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Summary

Mycobacterium tuberculosis proteins that are exported out of the bacterial cytoplasm are ideally 

positioned to be virulence factors; however, the functions of individual exported proteins remain 

largely unknown. Previous studies identified Rv0199 as an exported membrane protein of 

unknown function. Here, we characterized the role of Rv0199 in M. tuberculosis virulence using 

an aerosol model of murine infection. Rv0199 appears to be a member of a Mce-associated 

membrane (Mam) protein family leading us to rename it OmamA, for orphaned Mce-associated 

membrane protein A. Consistent with a role in Mce transport, we showed OmamA is required for 

cholesterol import, which is a Mce4-dependent process. We further demonstrated a function for 

OmamA in stabilizing protein components of the Mce1 transporter complex. These results indicate 

a function of OmamA in multiple Mce transporters and one that may be analogous to the role of 

VirB8 in stabilizing Type IV secretion systems, as structural similarities between Mam proteins 

and VirB8 proteins are predicted by the Phyre 2 program. In this study, we provide functional 

information about OmamA and shed light on the function of Mam family proteins in Mce 

transporters.
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Introduction

Mycobacterium tuberculosis is a human pathogen with a significant impact on world health. 

Current estimates suggest that 2 billion people worldwide have been infected with M. 
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tuberculosis and 1.5 million people die per year from tuberculosis (World Health 

Organization, 2014). Tuberculosis is spread by inhaled droplets and, upon entering the 

lungs, M. tuberculosis is phagocytosed by macrophages where it then replicates 

intracellularly. When inside macrophages, M. tuberculosis inhibits phagosome maturation 

and apoptosis, resists reactive radicals, and acquires nutrients through specialized systems 

(Deretic, 2008; Sturgill-Koszycki et al., 1994; Briken, 2013; Hinchey et al., 2007; Darwin et 
al., 2003; Niederweis, 2008). In addition, M. tuberculosis produces penetrations in the 

phagosome membrane providing the pathogen with cytosolic access (van der Wel et al., 
2007; Simeone et al., 2015; Manzanillo et al., 2012). While these activities help explain M. 
tuberculosis survival in macrophages, the molecular basis of these events is not clear. Many 

intracellular pathogens, including M. tuberculosis, survive in macrophages with the help of 

proteins that are exported from the bacterial cytoplasm to the bacterial cytoplasmic 

membrane, cell wall, or into the host environment.(Ligon et al., 2012; Hicks & Galan, 2013; 

Isaac & Isberg, 2014). Because of their extracytoplasmic location, exported proteins of 

pathogens are ideally positioned for host interactions and for specific roles in controlling the 

immune response and surviving in macrophages (Forrellad et al., 2013; McCann, 2009). 

While exported proteins are known to play a critical role in M. tuberculosis virulence, up to 

69% of M. tuberculosis exported proteins have no assigned function (Perkowski, E. and 

Braunstein, M. manuscript in preparation). To better understand how M. tuberculosis 
interacts with the host and causes disease, it is critical to identify the function of exported 

proteins.

In a previous study using a transposon carrying a β-lactamase reporter of export, the M. 
tuberculosis Rv0199 protein was identified as an exported protein (McCann et al., 2011). 

Rv0199 is a small 24kDa (219 amino acid) protein with a single TMHMM predicted 

transmembrane (TM) domain (amino acids 42-64) (Krogh et al., 2001) near its N-terminus 

(Figure 1A). When fused to a membrane protein, the β-lactamase reporter identifies 

exported domains that are positioned on the extracytoplasmic side of the membrane by 

producing β-lactam resistance. The site of the β-lactam resistant transposon insertion in 

omamA produces a hybrid protein with β-lactamase fused at amino acid 74 of OmamA, 

which indicates the larger C-terminal portion of the protein, following the TM domain, is on 

the periplasmic/cell wall side of the membrane (Figure 1A) (McCann et al., 2011).

Studies of pooled mutant libraries in macrophages or mice, predict Rv0199 to play a role in 

virulence (Sassetti & Rubin, 2003; Zhang et al., 2013; Stewart et al., 2005), and experiments 

directly testing a rv0199 transposon mutant and complemented strain in cultured 

macrophages confirm a role for Rv0199 in intracellular growth (McCann et al., 2011). The 

rv0199 gene is a core mycobacterial gene (Marmiesse et al., 2004), which means that it is 

highly conserved throughout pathogenic and non-pathogenic mycobacterial species but not 

conserved outside of actinomycetes. Yet, the function of Rv0199 is not clear, and Rv0199 is 

annotated as a membrane protein of unknown function (Lew et al., 2011). There is, however, 

limited sequence homology between Rv0199 and a family of proteins encoded by genes 

linked to mce operons, which express components of Mce transporters. When first noted, 

these linked genes were referred to as Mce-associated (mas) genes (Casali & Riley, 2007). 

However, to avoid confusion with the mas gene encoding mycocerosic acid synthase of M. 
tuberculosis, we refer to them as Mce-associated membrane (mam) genes. Like Rv0199, the 
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encoded Mam proteins have predicted transmembrane domains near their N-terminus 

(Perkowski, E. and Braunstein, M. manuscript in preparation). In M. tuberculosis, there are 

eight mam genes linked to mce operons and an additional five genes encoding proteins with 

low levels of homology to Mam proteins that are scattered elsewhere in the genome (Figure 

1B) (Casali & Riley, 2007). In this report, we will refer to these orphaned mam genes as 

omam genes to indicate their unlinked nature. Rv0199 is encoded by one of these orphaned 

mam genes and is referred to as OmamA in this study.

Mce transporters are multi-protein complexes considered to be functionally analogous to 

ABC transporters (Casali & Riley, 2007). The four Mce transporter systems in M. 
tuberculosis all play roles in virulence (Gioffre et al., 2005; Shimono et al., 2003; 

Marjanovic et al., 2010; Lima et al., 2007; McCann et al., 2011; Senaratne et al., 2008; 

Pandey & Sassetti, 2008) and are thought to function in lipid uptake. The best characterized 

Mce transporter is Mce4. Mce4 is required for cholesterol uptake (Pandey & Sassetti, 2008; 

Mohn et al., 2008), cholesterol being an important nutrient during M. tuberculosis infection 

(Pandey & Sassetti, 2008). Emerging evidence suggests that Mce1 is responsible for import 

of mycolic acids, long chain fatty acids characteristic of mycobacteria (Forrellad et al., 2014; 

Cantrell et al., 2013). Each mce operon encodes two YrbE proteins with similarity to ABC 

transporter permeases and six Mce proteins that are considered functionally similar to 

substrate binding proteins of ABC transporters (Casali & Riley, 2007). Additionally, Mce 

transporters are thought to share a common ATPase, MceG. Interestingly, the mceG gene is 

not located near any mce operon (Casali & Riley, 2007; Joshi et al., 2006). Nearly all mce 
operons also contain genes encoding Mam proteins (Figure 1B). Unlike the YrbE and Mce 

components, Mam proteins share no analogous features with ABC transporter components. 

Mam proteins are speculated to have a role in Mce transporter systems, but this idea is solely 

based on the genomic location of mam genes. To date, there have been no functional studies 

of any Mam protein. Consequently, the function of potential orphaned Mam proteins such as 

Rv0199, whose genes are distal to mce operons, is even less clear.

