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Abstract

Lipolysis Stimulated Lipoprotein Receptor (LSR) has been found in the plasma membrane and is 

believed to function in lipoprotein endocytosis and tight junctions. Given the impact of cellular 

metabolism and junction signaling pathways on tumor phenotypes and patient outcome, it is 

important to understand how LSR cellular localization mediates its functions. We conducted 

localization studies, evaluated DNA binding, and examined the effects of nuclear LSR in cells, 

xenografts, and clinical specimens. We found LSR within the membrane, cytoplasm, and the 

nucleus of breast cancer cells representing multiple intrinsic subtypes. Chromatin 

immunoprecipitation (ChIP) showed direct binding of LSR to DNA, and sequence analysis 

identified putative functional motifs and post-translational modifications of the LSR protein. 

While neither overexpression of transcript variants, nor pharmacological manipulation of post-

translational modification significantly altered localization, inhibition of nuclear export enhanced 
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nuclear localization, suggesting a mechanism for nuclear retention. Co-immunoprecipitation and 

proximal ligation assays indicated LSR-pericentrin interactions, presenting potential mechanisms 

for nuclear-localized LSR. The clinical significance of LSR was evaluated using data from over 

1,100 primary breast tumors, which showed high LSR levels in basal-like tumors and tumors from 

African-Americans. In tumors histosections, nuclear localization was significantly associated with 

poor outcomes. Finally, in vivo xenograft studies revealed that basal-like breast cancer cells that 

over-express LSR exhibited both membrane and nuclear localization, and developed tumors with 

100% penetrance, while control cells lacking LSR developed no tumors. These results show that 

nuclear LSR alters gene expression and may promote aggressive cancer phenotypes.
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Introduction

Tumor pathogenesis results from a complex integration of genetic and environmental 

stimuli. Understating how these oncogenic factors unite to drive the phenotypic 

characteristics of cancer cells is a critical goal for the development of successful targeted 

therapies. Recent evidence suggests that the cell surface protein Lipolysis Stimulated 

Lipoprotein Receptor (LSR) may relay environmental cues to influence breast cancer cell 

behavior (1-4). LSR has two proposed functions in healthy tissue, hepatic postprandial 

clearance of triglyceride-rich lipoproteins from blood and mediation of tricellular junctions 

(tTJ) (5-8).

Experimental studies have shown that LSR plays an important role in lipid metabolism. 

Complete inactivation of Lsr is embryonic lethal in mice, but removal of a single allele 

(Lsr-/+) significantly increases plasma triglyceride and cholesterol levels and delays 

clearance of lipid emulsions after high fat meals (4). LSR is upregulated by leptin and 

mediates the binding of apoB- and apoE-containing lipoproteins in hepatocytes, leading to 

their internalization and degradation (4, 5, 9, 10). While the most prominent metabolic 

alterations in cancer are increased glucose uptake and the use of aerobic metabolism, other 

metabolic processes including lipid endocytosis and de novo macromolecule synthesis have 

been observed in cancer-associated metabolic reprogramming (11).

The role of LSR in cell adhesion is similarly well-established. LSR regulates tTJs (8, 12, 

13), specialized structural elements within epithelial tricellular contacts. LSR regulates tTJs 

by recruiting tricellulin to junctions, along with other proteins including ILDR1 and ILDR2 

(14). While one would expect cellular junction dissolution/down-regulation as a prerequisite 

for cellular transformation, and where experimental evidence suggests that TJ/tTJ proteins 

play dual functional roles in the tumorigenic process (15-17). De-regulation of claudins-3, -4 

and -7 in breast cancer is subtype-specific and has been shown to be correlated with 

aggressive tumor cell behaviors.

