Fig. 4 shows two of our new ZZ Ceti stars
observed from McDonald Observatory.

Fig. 5 shows FTs of all nine new ZZ Cetis, and the top half
of Table 4 summarizes the characteristics of the highest amplitude
variability in each white dwarf. Two white dwarfs observed as part of
the RATS survey did not show significant peaks (KISJ1908+4316
and KISJ1917+43927), but were later confirmed to pulsate using
extended Kepler observations.

As white dwarfs cool through the ZZ Ceti instability strip, their
convection zones deepen, driving longer period pulsations (Winget
et al. 1982; Tassoul, Fontaine & Winget 1990). This trend is borne

MNRAS 457, 2855-2863 (2016)

out in our time series photometry. Most of the new ZZ Ceti stars
found by our work have dominant pulsations between 250-320 s,
typical of objects within the ZZ Ceti instability strip. Of note, the
three new ZZ Ceti stars with main pulsation periods >720 s all have
spectroscopically determined effective temperatures <11 550 K,
putting them near the cooler, red edge of the instability strip.

Once we were able to establish pulsations from ground-based
follow-up, we submitted the target for space-based, minute-cadence
monitoring by the Kepler spacecraft. Since all ZZ Cetis we dis-
covered are relatively faint (all have g > 16.7 mag, see Table 3),
extended time series photometry will significantly improve the sig-
nal to noise (S/N) of the observed pulsation spectrum and enable
the detection of weak pulsation modes, which is not easily feasible
through ground-based studies, given aliasing.

However, only four of our targets were observed from
space, and two for just one month, before Kepler lost its
ability to maintain fine pointing at its original field near
Cygnus due to the failure of the second and critical reac-
tion wheel. The four with space-based data obtained thanks
to this program are KISJ1920+45017 (KIC 11911480, Greiss
et al. 2014), KISJ1908+4-4316 (KIC 07594781), KISJ1917+3927
(KIC 04357037), and KISJ1913+4-4709 (KIC 10132702). We will
present analysis of the latter three ZZ Ceti stars in a forthcoming
publication.

4.2 White dwarfs NOV

In addition to the confirmation of nine new ZZ Ceti stars, our
ground-based photometry has put relatively strong limits on the lack
of photometric variability in eight other white dwarfs with effective
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Table 4. Summary of ground-based, time series photometry of 17 ZZ Ceti candidates from our survey. We include the dominant periods and their amplitudes

of our nine new confirmed ZZ Cetis. Targets marked with a dagger (f) were followed up by the Kepler space telescope.

KIS ID KIC ID g (mag) Period (s) Amp. (ppt) 30 (ppt) Telescope, Obs. Date Filter Length (h) Exp. (s)
J1908+4316 7594781 18.2 283.8(3.0) 17.8(4.4)% 20.5 2.5mINT, 2012 Aug 05 SDSS-g 1.0 49
J1913+4709 10132702 19.1 853.5(1.1) 28.1(1.4)t 8.9 2.1 m McD, 2012 Jun 20 BG40 5.1 20
J1917+3927 4357037 18.3 323.4(3.5) 13.02.9)1 13.7 2.5mINT, 2012 Aug 10 SDSS-g 1.0 48
J1917+4413 8293193 18.4 310.9(1.5) 27.93.1) 20.4 2.5mINT, 2012 Aug 11 SDSS-g 1.0 48
J1920+5017 11911480 18.1 291.5(1.3) 26.5(2.9)t 18.1 2.5mINT, 2011 Aug 01 SDSS-g 1.1 49
J1923+3929 4362927 19.4 723.6(1.1) 25.3(1.7) 10.0 2.1 m McD, 2012 Jun 21 BG40 4.6 20
J1939+4533 9162396 18.5 766(12) 14.1(2.5) 12.7 2.5mINT, 2014 Jun 18 SDSS-g 1.3 51
J1944+4327 7766212 16.7 321.95(84) 6.71(54) 34 2.1 m McD, 2014 Jul 25 BG40 1.5 15
119454455 - 17.1 255.92(17) 19.0(1.0) 7.5 2.5mINT, 2014 Jun 17 SDSS-g 29 35
J1848+4225 6923777 18.4 - NOV 3.5 2.1 m McD, 2014 Aug 04 BG40 4.0 20
J1859+4842 11125021 19.0 - NOV 6.3 2.1 m McD, 2014 Sep 03 BG40 5.0 20
J1908+4619 9639485 18.5 - NOV 4.6 2.1 m McD, 2014 Sep 04 BG40 3.0 15
J1919+4712 10203164 18.1 - NOV 24 2.1 m McD, 2014 Jul 22 BG40 8.2 5
1192443655 1293071 18.1 - NOV 2.9 2.1 m McD, 2014 Jul 25 BG40 39 10
J1926+3703 1432852 19.0 - NOV 6.9 2.1 m McD, 2015 Oct 12 BG40 3.5 10
J1932+4210 6695659 18.9 - NOV 6.1 2.1 m McD, 2015 Jun 11 BG40 2.8 10
- NOV 74 2.5 m INT, 2014 Jun 20 SDSS-g 1.7 67
J1935+4634 9775198 18.2 - NOV 74 2.5m INT, 2014 Jun 20 SDSS-g 1.5 65

150 FT i o aeme T T amplitudes than our detection limits allow (e.g. Castanheira et al.

00 B M I 2010). Additionally, it is possible that subtle issues in the flux cali-

2 F < " . 3 bration of our spectra have introduced unaccounted for systematic

£ 50 b ’ - * uncertainties in the derived atmospheric parameters, and the stars

So = ., Y . D : = may have true temperatures outside the instability strip. Given that

< 3 TR L MAT ta SO the non-variable stars are more or less uniformly distributed in the

50 g L J" o | L ‘ L E (Tetr, log g) plane, it is likely that the low S/N of the time-averaged

0 1000 2000 3000 4000 5000 spectra is responsible for some interlopers, as demonstrated quan-

VT T 7] titatively by Gianninas, Bergeron & Fontaine (2005).