Here, we further characterized the role of Rv0199 in M. tuberculosis virulence using a low 

dose aerosol model of murine infection. We additionally showed that Rv0199 has a role in 

Mce lipid transport, leading us to rename Rv0199 as OmamA (orphaned Mce-associated 

membrane protein A), and we demonstrated a role for OmamA in stabilizing Mce1 

transporter complexes. The stabilization function of OmamA may be analogous to the role 

of VirB8 in stabilizing Type IV secretion systems, as structural similarities between Mam 

proteins and VirB8 proteins are predicted by the structural prediction program Phyre 2 

(Kelley & Sternberg, 2009). Our results provide important functional information about an 

exported protein with a role in virulence and provide the first evidence for any Mam protein 

functioning with Mce transporters. Finally, our results suggest that OmamA, and possibly 

other Mam proteins as well, have a structural role important for the stability of Mce 

transporters.
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Results

OmamA is important for murine infection

Previous studies revealed a transposon insertion in the M. tuberculosis rv0199 gene, 

hereafter referred to as omamA, results in a growth defect in resting murine bone-marrow 

derived macrophages (McCann et al., 2011) and TraSH analysis of a pooled M. tuberculosis 
mutant library in mice predicts a role for OmamA during host infection (Sassetti & Rubin, 

2003; Zhanget al., 2013). To further explore the role of the OmamA protein in M. 
tuberculosis infection, we evaluated the course of murine infection with the omamA 
transposon mutant (omamA::tn) and compared it to infection with an omamAWT strain, 

hereon referred to as wild type (WT) (McCannet al., 2011). Groups of C57BL/6 mice were 

infected by low dose aerosol with WT, omamA::tn, or a complemented omamA::tn 
+omamA strain. Mice infected with the omamA mutant had lower bacterial burden in the 

lungs at 6, 13, and 20 days post-infection compared to WT (Figure 2A). However, by 127 

days post-infection there was no longer any difference in bacterial burden in the lungs of 

mice infected with the omamA mutant strain as compared to WT infected mice (Figure 2A). 

Because aerosol delivered M. tuberculosis is not detected in the spleen or liver at the early 

time points, we quantitated the bacterial burden in these organs at 20 and 127 days post-

infection only. The omamA infected mice had reduced bacterial burden compared to WT in 

spleen and liver at 20 days post-infection and, like the burden in the lungs, the number of 

omamA mutant bacteria reached equivalent levels to WT by 127 days post-infection (Figure 

2B). Importantly, all defects in bacterial burden were fully restored in mice infected with the 

complemented strain. These data indicate that OmamA is important for early exponential 

phase growth in the mouse model of infection.

We also assessed long-term survival of mice infected with the strains described above. The 

omamA mutant infected animals survived significantly longer (>250 days) compared to WT 

(193 days average) and the complemented strain (173 days average) (Figure 2C). The 

complemented strain not only alleviated the attenuated phenotype of the omamA mutant, but 

also appeared to potentially accelerate time to death in comparison to WT M. tuberculosis 
(p=0.05). The behavior of the complemented strain may be due to non-physiological levels 

of OmamA, as the gene is expressed off the constitutive hsp60 promoter on a multi-copy 

plasmid.

H&E stained lung sections demonstrated that mice infected with the omamA mutant 

displayed reduced inflammatory infiltration and increased open alveolar spaces in 

comparison to WT infected mice. The omamA mutant showed this reduced histopathology 

in both early (Day 20) and late (Day 127) timepoints, and the phenotypes were fully restored 

in the complemented strain (Figure 3A). Blinded scoring of these sections demonstrated that 

the omamA mutant infected mice had lower histopathology scores (histological activity 

index, HAI) early during infection compared to WT infected mice (Figure 3B). Even after 

the bacterial burden in omamA infected mice caught up to WT levels (Day 127) the HAI 

scores trended lower in omamA mutant infected mice compared to WT infected mice 

(p=0.07). The lower histopathology of the omamA mutant infected mice may help account 

for their longer survival time in comparison to WT infected mice.
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OmamA is an exported protein with predicted structural similarity to VirB8 and Mce-
associated membrane proteins

A β-lactamase reporter was previously used to identify OmamA as an exported protein of M. 
tuberculosis (McCann et al., 2011). To confirm the exported nature of OmamA, subcellular 

fractions of a Mycobacterium smegmatis strain engineered to express a C-terminal HA 

tagged OmamA were prepared for Western blot analysis. OmamA-HA primarily localized to 

the membrane and cell wall fractions of M. smegmatis, with a smaller fraction of OmamA-

HA being detected in the soluble fraction, which includes cytoplasmic material (Figure 1C). 

This result supports the identification of OmamA as an exported protein.

Consistent with a prior bioinformatics analysis (Casali & Riley, 2007), ClustalW2 (Goujon 

et al., 2010; Thompson et al., 2002) revealed the C-terminal region of OmamA to have a low 

level of sequence identity (~10-25%) with Mce-associated membrane (Mam) proteins of 

actinomycetes. Mam proteins are uncharacterized proteins found downstream of mce 
operons (Casali & Riley, 2007). However, the omamA gene is not linked to a mce operon, 

leading us to call it an orphaned mam gene (omam). ClustalW2 reveals 10-25% identity 

between any two Mam proteins, which is similar to the low homology shared between 

OmamA and Mam proteins (Supplemental Figure 1). To gain more insight into potential 

functional domains of the OmamA protein, we used an online 3D structural prediction 

program Phyre 2 (protein homology/analogy recognition engine version 2.0) (Kelley & 

Sternberg, 2009). Phyre 2 predicted that the C-terminal domain of OmamA (aa 69-212) 

folds similarly to NTF2 family proteins (Supplemental Figure 2) (Chaillan-Huntington et al., 
2001). Phyre 2 also predicted structural similarity between the C-terminal domain of 

OmamA and NTF2-like domains in some bacterial proteins. Notable matches were to the 

structures of VirB8 proteins from Brucella suis and Agrobacterium tumefaciens and DotI of 

Legionella pneumophila (Figure 1D, Supplemental Figure 2) (Smith et al., 2012; Bailey et 
al., 2006; Terradot et al., 2005; Kuroda et al., 2015). Like OmamA, VirB8 is a small protein, 

26 kDa, with an N-terminal transmembrane domain, and the majority of the protein 

localized to the periplasm. Additionally, like OmamA, in B. abortus VirB8 plays an 

important role during infection of both mice and macrophages (den Hartigh et al., 2008). 

VirB8 is a component of the type IV secretion system, a large multi-protein transporter, and 

it is important to both the stability and function of the transporter complex (Kumar et al., 
2000; Sivanesan & Baron, 2011; den Hartigh et al., 2008). DotI is the presumed VirB8 

counterpart of the L. pneumophila type IV secretion system, Dot/Icm (Kuroda et al., 2015). 

To determine whether these structural predictions for OmamA are shared with Mam family 

proteins, we used Phyre 2 to predict the structure of all M. tuberculosis Mam proteins. 

Strikingly, like OmamA, all M. tuberculosis Mam family proteins had high confidence 

structural predictions to NTF2 domain containing proteins, including VirB8 and DotI 

(Supplemental Figure 2). Given the similarity between the structural predictions of OmamA, 

Mam and VirB8 proteins, we hypothesized a function of OmamA in Mce transporters, 

possibly a function analogous to that of VirB8 stabilizing multi-protein transporter 

complexes.
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Deletion of omamA in Mycobacterium smegmatis leads to a mce mutant morphology 
phenotype

With the goal of assigning a function to OmamA, we first explored the potential for OmamA 

to contribute to Mce transport in the mycobacterial model organism M. smegmatis. M. 
smegmatis has six mce operons with nine mce-associated mam genes and ten orphaned 

omam genes (Casali & Riley, 2007) (Supplemental Figure 3). In M. smegmatis, msmeg0235 
is the ortholog of omamA, and will be referred to as omamAms. Like OmamAmtb, the 

OmamAms protein has a predicted transmembrane domain near the N-terminus, and 

OmamAms has 55% identity and 76% similarity to OmamAmtb in the C-terminal domain 

according to BLAST (Altschul et al., 1990). We constructed a deletion mutant of omamAms 

and compared phenotypes of the omamAms mutant to those of M. smegmatis mutants 

lacking mce4 or all six M. smegmatis mce operons (mce6X) (Klepp et al., 2012).

Previous studies revealed a rugose morphology for the mce6X M. smegmatis mutant 

growing on Mueller Hinton agar plates containing Congo red (Klepp et al., 2012). 

Consequently, we tested whether the omamAms mutant displays a similar morphology. 