Our previous data suggest that LSR's function is cell type- and context-dependent. We have 

shown that LSR expression is higher in invasive ductal carcinomas compared to invasive 
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lobular carcinomas, and is higher in estrogen receptor α positive (ER+) tumors and cell 

lines. However, reintroduction of LSR into claudin-low breast cancer cell lines altered gene 

expression, enhanced cellular proliferation, and increased survival in anchorage independent 

conditions, highlighting that LSR signaling promoted aggressive/breast cancer stem cell-like 

behaviors (1). Our previous mechanistic studies complement reports linking LSR to human 

breast cancer stem cell function and metastatic signatures in two breast cancer models (3, 

18). In triple-negative breast cancer cell lines, the CD44hi/CD24lo basal A cells contained 

high levels of LSR compared to all other populations, and that these cells retained classic 

cancer stem cell features, such as tumor-initiating capacity in vivo, mammosphere formation 

and resistance to standard chemotherapy. Further, LSR was identified an integral component 

of a 31-gene signature capable of predicting distant metastasis in cohorts of ER-negative 

human breast cancers (3). LSR has also recently been proposed as a poor prognostic plasma 

biomarker in colon cancer patients (19).

Given the importance of cancer stem cell populations, cell metabolism, and tight junctions in 

understanding cancer progression, we sought to identify mechanisms of LSR function in 

breast cancer. Herein, we investigate cellular localization and genomic DNA binding 

patterns of LSR. We identify downstream functional pathways as well as evaluate transcript 

variants and post-translational modifications of LSR for effects on cellular localization and 

function. Finally, we test the effects of LSR expression on tumorigenesis in vivo, and 

examined the expression and localization of LSR in association with tumor characteristics 

and patient outcomes.

Materials and Methods

External Dataset analysis

All TCGA data originated from primary breast tumors (N=1097), metastatic tumors (N=7), 

and adjacent normal tissue (N=114) and were retrieved from the TCGA Data Portal and 

analyzed using R (V2.13.1). Box and whisker plots were used to visualize differences in 

expression of LSR by subtype and two-way ANOVAs or t-tests were used to evaluate 

statistical significance (20, 21). Mutations across TCGA tumor types were identified from 

the cBioPortal.

GEO accession GSE16997 (22) was downloaded and LSR transcript abundance was 

compared in luminal progenitor epithelial samples (N=3) with basal/stem cell epithelial 

samples (N=3) using a linear model. Using the processed hybridization intensities 

downloaded, we computed expression changes between treatment groups via an empirical 

Bayes moderated paired t-test (23) using the Bioconductor package limma. Candidate genes 

for differential expression with a P-value of less than 0.05 were selected. To account for 

multiple testing, we computed the false discovery rate of the extracted candidate list from 

the p-value distribution of the corresponding genes using the Bioconductor package qvalue 

(10% FDR cutoff). Using the same method, we compared the expression of LSR between 

ALDH+ luminal breast epithelial samples (N=13) and basal breast epithelial tissue samples 

(N=12) obtained from GEO accession GSE35399 (24).
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Immunofluorescence and Proximal Ligation Assay

Tumor biopsies were obtained and analyzed in accordance with the guidelines of the North 

Carolina Central Institute Review Board, protocol 1201027. Immunofluorescence was 

performed with appropriate controls as described (1, 2, 25). Anti-LSR antibodies; Atlas 

Antibodies and Santa Cruz Biotechnology. Imaging was performed on a Nikon Eclipse 50i 

microscope with digital camera and NIS-Elements 4.11.00. Nuclear localization confirmed 

via Zeiss 710 laser scanning confocal microscope. Cell culture experiments utilized 8-well 

chamber slides for cell growth/treatment prior to immunofluorescence. Proximal ligation 

assays were performed following the Duolink® Starter Kit (Invitrogen) as instructed using 

either the Atlas Antibodies or the Santa Cruz Biotechnology with the mouse monoclonal 

pericentrin antibody (Santa Cruz).

Cell culture and treatments

Cells were obtained from American Type Culture Collection (Manassas, VA) or Asterand 

(Detroit, MI) with the provided authentication documents (2015), and cultured as directed 

by manufacturers. Primary breast epithelial cells, FMEC2, were previously characterized 

and cultured as described (25, 26). Overexpression vectors were obtained from Origene 

(Rockville, MD) and cell transfected as described (1, 2). Proliferating cells were treated with 

Leptomycin B (37nM) one h prior, or 2-bromopalmitate (27-29) (10 and 100μM) 30min 

prior to treatment, fixation and imaging as described (1, 2, 25).