20 F KISI1944+432 . ﬁ The most interesting white dwarf NOV in our sample is the ul-

- I . tramassive J1926+3703, which sits in the middle of the empirical

& 10f; ! o R instability strip. At 1.14 + 0.04 M, it would be the second-most-

< oft: 4 massive white dwarf known to pulsate, behind only GD 518 (Her-

S 1o ; ,, : g mes et al. 2013). White dwarfs this massive likely have at least

P . ] partially crystallized interiors. We did not detect photometric vari-
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Time (s) roughly 6.9 ppt, but it is quite possible that this white dwarf pul-

Figure 4. Light curves of two of our new ZZ Cetis observed from Mc-
Donald Observatory. The top panel shows a relatively cool ZZ Ceti,
KISJ19234-3929, with a highly non-sinusoidal pulse shape and dominant
oscillation period of roughly 724 s. The bottom panel shows the brightest
new ZZ Ceti we confirmed, KISJ19444-4327, with much lower amplitude
and shorter pulsation periods of 321.95 and 274.76 s. 1 ppt = 0.1 per cent.

temperatures near the ZZ Ceti instability strip. Those limits are
quoted as a 3o threshold in Table 4, and represented visually with
a FT for each object in Fig. 6.

Several of these non-variable white dwarfs have atmospheric
parameters that place them within the empirical ZZ Ceti instability
strip given their uncertainties, most recently updated by Tremblay
et al. (2015). It has been assumed that all white dwarfs in this
region can foster a partial ionization zone and thus pulsate — that
the instability strip is pure — but this claim is still under review
(Bergeron et al. 2004; Mukadam et al. 2004b; Castanheira et al.
2007), although there is good agreement between the observed and
theoretical ZZ Ceti instability strip (e.g. Van Grootel et al. 2013).

We will not address that issue here, other than to say there are
a number of reasons why these objects may appear not to pulsate.
First, it is possible the white dwarfs really do vary, but at lower

sates at lower amplitude. For example, the two most massive known
pulsating white dwarfs have low pulsation amplitudes, which rarely
exceed 5 ppt in a given night and are often far lower in amplitude
(Kanaan et al. 2005; Hermes et al. 2013).

The Kepler mission would have given at least an order-of-
magnitude improvement on these NOV limits, were these targets
observed from space. For example, @stensen et al. (2011a) showed
that J1909+4-4717 did not vary to at least an amplitude of 0.13 ppt
using just one month of Kepler data in Q4.1. However, only the four
known pulsating white dwarfs listed at the end of Section 4.1 were
observed before the spacecraft had a failure of its second reaction
wheel.

We note that many white dwarfs with atmospheric parameters
within the empirical instability strip remain unobserved, and we
encourage additional follow-up to constrain pulsational variability
in these white dwarfs. We especially encourage further monitoring
of the ultramassive J1926+43703.

5 CONCLUSION

Using photometric colour selection from the KIS survey and sub-
sequent medium-resolution spectroscopy from ISIS on the WHT,
we have discovered and characterized 42 new white dwarfs in the

MNRAS 457, 2855-2863 (2016)
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Figure 5. FTs confirming variability in seven of our nine new ZZ Ceti stars.
The dotted blue line corresponds to the 4(A) line marking four times the
mean FT amplitude. The dashed green line shows the 3¢ significance line,
as described in the text and listed in Table 4. The targets KISJ1908+4316
and KISJ1917+3927 showed promising light curves, and were followed up
and confirmed as ZZ Ceti stars with Kepler space-based photometry; their
analysis is presented in a forthcoming paper.
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Figure 6. FTs of eight pulsating white dwarf candidates observed not to
vary. The blue dotted line and green dashed lines have the same meaning as
before.

original Kepler mission field. Follow-up, high-speed photometry
from ground-based telescopes confirmed that at least nine of these
objects are ZZ Ceti stars. Four were subsequently observed from
space using the Kepler space telescope, and Greiss et al. (2014)
report on the first ZZ Ceti found in this project, KIC 11911480.
Asteroseismic inferences from the extended data sets on the other
three will be presented in a forthcoming publication.
Unfortunately, the failure of the second and critical reaction wheel
that kept Kepler precisely pointed towards its original mission field
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occurred within months of our discovery of many of these new
77 Ceti stars, and our sparse ground-based discovery light curves
are so far the only time series photometry for most of the targets
here. At the end of its roughly four years pointed towards its original
field, Kepler observed a total of six pulsating white dwarfs.

However, the two-reaction-wheel controlled K2 mission will
cover a significantly larger footprint as it tours the ecliptic
(Howell et al. 2014), and K2 will likely observe more than a thou-
sand white dwarfs, dozens of them pulsating. Already several impor-
tant discoveries have come from these K2 observations of pulsating
white dwarfs (Hermes et al. 2014, 2015a,b). The colour selection
methods honed in this work have ensured that dozens of pulsating
white dwarfs have been or will be observed by K2 forup to 80 d ata
time, using selection from a variety of multiwavelength photometric
surveys.
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