Plates were incubated at 37°C for two days and morphology was assessed by low-

magnification microscopy. WT M. smegmatis displayed flat, shiny colonies, but mce4, 

mce6X, and the omamAms mutants displayed rugose morphology (Figure 4). The rugose 

phenotype of the omamAms mutant could be complemented by either expression of 

omamAmtb or omamAms from a plasmid (Figure 4). While the basis of the mce mutant 

rugose phenotype is not currently understood, the appearance of a similar phenotype for the 

omamAms M. smegmatis mutant is consistent with a role for OmamA in Mce transporters.

Double mutants omamAmsmce4 and omamAmsmce6X mutants were also constructed and 

tested for possible epistatic interactions. Double mutants were spotted and compared to 

single mce4 or mce6X mutants (Figure 4). If the rugose phenotype of the omamAms mutant 

is due to the effective loss of Mce transport, the double omamAmsmce4 and 

omamAmsmce6X should look like single mce4 or mce6X mutants. If rugosity of the 

omamAms mutant is independent of Mce transporter function, an additive effect on rugose 

morphology from losing both mce operons and omamAms may occur. The double mutant 

phenotype was indistinguishable from that of the single mutants, suggesting that OmamA 

functions in the Mce transporter pathway.

OmamA is required for cholesterol utilization

The Mce4 transporter is the best characterized Mce system with a demonstrated function in 

cholesterol import. Mycobacterial mutants lacking the mce4 operon are defective in 

cholesterol uptake and growth on cholesterol as a sole carbon source (Klepp et al., 2012; 

Pandey & Sassetti, 2008). To test whether OmamA contributes to Mce4 function, we 

assayed the omamAms mutant for its ability to utilize cholesterol as a sole carbon source. For 

these experiments, we followed the metabolic activity of mycobacteria using resazurin as 

previously described (Hayden et al., 2013). Resazurin is a blue dye that converts to a pink 

fluorescent compound when reduced by metabolically active cells. M. smegmatis strains 

were grown in minimal media supplemented with standard glucose and glycerol carbon 

sources or cholesterol as the sole carbon source. In glucose and glycerol containing media, 
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both WT and the omamAms mutant reduced resazurin over time (Figure 5A). However, in 

media with cholesterol as a sole carbon source, resazurin reduction was observed with WT 

M. smegmatis but the omamAms mutant showed very little to no resazurin reduction. 

Strikingly, the behavior of the omamAms mutant in cholesterol media was equivalent to that 

of the mce4 M. smegmatis mutant (Figure 5B). The cholesterol phenotype of the omamAms 

mutant could be fully complemented by expression of either omamAms or omamAmtb from a 

plasmid (Figure 5B).

To determine whether OmamA also contributes to Mce4 function in M. tuberculosis, we 

similarly tested the M. tuberculosis omamA mutant for a defect in utilization of cholesterol 

as a sole carbon source. M. tuberculosis transposon mutants in several mce operons, 

including the mce4 operon (insertion mutants in the mce4B and mce4F genes), mce1 
(mce1B), and mce2 (mce2F) were tested in parallel with the omamA mutant and 

complemented strains. In glycerol media, the omamA mutant behaved like WT in reducing 

resazurin over time (Figure 5C). However, in cholesterol media, the omamA mutant and 

mce4 mutants with transposon insertions in mce4B or mce4F were unable to utilize 

cholesterol as a sole carbon source (Figure 5D). As with the M. smegmatis cholesterol 

experiments, the omamA and the mce4 mutants of M. tuberculosis exhibited the same level 

of defect in cholesterol media. The omamA mutant was fully complemented by expression 

of omamAmtb in the complemented strain. Transposon mutants interrupting mce1 and mce2 
operons displayed no defect for utilization of cholesterol (Figure 5D), consistent with 

previous reports (Pandey & Sassetti, 2008; Griffin et al., 2011). These data demonstrate that 

OmamA is required for cholesterol utilization in both M. smegmatis and M. tuberculosis.

OmamA is required for cholesterol uptake

The cholesterol growth defects of omamA mutants of M. smegmatis or M. tuberculosis were 

indistinguishable from those of mce4 mutants, suggesting a role of OmamA in Mce4 

cholesterol import. To directly test whether OmamA is required for cholesterol import, as 

opposed to playing a role in downstream cholesterol metabolism, we tested the ability of 

WT M. smegmatis, the omamAms mutant, and complemented strains to import radioactively 

labeled cholesterol. M. smegmatis strains were grown overnight in media with glucose and 

glycerol and then incubated for two hours in minimal media with C14 labeled cholesterol as 

the sole carbon source. After incubation, cells were washed extensively, and the level of 

accumulated cholesterol in the cells was quantified. In these experiments, the mce4 mutant 

exhibited a two-fold reduction in cholesterol uptake in comparison to WT, consistent with 

previous reports (Pandey & Sassetti, 2008; Klepp et al., 2012). The omamAms mutant also 

revealed a defect in cholesterol uptake in comparison to WT, and this defect was equivalent 

to that observed with the M. smegmatis mce4 mutant (Figure 6A). The cholesterol uptake 

defect of the omamA mutant could be complemented by either omamAmtb or omamAms 

(Figure 6A). While both the mce4 and omamAms mutants exhibited a significant reduction 

in cholesterol uptake, there remained detectable levels of cell-associated C14 cholesterol 

with both mutants. Previous uptake studies also report residual levels of cholesterol 

associated with mce4 mutants, leading to the suggestion that additional cholesterol importers 

may exist in mycobacteria (Pandey & Sassetti, 2008; Klepp et al., 2012). When we 

examined the double omamAmsmce4 mutant it was no more defective than single mce4 or 
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omamAms mutants. In fact, the double mutant showed slightly improved cholesterol uptake 

in comparison to the single mce4 and omamAms mutations alone (Figure 6B). The lack of an 

additive effect of the mce4 and omamAms mutations on the cholesterol uptake phenotype is 

consistent with OmamA functioning in concert with Mce4 to import cholesterol, as opposed 

to being part of an independent cholesterol uptake pathway.

OmamA impacts the levels of Mce1 proteins

The above studies demonstrated that OmamA contributes to Mce4 cholesterol import and 

utilization. However, a function of OmamA beyond Mce4 seems likely. This is because the 

role of OmamA in promoting M. tuberculosis growth in resting murine macrophages 

(McCann et al., 2011) cannot be explained by an effect on Mce4, as there is no obvious role 

for Mce4 in promoting growth in resting macrophages (Pandey & Sassetti, 2008; Stewart et 
al., 2005; Rengarajan et al., 2005; McCann et al., 2011). However, because M. tuberculosis 
mce1 mutantsare reported in several studies to be defective for growth in macrophages 

(Rengarajan et al., 2005; Stewart et al., 2005; McCann et al., 2011), we hypothesized that 

OmamA contributes to Mce1 transporter function in addition to Mce4 function. Due to the 

predicted structural similarities between OmamA and VirB8, and the role of VirB8 in 

stabilizing the multi-protein type IV secretion complex (den Hartigh et al., 2008; Sivanesan 

& Baron, 2011), we further hypothesized that OmamA stabilizes proteins within Mce 

transporter complexes. Thus, to investigate the potential contribution of OmamA to the 

Mce1 transporter system and stability of Mce complexes we performed Western blot 

analysis of four M. tuberculosis Mce1 proteins (Mce1A, Mce1D, Mce1E, and Mce1F) in M. 
tuberculosis WT, the omamA mutant, and the complemented strain. Mce1A, Mce1D, 

Mce1E, and Mce1F were localized to the cell wall in M. tuberculosis WT and the 

complemented strain, consistent with previous subcellular localization experiments 

performed in M. smegmatis (Forrellad et al., 2014). However, Mce protein levels were 

dramatically diminished in the cell wall of the omamAmtb mutant (Figure 7A). Further, 

Mce1A, Mce1D, Mce1E, and Mce1F levels were significantly decreased in the whole cell 

lysate of the omamAmtb mutant, demonstrating that they were not merely mislocalized in the 

omamAmtb mutant. Mce1 protein levels were fully restored in the complemented strain. The 

effect of the omamA mutation on Mce proteins was not due to a broad defect on cell wall 

proteins, as shown by equivalent levels of the exported 19kD lipoprotein in cell wall 

fractions of all three strains (Figure 7A).