Subcellular fractionation, immunoprecipitations, and western analysis

Subcellular fractionation was performed using Qproteome®Cell Compartment kit (Qiagen, 

Velencia, CA) as instructed. Cells were lysed in mPer Lysis Buffer (Thermo Scientific, 

Rockford, IL) supplemented with protease and phosphatase inhibitors (Halt™ Thermo 

Scientific) then subjected to western analyses as described (1, 2, 25). Antibodies: Atlas 

Antibodies, LSR; Santa Cruz Biotechnology, LSR, vimentin, GAPDH, Sp3, tubulin; Life 

Technologies (Grand Island, NY), pSeR; Origene (Rockland, MD), VDAC. 

Immunoprecipitation was performed as described (30).

Chip-Seq

Libraries were created from 10ng of LSR ChIP and 10ng of corresponding input from 

MCF7 cells according to manufacturer's protocol (Illumina, San Diego, CA). Two 

independent ChIP-seq were performed and analyzed by scientists at the David H. Murdock 

Research Institute via the Illumina HS2000 sequencing platform, paired-end read, multiplex, 

50×. Data were also assessed for ChIP-Seq quality as outlined by the ENCODE and 

modENCODEconsortia. Reads were trimmed based on a quality limit of 0.05 using CLC 

Genomics Workbench v 8.0 (http://www.clcbio.com), and mapped to the reference human 

genome (hg19/GRCh37; Ensembl) in CLC Genomics Workbench (peak calling tool was 

used to make peak calls using control input data with a maximum P-value<0.05). Sequences 

were extracted underneath called peaks then passed through TRANSFAC (http://

www.biobase-international.com) to create scoring matrices used to predict binding motifs. 

Predicted transcription factor binding sites are based on 5,000+ positional weight matrices 

derived from experimentally verified data and 3D homology modeling that is kept in 
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BIOBASE. LSR motif was identified using MEME via Expectation Maximization using one 

occurrence per sequenced distribution (31). Pathway analyses were performed via Ingenuity 

IPA (http://www.ingenuity.com/).

Liquid chromatography-tandem mass spectrometry (LC MS/MS)

LSR and LSR-associated proteins were co-immunoprecipitated from MCF cell lysates as 

described (30). A non-specific antibody served as a control and results were checked for 

background contaminants via the CRAPome (http://www.crapome.org/). Samples were 

prepared for bottom-up proteomics using the filter assisted sample preparation protocol (32). 

Briefly samples digested using trypsin, purified, and analyzed by LC MS/MS using a 

quadrupole orbitrap mass spectrometer operating in a top 12 data dependent mode. Data was 

searched against the human Uniprot protein database using Protein Discoverer 1.4. 

Percolator (33) was used to establish a peptide spectral match q value threshold of <0.01.

Computational Predictions

LSR (ENSG00000105699) transcript variant sequences were compiled from Ensembl, 

GenBank, and UniProt databases. MWs were calculated using ProtParam (34). Sequences 

were also analyzed using MOTIF (http://www.genome.jp/tools/motif/). NetPhos was used to 

predict phosphorylation of serines, threonines, and tyrosines(35), sumoylation sites via GPS-

SUMO(36), C-mannosylation sites via NetCGlyc(37), s-nitrosylation via GPS-SNO(38), 

palmitoylation sites via CSS-Palm(39), and the Sulfinator program was used to predict 

tyrosine sulfation(40). For evolutionary conservation analysis, sequences were obtained 

from the NCBI database. Full-length protein sequences of forty animal species were used, 

including human (Homo sapiens), 37 mammalian species, western painted turtle 

(Chrysemys picta bellii), and zebrafish (Danio rerio). First, a seed cluster was aligned using 

Clustal Omega with human, chimpanzee and gorilla sequences. Then, the remaining 

sequences were iteratively added to the alignment. The final multi-species alignment was 

visualized and edited using Geneious 7.1 (Biomatters, Aukland, New Zealand). Graphs were 

prepared using R (V2.13.1).

Xenografts

Animal experiments were conducted in accordance with accepted standards of humane 

animal care and approved by the Animal Care and Use Committee at North Carolina Central 

University. Xenografts were generated using 5-week-old female Hsd:Athymic Nude-

Foxn1nu mice (Harlan Laboratories, Indianapolis, IN) as described (41) using 5×105 control 

Hs578t cells or Hs578t LSRδ-overexpressing cells (1) suspended in 30μl of 50/50 

PBS:Matrigel. Weekly tumor growth was measured and tumors excised when volume neared 

1.0cm3. Tumor fragments were formalin-fixed for immunohistochemical analysis. Three 

independent experiments were performed to ensure repeatability. Mice that did not form 

tumors were euthanized five months post-injection.
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Results

LSR heterogeneity in breast cancer

LSR has been proposed as a component of breast cancer stem/progenitor cells. This suggests 

that the functional heterogeneity of LSR we have observed within ER+ and ER- breast 

cancer cell populations may arise from paths of differential lineages together with 

microenvironmental cues. Current studies support that both ER+ and ER- tumors arise from 

ER+ progenitor cells, and others and we have identified LSR in both ER+ and ER- tumors 

and breast cancer cell lines (22, 24). Thus, we investigated the association of LSR with 

luminal progenitor cell populations in two prominent reports. Using the data from Lim et al., 
defining the basal stem/progenitor, luminal progenitor and mature luminal cells isolated 

from reduction mammoplasty tissue (22), we computed expression changes between 

treatment groups via an empirical Bayes moderated paired t-test. We found higher 

expression of LSR in luminal progenitor epithelial cells as compared to the basal/stem cell 

epithelium (P=0.0002, adjusted P=0.004) using 10% FDR cutoff. Correspondingly, using the 

data from Shehata et al., (24) we found increased LSR expression in the undifferentiated 

(EpCAM+CD49f+ALDH+) luminal epithelial progenitors compared to the differentiated and 

basal cell populations (P=0.004, adjusted P=0.06; 10% FDR cutoff). Last, QPCR evaluation 

of genes classically associated with luminal progenitor cells and breast cancer stem cell 

phenotypes (Elf5, MDR1, CD133, FASN, and MUC1) show significantly higher expression 

in MCF7 cells with high levels of LSR and Hs578t cells overexpressing LSR compared to 

MCF7 cells with low/undetectable levels and parental control Hs578t cells (Supplementary 

Fig.S1). These data suggest that the retention or loss of LSR in breast tumor cells may arise 

from the stage of differentiation at which transformation occurs. Our previous work clearly 

shows that the functional consequence of LSR expression in claudin-low breast cancers is a 

highly aggressive, cancer stem cell like phenotype in vitro and in vivo. However, the 

mechanisms which dictate the subtype-specific, diverse functions of LSR, including 

regulation of cancer stem cell features, tight junctions, or cell bioenergetics remains to be 

elucidated.

Subcellular localization

Our previous studies focused on the dominant subcellular localization of LSR on the 

membrane (1). However, we have also observed LSR localization in the nucleus and other 

have reported LSR in the nuclear fraction of human epithelial cells (32). As subcellular 

localization dictates the function of many molecules, we further investigated this 

observation. We evaluated LSR localization via immunocytofluorescence in breast cancer 

cell lines (Fig.1A). LSR was observed within the membrane, cytoplasm, and also the 

nucleus of MCF7 (luminal subtype; ER+/PR+), MDA-MB-468 and SUM1315mo breast 

cancer cells (basal-like subtype; ER-/PR-), as well as non-transformed breast epithelial cell 

lines (MCF10A1, FMEC2, HMEC); z-stacks further confirmed nuclear localization 

(Supplementary Fig.S2), and Hs578t cells served as a negative control for LSR expression. 

We next performed subcellular fractionation followed by immunoblotting. LSR was 

expressed in membrane, cytosolic, and nuclear fractions of in all positive cell lines tested 

(Fig.1B-C). Subcellular-specific proteins SP3 (nuclear), VDAC (membrane), GAPDH 

Reaves et al. Page 6

Mol Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(cytosol), and vimentin (cytoskeleton) validated successful separation. These data suggest 

that LSR may perform a nuclear function in a range of breast epithelial cells.