The Western blot results are consistent with Mce1 proteins being unstable in the absence of 

OmamA, however; an alternate explanation is that OmamA is required for the expression of 

genes in the mce1 operon. To rule out the possibility that the dramatic reduction of Mce1 

proteins in the omamA mutant is due to a transcriptional effect, we measured the level of 

mce1 transcripts in WT, omamAmtb mutant, and complemented strains using Quantitative 

Real-Time PCR. All three strains harbored equivalent amounts of mce1A and mce1F 
transcripts. Thus, the dramatic decrease in of Mce1 protein levels in the omamA mutant is 

not a consequence of lower transcript levels. We similarly quantified mce4 transcript levels 

in the omamAmtb mutant and again observed equivalent levels of mce4A and mce4F 
transcripts in the omamAmtb mutant compared to WT and complemented strains (Figure 

7B).
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Although the anti-Mce1D antibody was raised against a peptide from the M. tuberculosis 
protein, this antibody was also able to recognize the M. smegmatis Mce1D, which allowed 

us to similarly evaluate the level of Mce1D in the omamAms mutant of M. smegmatis. The 

omamAms mutant had less Mce1D protein in the whole cell lysate in comparison to WT or 

complemented strains while the level of GroEL2 protein, as a control, was equivalent across 

the three strains (Figure 7C). Thus, the effect of OmamA on Mce1 protein levels is observed 

in both M. smegmatis and M. tuberculosis.

OmamA stabilizes members of the Mce1 transport complex

The reduced levels of multiple Mce1 proteins in the omamA mutant is consistent with 

OmamA having a function, similar to that of VirB8, in stabilizing multi-component 

transporters. To more directly test for a role of OmamA in stabilizing Mce proteins, we 

added chloramphenicol to cultures of M. tuberculosis or M. smegmatis omamA mutant, WT 

and complemented strains to prevent new protein synthesis and then followed the decay of 

Mce proteins in whole cell lysates by Western blot. As expected from the previous 

experiments (Figure 7), in the omamA mutant of M. tuberculosis the level of Mce1A was 

reduced even prior to chloramphenicol treatment; however, by loading more protein, we 

were able to detect the protein and monitor its degradation. After 2 days of chloramphenicol 

treatment, Mce1A protein levels were unchanged in WT and complemented strains of M. 
tuberculosis. In contrast, Mce1A protein in the omamA mutant was highly unstable and over 

a two day time course the level of Mce1A was dramatically reduced (Figure 8A-B). The 

instability of Mce1A in the omamA mutant did not reflect general protein instability in our 

experimental conditions, as the exported 19 kD lipoprotein was equally stable in all three 

strains (Figure 8C-D). Similar experiments were performed in M. smegmatis, monitoring the 

stability of Mce1D. Following chloramphenicol addition, the level of Mce1D protein 

decreased at a faster rate in the omamAms mutant than in the WT or complemented strains 

(Figure 8E), while degradation of a control protein, GroEL2, occurred at a similar rate in all 

strains (Figure 8F). Together, these data provide evidence for OmamA of M. tuberculosis 
and M. smegmatis playing a role in stabilizing components of the Mce1 transporter.

Discussion

The goal of this work was to extend our previous identification of OmamA as an exported 

protein of unknown function with a role in promoting growth in macrophages (McCann et 
al., 2011). Here, we investigated the potential significance of similarities between OmamA 

and Mam proteins and we demonstrated a role for OmamA in cholesterol uptake, which is a 

Mce4 transporter-dependent process. We further showed that the contribution of OmamA to 

Mce transporters extends beyond Mce4 to Mce1, as revealed by the reduced levels and 

instability of Mce1 proteins in both M. smegmatis and M. tuberculosis. While our relatively 

limited understanding of the Mce1 transporter prevented us from more direct testing of an 

effect of OmamA on Mce1 function, the dramatic reduction in at least four Mce1 proteins in 

the omamA mutant of M. tuberculosis argues strongly for a role of OmamA in Mce1 

transporter function, as is the case for Mce4. Our demonstration of a role of OmamA in Mce 

transporters is particularly striking given that the omamA gene is not linked to any mce 
operon and no Mam proteins have been functionally characterized previously. The lack of 
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assayable in vitro phenotypes similarly prevented us from testing a role for OmamA in the 

Mce2 and Mce3 systems. It remains a possibility that OmamA is also involved in these 

additional Mce transporter systems.

Both M. smegmatis and M. tuberculosis were used in this study. In particular, for logistical 

reasons, the cholesterol uptake experiment was performed in M. smegmatis as a model for 

M. tuberculosis. Although there is a risk that results may not translate between these species 

this seems unlikely to be the case here because the phenotypes of the M. tuberculosis 
omamA mutant are fully consistent with a role of OmamA in cholesterol uptake. In addition, 

our demonstration of M. tuberculosis omamA being able to complement the M. smegmatis 
omamA mutant phenotypes indicates conservation of function of the M. smegmatis and M. 
tuberculosis gene products.

Prior TraSH analysis predicted omamA to play a role during murine infection (Sassetti & 

Rubin, 2003; Zhang et al., 2013). Our evaluation of mice infected with a single omamA 
mutant or a complemented strain in a low-dose aerosol model provides important validation 

of the TraSH prediction while also providing a more detailed picture of the contribution of 

omamA to M. tuberculosis infection. Our animal studies revealed the omamA mutant to 

have a reduced bacterial burden during the growth-in-vivo phase of infection (first 3 weeks), 

which is consistent with the role of OmamA in promoting M. tuberculosis growth in 

macrophages (McCann et al., 2011). However, later in infection the organ burden of the 

mutant was no different than WT or complemented strains (as seen in independent 

experiments). Interestingly, despite the equalized bacterial burden later in infection the 

omamA mutant infected animals exhibited reduced pathology at late time points and 

prolonged survival compared to WT and complemented strains. It is worth noting that there 

are prior examples of M. tuberculosis mutants (i.e. whiB3 and sigH) that elicit reduced 

immunopathology and prolonged survival of mice despite having a normal bacterial burden 

(Steyn et al., 2002; Kaushal et al., 2002). In these cases, the mutants are thought to be 

defective in the inducing harmful immunopathology, which could possibly be the case with 

the omamA mutant, as well. Alternatively, there may be long term consequences of the 

delayed growth phenotype of the omamA mutant that persist even after the bacterial burden 

catches up.

Because of the connection we made between OmamA and Mce systems, we compared the 

mouse phenotypes of the omamA mutant to infection phenotypes reported for mce mutants. 

Unfortunately, such comparisons are complicated by discrepant results between studies of 

mce mutants and the wide variety of models employed (infection route, single or pooled 

mutants, nature of the mutation, mouse strain, etc.) (Forrellad et al., 2013; Casali & Riley, 

2007). For mce1 mutants, in particular, there are reports of attenuated as well as 

hypervirulent phenotypes (Gioffre et al., 2005; Shimono et al., 2003; Joshi et al., 2006; 

Marjanovic et al., 2010; Lima et al., 2007; Sassetti & Rubin, 2003). Nonetheless, there are 

published reports of attenuated phenotypes of mce1, mce2 and mce3 mutants in mice that 

resemble those of the omamA mutant: reduced bacterial burden early in infection, increased 

survival time, and/or reduced lung pathology (Marjanovic et al., 2010; Senaratne et al., 
2008; Sassetti & Rubin, 2003; Gioffre et al., 2005; Joshi et al., 2006). In contrast, mce4 
mutants are not reported to have defects early in infection but to have defects later during the 
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persistence phase, in particular when tested in an intravenous infection with a 1:1 mixture of 

WT:mce4 strains (Joshi et al., 2006; Pandey & Sassetti, 2008; Sassetti & Rubin, 2003). 