Transcriptome regulation

To investigate a potential nuclear role for LSR, MCF10A1, MCF7, and SUM1315mo cells 

were treated with formaldehyde to cause DNA-crosslinking to test if LSR bound to DNA, 

alone or in a complex. We found a significant increase in the amount of LSR bound to DNA 

in all three cell lines compared to controls (Fig.2A). We then identified specific LSR targets 

by sequencing (ChIP-seq). Analysis of LSR localization revealed that 90.4% of the sites 

were in distal intergenic regions (>3000 bp from the transcription start site), 6.3% were 

within introns, and 0.5% were located in regions <1000 bp from the promoter. Only 0.1% of 

the sites were within the first 3000 bp 5′ from the start site of genes, the traditional 

promoter regions (Fig.2B). Examination of the sequences within the peaks using MIME (31) 

identified a LSR DNA binding sequence motif (E-value of 10-1732, Fig.2C). The LSR-target 

genes identified were further evaluated via Ingenuity Pathway analysis using the criteria that 

they contained at least one LSR binding site within all samples evaluated and had a P-value 

less than 9E-06. The pathways identified to be significantly associated with LSR-target 

genes included oxidative phosphorylation and mitochondrial dysfunction (Fig.2D). These 

analyses are complementary to previous findings of a role for LSR in metabolism and 

further a role in metabolic, developmental and hereditary disorders (Supplementary Figs.S3-

S4). Confirmation of LSR target genes was performed via ChIP-QPCR analysis of the top 

three LSR target genes (Supplementary Fig.S5). These data suggest nuclear LSR function 

may relate to the reported metabolic functions of LSR while membrane localization relates 

to aspects of tight junction formation.

Clinicopathological features of LSR expression in primary breast tumors

We previously reported high LSR expression in less aggressive ER+ tumors and cell lines 

(1). However, others and we also show LSR expression in ER- breast cancer cells promotes 

classic cancer stem/progenitor cell features and that LSR is an integral component of a 31-

gene signature capable of predicting distant metastasis in cohorts of ER- breast cancers. (1, 

3, 18). We sought to determine if these disparate roles were a function of clinicopathological 

characteristics. Previous studies were limited to cells grown in 2D culture, observations 

using tissue microarrays, and testing limited datasets of ER- tumors, yet structural, 

environmental or genetic factors might dictate LSR localization and/or specify function.

To comprehensively examine clinicopathological characteristics associated LSR expression 

in breast tumors, we analyzed data from 1104 primary and metastatic tumors and 114 

adjacent normal tissues within the TCGA breast cancer database. LSR expression was 

significantly increased in all intrinsic breast cancer subtypes compared to adjacent normal 

tissues, with the highest expression in basal-like tumors (Fig.3A). We further evaluated the 

available clinical features and found LSR expression to be significantly higher in African-

American patients compared to Caucasians (Fig.3B). No significant correlation was found 

with other features (age/menopause status, Supplementary Fig.S6). Further examination of 

race within each subtype shows significant differences for luminal A and Luminal B 

subtypes (Fig.3C). In contrast, race was not associated with differences in LSR expression 
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among basal-like, Her2-enriched, or normal-like tumors (Supplementary Fig.S7A). Thus, the 

association between race and LSR expression may be mediated by breast cancer subtype.

Using 80 tumor biopsies from commercially available sources and the Perou lab at the 

University of North Carolina, Chapel Hill, we evaluated LSR in vivo tumor localization via 

immunofluorescence (Fig.3D,E). In all samples, LSR was present in the plasma membrane 

and cytoplasm; however, we also discovered LSR localized to the nucleus in a subset of 

samples (N=13, nuclear localization further confirmed via z-stacks; Fig.3E). Nuclear 

localization was scored as positive in each field imaged when a minimum of two cells 

contained a nucleus foci stained for LSR. Negative staining was determined by the lack of 

any red fluorescence when the plane of focus was centered on the nucleus. Samples that 

exhibited distinct nuclear localization were significantly more likely to have died (Fig.3F, 