When tested in a single strain aerosol infection, similar to the one used in our study, a mce4 
mutant only exhibits a subtle defect in bacterial burden during the persistence phase of 

infection (Senaratne et al., 2008), which may explain why we did not observe any defect in 

persistence. However, in the aerosol model reduced pathology late in infection and 

prolonged survival of mice infected with a mce4 mutant is observed (Senaratne et al., 2008). 

Thus, the in vivo growth defect of the omamA mutant is unlikely to result from an effect on 

Mce4, rather, a role of OmamA in additional Mce systems may account for this specific in 
vivo phenotype. However, future studies will be required to more clearly understand the 

omamA mutant phenotypes observed in animals.

The omamA mutant phenotypes we observed in cholesterol-containing media were 

indistinguishable from mce4 mutants. These results not only support a role for OmamA in 

Mce4 transport, but they additionally reveal OmamA to be a new protein required for 

cholesterol utilization in vitro. In a Tn-seq mutagenesis study to identify M. tuberculosis 
genes required for in vitro growth on cholesterol, all genes in the mce4 operon were 

identified, including mam4A and mam4B, but omamA was not identified (Griffin et al., 
2011). Interestingly, omamA barely missed the cutoff for statistical significance in this study 

(p=0.06), consistent with a role in cholesterol utilization.

It is also interesting to compare our results indicating a role for OmamA in Mce transport 

pathways to the results of a transposon mutagenesis screen conducted in mce1 or mce4 
mutant backgrounds (Joshi et al., 2006). In this genetic interaction screen, genes that are 

members of the same Mce transport pathway or genes in redundant parallel pathways were 

uncovered. Once again, although omamA was not predicted as having genetic interactions 

with mce1 or mce4 in this earlier study, inspection of the supplemental data revealed the 

behavior of omamA mutations in mce1 and mce4 backgrounds to be consistent with omamA 
being part of these Mce pathways (Joshi et al., 2006).

Given the many mce-linked mam genes (eight) and unlinked omam (five) genes in M. 
tuberculosis, our finding that deletion of omamA yielded phenotypes as dramatic as 

complete deletion of the mce4 operon was surprising, as was the discovery that OmamA 

impacted more than one Mce system. The dramatic phenotypes of the omamA mutant raise 

questions about whether other Mam proteins of M. tuberculosis will also have such broad 

effects. Data from transposon mutagenesis screens predicts similar phenotypes for mutations 

in mam genes and the adjoining mce operons (Rengarajan et al., 2005; Sassetti & Rubin, 

2003; Griffin et al., 2011), which supports the idea of mam genes functioning with their 

linked mce system. It is possible that the function of mce operon associated mam genes may 

not extend to unlinked mce loci. For example, the mce1-associated mam genes (mam1A-D) 

are not predicted to be required for growth on cholesterol like mce4 mutants (Griffin et al., 
2011). Furthermore, it remains unclear whether all orphaned Mam proteins are required for 

multiple Mce transporters or whether they are even involved in Mce transport at all. 

Individual mam and omam mutants will need to be constructed and characterized in order to 

determine if the dramatic role of OmamA in Mce function is unique or representative of the 

overall importance of all Mam family members.
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The Mycobacterium leprae genome is highly reduced in comparison to other mycobacterial 

species and is thought to have only maintained a minimal set of genes required for its 

intracellular lifestyle (Moran, 2002; Singh & Cole, 2011). Interestingly, omamA and the 

downstream omamB are only two omam genes conserved in the M. leprae genome, which 

contains a single mce operon, mce1 (Supplemental Figure 3). Conservation of omamA in M. 
leprae supports the importance of omamA in intracellular growth and virulence. 

Additionally, the conserved presence and arrangement of omamA and omamB suggests that 

the corresponding proteins may function together. Like omamA and omamB, Mam family 

proteins are usually encoded in pairs (Figure 1B, Supplemental Figure 3) (Casali & Riley, 

2007), although the significance of this arrangement is unknown. Future study of OmamB, 

the protein encoded by rv0200, could help to determine whether OmamB also has a broad 

role in Mce transport like OmamA.

While crystal structures for Mam proteins will be necessary to prove structural similarity, the 

unexpected Phyre2 predictions were helpful for identifying a function for OmamA. VirB8 is 

an essential component of bacterial type IV secretion systems, with roles assembling the 

core complex of the transport machinery, providing stability to multiple proteins within the 

complex and potentially anchoring the transporter to the cytoplasmic membrane (Paschos et 
al., 2006; Fronzes et al., 2009; Kumar et al., 2000; Baron, 2006). In the absence of VirB8, 

many proteins within the type IV secretion apparatus become destabilized and degraded (den 

Hartigh et al., 2008; Sivanesan & Baron, 2011). Similarly, in the absence of OmamA all four 

of the M. tuberculosis Mce1 proteins and one M. smegmatis Mce1 protein we monitored 

were present at dramatically reduced levels. These reduced protein levels are due to protein 

instability, as shown by monitoring the stability of Mce1A in M. tuberculosis and Mce1D in 

M. smegmatis, as representative proteins. These results suggest that OmamA, and Mam 

proteins in general, may play analogous roles to VirB8 in the formation and stabilization of 

the core Mce1 transport complex, resulting in destabilization of the complex and individual 

Mce1 proteins in their absence. Due to a lack of anti-Mce4 antibodies, we were unable to 

test the effect of OmamA on the stability of proteins that comprise the Mce4 transporter. 

However, we propose that a similar function of OmamA in stabilization of the Mce4 

transporter accounts for the defects in cholesterol uptake and metabolism observed in 

omamA mutants.

Interestingly, VirB8 also plays a role in substrate transport during type IV secretion 

(Cascales & Christie, 2004), which raises the possibility that Mam proteins may also have an 

additional role in Mce substrate movement. Due to structural and functional analogies 

between OmamA and VirB8, we propose a model wherein OmamA interacts with Mce 

proteins, potentially driving Mce complex formation and ultimately providing stability to 

Mce proteins within the complex (Figure 9). However, it is important to emphasize the 

speculative nature of the interactions depicted in this model, as there have yet to be any 

direct studies of protein-protein interactions in the presumed Mce macromolecular complex. 

Additionally, the stoichiometry of the proposed macromolecular complex remains unknown. 

Because there are thirteen Mam family proteins in M. tuberculosis and only four Mce 

transporters, we predict that each transporter may be stabilized by multiple Mam family 

members.
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Although Mce transporters are of clear importance to M. tuberculosis virulence and a core 

component of the M. tuberculosis genome (Gioffre et al., 2005; Shimono et al., 2003; 

Marjanovic et al., 2010; Lima et al., 2007; Sassetti & Rubin, 2003; Rengarajan et al., 2005; 

Stewart et al., 2005; McCann et al., 2011; Senaratne et al., 2008; Pandey & Sassetti, 2008), 

there has yet to be a systematic genetic or biochemical analysis of the individual Mce 

transporter proteins in terms of their contribution to virulence or their function in the 

transport mechanism. Mce transporter components are assigned potential functions by 

analogy to classic ABC transporters (ex. ATPase, permease, or solute binding proteins) 

(Casali & Riley, 2007). However, Mce transporters are distinguished from ABC transporters 

in the multitude of individual proteins predicted to be involved: two YrbE permeases, six 

predicted Mce solute binding proteins, and a shared ATPase MceG. The function of all of 

these individual transporter components requires validation. Because Mam proteins share no 

obvious ABC transporter counterpart their function was an even bigger mystery. The results 

of this study provide an essential framework for studying the role of Mam family proteins in 

the stabilization of Mce transporter systems.

Experimental Procedures

Bacterial strains and plasmids

In this study, we used the bacterial strains listed in Supplemental Table 1 and plasmids as 

listed in Supplemental Table 2. The M. tuberculosis omamA (rv0199) mutant was generated 

in a previous transposon mutagenesis study performed in a M. tuberculosis β-lactamase 

(ΔblaC) background (McCann et al., 2011; Flores et al., 2005). The omamA::tn mutant has a 

hygromycin resistant Tn’blaTEM-1 transposon inserted in the omamA coding sequence at 

amino acid position 74 and it expresses an exported OmamA-‘BlaTEM-1 fusion protein. 

The omamA::tn mutant (omamA::tn, ΔblaC) used in this study (MBTB319) additionally 

carries the empty pMV261.kan plasmid. For mutant characterization, omamA::tn was 

compared to strain MBTB178 (omamAWT, ΔblaC, pJES137, pMV261.kan). Plasmid 

pJES137 is an integrating hygromycin resistant plasmid that expresses ‘blaTEM-1. 

MBTB178 is referred to as WT in the text. The M. tuberculosis complemented strain 

(omamA::tn, ΔblaC, pJES178) expresses omamA from the hsp60 promoter of the 

kanamycin resistant plasmid pJES178 (McCann et al., 2011). This series of omamA::tn 
(MBTB319), omamAWT (MBTB178) and complemented (MBTB320) strains are all 

hygromycin and kanamycin resistant to enable growth in identical media conditions.

Bacterial growth

M. tuberculosis strains were grown in Middlebrook 7H9 broth (Difco) supplemented with 

1X albumin dextrose saline (ADS), 0.5% glycerol and either 0.025% Tween 80 (Tw) or 

0.025% tyloxapol (Ty). M. smegmatis strains were grown in Middlebrook 7H9 broth (Difco) 

supplemented with 0.2% glucose, 0.5% glycerol, and either 0.05% Tween 80 (Tw) or 0.05% 

Tyloxapol (Ty). Medium was supplemented with 20μg mL−1 kanamycin or 50μg mL−1 

hygromycin as needed for mycobacterial cultures. E. coli strains were grown in Luria-

Bertani medium (Fisher) supplemented as necessary with 40μg mL−1 kanamycin.
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Mouse experiments

Female C57BL/6 mice aged 7-10 weeks were infected with ~200 cfu of M. tuberculosis by 

aerosol using a Madison chamber (Mechanical Engineering Workshop, Madison, WI), and 

bacterial burden was determined, as previously described (Kurtz et al., 2006). Groups of four 

mice per strain were sacrificed, organs homogenized, and diluted and plated to determine 

bacterial burden at various times after infection. The lower right lobe of the lungs was 

inflated and fixed in 10% formalin for histology.

Histopathology

Inflammation was determined in 5 μm sections following hematoxylin and eosin (H&E) 

staining. Paraffin embedded sections were set and cut to reveal the maximum longitudinal 

visualization of the intrapulmonary main axial airway. Histopathology was evaluated and 

scored by an experienced blinded reviewer (I.C.A.) on a scale of 0 (absent) to 3 (severe), as 

previously described (McElvania Tekippe et al., 2010; Allen et al., 2013; Allen et al., 2009). 

The parameters assessed included overall leukocyte infiltration, perivascular and 

peribroncheolar cuffing, extravasation, and the estimated percent of lung area involved with 

inflammation. Each individual parameter was scored and averaged to generate the histology 

score.

Mutant construction

M. smegmatis mutants were constructed by recombineering, as previously described (van 

Kessel & Hatfull, 2008; van Kessel & Hatfull, 2007). Briefly, upstream and downstream 

flanks were PCR amplified and cloned into pMP614 (kind gift from Martin Pavelka), which 

was then linearized to produce the final recombineering fragment, carrying a hygromycin 

resistance marker flanked by DNA sequences upstream and downstream of msmeg0235. 

Parental strains carrying a kanamycin marked plasmid expressing a recombinase, pJV53, 

(van Kessel & Hatfull, 2007; van Kessel & Hatfull, 2008) were used for recombineering. 

Following three hour induction of the recombinase with acetamide, electroporation was used 

to introduce the linear recombineering fragment. Allelic exchange recombinants were 

selected for double resistance to hygromycin and kanamycin. Strains were cured of pJV53 

by passaging 3-4 times in the absence of kanamycin. Plasmid cured strains were then 

transformed with the resolvase expressing pMP854 plasmid (kind gift from Martin Pavelka), 

to remove the hygromycin marker in the deletion cassette. Hygs strains were cured for 

pMP854 as described above to generate the final unmarked deletion strains. Mutant 

construction was confirmed by Southern blot (data not shown).

OmamAms complementation and OmamAmtb-HA vector construction

The msmeg0235 gene (omamAms) was PCR amplified by msmeg0235_F1 x 

msmeg0235_R1, the rv0199 gene (omamAmtb) was PCR amplified by rv0199HA_F_MscI x 

rv0199HA_R_HindIII, and PCR fragments were cloned into pCR2.1 (Invitrogen). The 

resulting plasmids were sequenced to confirm they were error-free. The omamAms fragment 

was digested from pCR2.1 with EcoRI, gel purified, and ligated into EcoRI digested 

pMV261.kan (Stover et al., 1991). The omamAmtb fragment was digested from pCR2.1 with 

MscI and HindIII, gel purified, and ligated into MscI/HindIII digested JSC77 (Glickman et 
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al., 2000), containing an in-frame C-terminal HA tag. Primer sequences are provided 

(Supplemental Table 3).

Transformation

M. smegmatis strains were transformed by electroporation, as previously described (Snapper 

et al., 1990).

Morphology

Congo red assays were performed, as previously described (Klepp et al., 2012). Mueller 

Hinton agar plates were supplemented with 0.2% glucose and 100μg mL−1 Congo red 

(Sigma). Colony morphology was analyzed by plating 2 μL spots of OD600 1.0 M. 
smegmatis strains. Plates were incubated at 37°C for two days and visualized using a low-

magnification Leica M420 macroscope with 2X and 5.6X magnification.

Cholesterol Metabolism Assays for M. tuberculosis

A cholesterol stock solution was prepared by solubilizing cholesterol in ethanol and 

tyloxapol, as follows. A 1:1 solution of 200 proof ethanol:Tyloxapol (Sigma) was prepared, 

filtered, and heated to 50°C. 200mg mL−1 cholesterol was dissolved in 3:1 

chloroform:methanol, and added dropwise to the 50°C tyloxapol solution until reaching 20% 

final volume. Sauton's media was prepared and pH adjusted to 7.4: 1L dH2O, 4g DL 

asparagine, 2g sodium citrate, 0.5g K2HPO4, 0.5g MgSO4-7H2O, 0.05g ferric ammonium 

citrate, 0.025% Tyloxapol, and supplemented with either 6% glycerol or 0.5 mM cholesterol 

from stock solution. M. tuberculosis strains were diluted to 105 cfu mL−1 in Sauton's +Ty 

and 104 cfu were aliquoted into 96 well plates with Sauton's supplemented with glycerol or 

cholesterol, incubated shaking at 37°C for seven days, then resazurin (Sigma) was added to a 

final concentration 0.0125 mg mL−1. Resazurin conversion was followed using fluorescence 

and was monitored daily by a Tecan Infinite 200 Pro at hv=544 nm excitation and hv=590 

nm emission.

Cholesterol Metabolism Assays for M. smegmatis

A cholesterol stock solution was prepared by solubilizing cholesterol in cyclodextrin, as 

previously described (Klein et al., 1995). Briefly, 1g methyl-ß-cyclodextrin (C4555 Sigma) 

was dissolved in 11mL PBS (0.09g mL−1) and heated to 80°C with continuous stirring. 30 

mg cholesterol (Sigma) was dissolved in 400μL 2:1 isopropanol/chloroform. The cholesterol 

solution was added to the cyclodextrin in 50μL aliquots, stirring continuously. The solution 

was cooled slowly, filtered for sterility, and kept at room temperature. M9 minimal media 

was prepared as follows: 1L dH2O, 12.8g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 1g NH4Cl, 25 

μL 1M CaCl2, 500μL 1M MgSO4, and 2.5 mL 10% Tyloxapol (Ty, Sigma), and 

supplemented with 0.2% glucose and 0.5% glycerol or 0.5mM cholesterol from stock 

solution. M. smegmatis strains were grown to OD600 1.0 in M9 supplemented with 0.2% 

glucose and 0.5% glycerol + 0.05% Ty. Strains were washed in M9 +Ty three times by 

pelleting cells at 1,900 × g for 10 minutes at 4°C, and diluted to 105 cfu mL−1 in M9 +Ty, 

and 104 cfu were plated into 96 well plates with M9 containing glycerol or cholesterol. 

Plates were incubated shaking at 37°C overnight, after which resazurin (Sigma) was added 
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to a final concentration 0.0125 mg mL−1. Florescence was monitored every 10 minutes by a 

Spectramax M2 using hv=544 nm excitation and hv=590 nm emission.

Cholesterol uptake

Cholesterol uptake experiments were performed, similar to previously reported (Klepp et al., 
2012). M. smegmatis strains were grown to OD600 1.0 in M9 supplemented with 0.2% 

glucose and 0.5% glycerol + 0.05% Ty. Strains were washed in M9 + Ty three times by 

pelleting cells at 1,900 × g for 10 minutes at 4°C, and then equalized to OD600 0.5 in M9 + 

Ty, and incubated with 0.04μCi 4-C14 cholesterol (Perkin Elmer NEC018050UC) for 2 

hours at 37°C. After incubation, cells were pelleted and washed three times with M9 + Ty, 

and cell associated radioactivity was measured by scintillation counter.

Subcellular fractionation

M. tuberculosis cells were pelleted by centrifugation (1,900 × g) and sterilized by irradiation 

(JL Shephard Mark I 137Cs irradiator, Department of Radiobiology, University of North 

Carolina at Chapel Hill). After sterilization, M. tuberculosis cells were removed from BSL-3 

containment. M. smegmatis cells were simply pelleted by centrifugation for 10 minutes at 

1,900 × g. Subcellular fractionation was then performed, as previously described (Gibbons 

et al., 2007). Briefly, cells were resuspended in PBS containing protease inhibitors, lysed in 

a French pressure cell, and unlysed cells were removed by centrifugation (1,900 × g). The 

clarified whole cell lysates (WCL) were subjected to differential ultracentrifugation, 27,000 

× g for 30 minutes to pellet the cell wall (CW), 100,000 × g for 2 hours to pellet the 

membrane (MEM), and remaining soluble (SOL) fraction containing the cytoplasm.

Western blotting

Equal protein amounts, as determined by Bicinchonic acid assay (Pierce), for all fractions 

and strains were separated by SDS-PAGE and transferred to nitrocellulose membranes. 

Proteins were detected using the following antibodies: Mce1 antibodies (a gift from 

Christopher Sassetti, University of Massachusetts Medical School (Feltcher et al., 2015)): 

anti-Mce1A (1:10,000), anti-Mce1D (1:5,000), anti-Mce1E/Lprk (1:5,000), anti-Mce1F 

(1:10,000), anti-19kD (1:20,000) (a gift from Douglas Young, Imperial College, United 

Kingdom), and anti-HA (1:25,000) (Covance). GroEL2 was detected using an anti-HIS 

(1:10,000) (Abgent) antibody, as previously described (Feltcher et al., 2013), which 

recognizes a string of histidines in GroEL2 (Rengarajan et al., 2008). Anti-mouse and Anti-

rabbit IgG conjugated HRP (Biorad) were used as secondary antibodies, as appropriate. 

HRP signal was detected using Western Lighting Chemiluminescent detection reagent 

(Perkin-Elmer). Quantitation of Western blots was calculated by densitometry using ImageJ 

(Schneider et al., 2012).

Quantitative Real-Time PCR

Triplicate M. tuberculosis cultures were grown to OD600 of 1.0 and pelleted by 

centrifugation for 10 minutes at 1,900 × g, and qRT-PCR was performed. Bacteria were 

lysed by 3:1 chloroform methanol, mixed with Trizol (Invitrogen), and the upper phase was 

separated and RNA precipitated overnight in isopropanol. RNA samples were pelleted and 
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washed in 70% ethanol, and resuspended in RNase-free H2O. RNA samples were treated 

with DNase (Promega), purified (Zymo RNA Clean and Concentrator Kit), and converted to 

cDNA using iScript cDNA Synthesis Kit (BioRad). Triplicate biological and triplicate 

technical replicates of cDNA from 40 ng RNA each were used for qRT-PCR using the 

Sensimix SYBR and Flourescein kit (Bioline). Transcript copy number for each gene was 

calculated as compared to known concentrations of genomic DNA, and each sample was 

normalized to housekeeping gene sigA transcript levels. Primer sequences are provided 

(Supplemental Table 3).

Protein stability experiments

Cultures of M. tuberculosis or M. smegmatis were first grown to approximately OD600 1.0 

and diluted to OD600 0.5 in media containing 20 ug mL−1 or 35 ug mL−1 of 

chloramphenicol (Sigma) for M. tuberculosis and M. smegmatis, respectively. At specific 

time points, samples were taken to measure the amount of Mce1 protein present in WCL. 

For M. tuberculosis samples, prior to cell lysis the cells were washed twice with PBS 

+ 0.02% Tween 80, sterilized by fixation in an equal volume of 10% formalin (Fisher) for 1 

hour and washed post-fixation. Whole cell lysates were prepared as previously described 

(Braunstein et al., 2001). Briefly, cells were resuspended in extraction buffer, lysed by 

MagNA Lyser (Roche) with glass beads, and denatured by boiling. Equal protein amounts as 

determined by Bicinchonic acid assay (Pierce) were loaded for Western blot analysis, as 

described above. Quantitation of Western blots was calculated by densitometry using ImageJ 

(Schneider et al., 2012).

Statistics

Statistics were performed in SigmaPlot. Normality testing (Shapiro-Wilk) and equal 

variance testing was done to determine correct statistical methods. Comparisons passing 

normality and equal variance with two groups were performed by two-tailed Student's t-test. 

Comparisons not passing normality with two groups were performed by Mann-Whitney rank 

sum test. Comparisons passing normality and equal variance with more than two groups 

used one way analysis of variance (ANOVA), followed by multiple comparisons with the 

Holm-Sidak method as appropriate. Comparisons not passing normality with more than two 

groups used Kruskal-Wallis one way analysis of variance on ranks, followed by multiple 

comparisons with Student-Newman-Keuls. Survival was analyzed by Log-rank test followed 

by multiple comparisons with the Holm-Sidak method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rv0199 (OmamA) is a transmembrane protein predicted to be a Mce-associated protein. A. 
OmamA is predicted to have a single N-terminal transmembrane domain (TM) at amino acid 

42-64 (Krogh et al., 2001) and C-terminal domain exposed to the cell wall side of the 

membrane (McCann et al., 2011). B. OmamA is predicted to be a Mce-associated membrane 

(Mam) protein, however, rv0199 is not located in a mce operon. Mce operons are typically 

organized by two yrbE genes upstream (green), six mce genes (purple) and most have pairs 

of mam genes (red) downstream. Genes encoding putative orphaned mam genes are boxed. 

Genes encoding Omam proteins are distinguished by being distally located from mce 
operons (Casali & Riley, 2007). The mce2 operon additionally contains a small predicted 

pseudogene (grey). C. The omamAmtb gene was engineered in frame with an HA tag and 

expressed in M. smegmatis. Cells were lysed to generate whole cell lysates (WCL) and 

fractionated by differential ultracentrifugation into cell wall (CW), cell membrane (MEM), 

and cytoplasmic containing soluble (SOL) fractions. Results are representative of at least 

three independent replicates. D. Phyre 2, an online structural prediction program, predicted 

with high confidence (96%) that OmamA forms a NTF2-like fold. Ribbon diagrams shown 

represent the Phyre 2 predicted structures of OmamA colored by secondary structure in 

Pymol. Ribbon diagrams representing the solved crystal structures of VirB8 from Brucella 
suis and DotI from Legionella pneumophila are shown for comparison. Alpha helices are 

colored in red, Beta-strands in yellow, and turns in green.
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Figure 2. 
OmamA is required for early growth and virulence during murine infection. C57BL/6 mice 

were infected with a low dose aerosol of WT, omamA::tn, or omamA::tn +omamA 
complemented strains. Groups of four mice per strain were sacrificed at various days post 

infection (dpi) and bacterial burden (colony forming units, cfu) was assessed by plating from 

A. lung homogenates or B. spleen and liver homogenates. No significant differences were 

observed in the initial lung burden determined one day post infection (WT 193 +/− 10, 

omamA::tn 174 +/− 9 and omamA::tn +omamA 206 +/− 18). C. Groups of mice were 
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monitored for survival. * indicates p<0.05 as compared to WT. tn indicates transposon 

insertion. Error bars represent standard deviation. Results are representative of two 

independent experiments comparing WT (MBTB178), omamA::tn (MBTB319), and 

omamA::tn + omamA (MBTB320).
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Figure 3. 
Mice infected with the omamA mutant have reduced histopathology compared to WT 

infected mice. A. A single lung lobe from was fixed and H&E stained for histology. Shown 

are representative images captured under 2X and 20X magnification from 20 and 127 days 

post infection comparing WT (MBTB178), omamA::tn (MBTB319), and omamA::tn + 

omamA (MBTB320). B. Average histological activity index (HAI) scores were determined 

by an experienced blinded reviewer.
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Figure 4. 
The omamAms mutant shares a morphology phenotype with mce operon mutants. Two μL 

spots of culture were plated on Mueller Hinton plates containing glucose and Congo red. 

The resulting colonies were visualized after 2 days at 2X and 5.6X magnification (Leica 

M420 macroscope). Results are representative of at least three independent experiments 

comparing WT +pMV261 (EP1182), Δmce4 +pMV261 (EP1204), Δmce6X +pMV261 

(EP1208), ΔomamA +pMV261 (EP1193), ΔomamA +omamAms (EP1194), ΔomamA 
+omamAmtb (EP1203), ΔomamAΔmce4 +pMV261 (EP1206), and ΔomamAΔmce6X 
+pMV261 (EP1210). pMV261 is an empty vector, omamA expression constructs are cloned 

in pMV261.
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Figure 5. 
OmamA is required for M. smegmatis and M. tuberculosis to utilize cholesterol. A. 104 

colony forming units (cfu) of M. smegmatis strains were added to M9 glucose/glycerol and 

metabolic activity was monitored by resazurin conversion over time. B. 104 cfu of M. 
smegmatis were added to minimal M9 media plus cholesterol, and metabolic activity was 

monitored by resazurin conversion over time. Relative fluorescence unit measurements in 

cholesterol media are reported after subtraction of the minimal signal from no carbon 

source. 104 cfu of M. tuberculosis were added to minimal Sauton's media supplemented with 

C. glycerol or D. cholesterol, and metabolic activity was monitored by resazurin conversion 

over time. Relative fluorescence unit measurements in cholesterol media are reported after 

subtraction of the minimal signal from no carbon source. Results are representative of at 

least three independent experiments. M. smegmatis (Ms) strains: WT +pMV261 (EP1182), 

Δmce4 +pMV261 (EP1204), ΔomamA +pMV261 (EP1193), ΔomamA +omamAms 

(EP1194), and ΔomamA +omamAmtb (EP1203). M. tuberculosis (Mtb) strains: WT 

(MBTB178), omamA::tn (MBTB319), omamA::tn + omamA (MBTB320), mce2F::tn 
(MBTB156), mce1A::tn (MBTB204), mce4B::tn (MBTB329), mce4F::tn (MBTB288).
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Figure 6. 
OmamA is required for cholesterol uptake. A. and B. M. smegmatis strains were grown 

overnight in M9 glucose/glycerol, and washed extensively in M9 no carbon source. Cells 

were incubated with 4-C14-cholesterol for two hours, washed extensively, and cell associated 

radioactivity levels were measured by scintillation counter. * indicates p<0.05 compared to 

WT. Error bars represent standard deviation. Results are representative of at least three 

independent experiments. M. smegmatis strains: WT +pMV261 (EP1182), Δmce4 
+pMV261 (EP1204), ΔomamA +pMV261 (EP1193), ΔomamA +omamAms (EP1194), 

ΔomamA +omamAmtb (EP1203), and ΔomamAΔmce4+pMV261 (EP1206).
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Figure 7. 
Mce1 protein levels are reduced in the absence of OmamA. A. M. tuberculosis (Mtb)cells 

were irradiated and lysed by French press to generate whole cell lysates (WCL) and 

fractionated by differential ultracentrifugation into cell wall fractions. Western blots were 

performed for Mce1A, Mce1D, Mce1E, Mce1F, and the 19kD lipoprotein with equal protein 

amount loaded across strains. Results are representative of at least three independent 

replicates. B. RNA was collected from M. tuberculosis WT, omamA::tn, and omamA::tn 
+omamA complemented strains and transcript levels of mce1A, mce1F, mce4A, and mce4F 
were determined by Quantitative Real-Time PCR and normalized to expression of the 

housekeeping protein sigA (Manganelli et al., 1999). Reported are fold change values for 

each gene relative to expression in WT M. tuberculosis. Error bars represent standard 

deviation. Results are representative of at least three independent experiments with WT 

(MBTB178), omamA::tn (MBTB319), and omamA::tn + omamA (MBTB320). C. M. 
smegmatis (Ms) cells were lysed by glass beads to generate whole cell lysates (WCL). 

Western blots were performed for Mce1D and GroEL2 with equal protein amount loaded 

across strains. Results are representative of at least three independent experiments with M. 
smegmatis WT +pMV261 (EP1182), ΔomamA +pMV261(EP1193) and ΔomamA 
+omamAms (EP1194) strains.
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Figure 8. 
Mce1 proteins are stabilized by the presence of OmamA. Cultures of M. tuberculosis (Mtb) 

and M. smegmatis (Ms) were treated with chloramphenicol to prevent further protein 

synthesis and protein stability was monitored over time by Western blot analysis of whole 

cell lysates (WCL) with equal protein amount loaded across strains and timepoints. Samples 

were removed at specific time points, formalin fixed (for M. tuberculosis) and lysed by glass 

beads to generate WCL. A. The stability of Mce1A in M. tuberculosis strains was followed 

over a two day time course by Western blot analysis. B. Mce1A protein decay was 

quantified by measuring band intensity on Western blots using ImageJ. C. The stability of 

the exported 19 kD lipoprotein in M. tuberculosis over time as monitored by Western blot. 

D. 19 kD protein abundance was quantitated by ImageJ. Results are representative of at least 

two independent experiments with M. tuberculosis WT (MBTB178), omamA::tn 
(MBTB319), and omamA::tn + omamA (MBTB320) strains. E. Decay of Mce1D was 

quantified in M. smegmatis cultures over 13 hours by measuring band intensity on Western 

blots using ImageJ. F. Decay of GroEL2 was quantified in M. smegmatis cultures over 13 

hours by measuring band intensity on Western blots using ImageJ. Results are representative 

of at least three independent experiments with M. smegmatis WT +pMV261 (EP1182), 

ΔomamA +pMV261 (EP1193) and ΔomamA +omamAms (EP1194) strains.
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Figure 9. 
OmamA is an integral membrane protein that is important to Mce transporter stability and 

function. OmamA (pink) and other Mam proteins (red) are embedded in the inner membrane 

by an N-terminal transmembrane domain with the majority of the protein being localized on 

the cell wall side of the membrane. Mce permease proteins (YrbE), shown in green, are 

multi-membrane spanning proteins localized to the inner membrane. Some Mce proteins 

contain predicted TM domains; however, localization from this and other studies (Klepp et 
al., 2012) suggests that Mce proteins are located within the cell wall (shown in purple). 

MceG, shown in yellow, is the cytoplasmic Mkl family ATPase predicted to be responsible 

for ATP-hydrolysis that powers the transport of substrates, shown in light pink, through the 

complex.
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