N=80; Chi-square, P=5.821×10-8). Fifty-five percent of deceased patients presented nuclear 

localized LSR compared to only 3.3% of samples from surviving patients. Sample size and 

the number of clinical details were not sufficient to determine associations with outcome or 

other clinicopathological features of the tumors imaged. To overcome this limitation we 

further investigated LSR expression with outcome via a large independent breast cancer 

dataset using mRNA levels of LSR (METABRIC; Fig.3G). There was a significant 

correlation of poor survival with high LSR expression (P=3.49E-08). Consistent with TCGA 

results when stratified by race, a significant difference was observed for overall survival 

within Luminal A (HR=1.83, cox p=0.001), Luminal B (HR=1.45, cox p=0.01) and Basal-

like tumors (HR=1.45, cox p=0.0005). Together with previous studies, these data suggest 

that that high LSR levels in ER+ tumors potentially indicate a higher proportion of 

progenitor-like tumor cells that may promote higher rates of aggressive behaviors, drug 

resistance, metastases, and/or recurrence, leading to the observed poor survival in patients 

with tumors containing high LSR levels. Overall survival was not associated with 

differences in LSR expression among Her2-enriched tumors (Supplementary Fig.S7B). Of 

note, these data are limited to LSR transcript abundance and LSR localization cannot be 

determined and compared with survival.

LSR enhances tumorigenesis in vivo

Only a subset of patient tumor biopsies tested positive for nuclear expression, while a larger 

portion of cell lines grown in culture showed nuclear localized LSR. We recognize that the 

subcellular localization of LSR and subsequent downstream physiological effects may be 

dictated by limitations within 2D culture systems. Accordingly, to examine LSR localization 

and function in a controlled 3D tissue microenvironment, we utilized breast cancer xenograft 

models. Others have shown LSR is present in ER- breast tumor initiating cells, but never 

directly tested the requirement of LSR during tumorigenesis. Thus, we used Hs578t breast 

cancer cells (i.e. a LSR negative cell line) and transfected the cells with LSRδ or control 

plasmid and injected into the abdominal mammary glands of female nude mice (Fig.4). In 

three independent experiments, all mice injected with Hs578t LSRδ-overexpressing cells 

(variant contains all three complete NES; Fig5A) developed tumors, compared to none of 

the mice in the control group (Fig4A,B, P<0.05, two-sample proportion test). It is of note 

that tumors generated from cells overexpressing LSR induced high levels of angiogenesis 

and the generation of an intra-tumor leaky vasculature. The localization and expression of 
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LSR from the xenografts was evaluated by immunofluorescence and confocal microscopy, 

as well as immunohistochemistry (Fig4C,D). LSR was readily detectable in the cell 

membrane, cytoplasmic and nucleus, similar to cells grown in culture (Figure 4C,D). 

Further, evaluation of MCF7 xenograft tumors with high endogenous LSR levels also 

showed nuclear, cytoplasmic and nuclear LSR localization (data not shown). Pathological 

evaluation of the tumors did not reveal any significant correlation of nuclear LSR expression 

with location within tumor (leading edge vs. tumor core) or phenotypic landmarks 

(endothelium, stromal cells, necrosis).

Analysis of LSR Transcript Variants and Domain Mapping

Similar to breast biopsies, LSR was found in both the membrane and nucleus of cells 

throughout the xenograft tumors suggesting tissue architecture is not the primary driver of 

LSR localization. We next investigated autonomous mechanisms that may regulate specific 

subcellular localization of LSR. The full-length human LSR protein contains 649 amino 

acids with an estimated MW of 71.4 kDa. Transcript variants of LSR were compiled from 

Ensembl, GenBank, and UniProt, screened for a complete coding sequence and, where 

possible, known protein product. In total, nine putative transcript isoforms were identified 

(Table 1, Fig.5A) and named in order of decreasing protein length using a Greek letter 

convention, α through ι. Most variants appear to be due to alternative splicing of specific 

coding exons, notably exons 3, 4, 5, and 7. Multiple transcripts (β, δ, and η) lack a 

glutamate at position 386 (E386) due to an alternate splice acceptor site. Transcript ε, in 

addition to omission of exon 7, lacks amino acids 52-88 encoded by exon 1. Lastly, 

transcript ι features a possible alternative translation initiation codon, beginning with the 

methionine at position 49 (M49).

We quantified LSR variant expression via protein molecular weight in a panel of normal 

breast and breast cancer cell lines using a polyclonal LSR antibody that binds an epitope 

common to all LSR variants. We were unable to definitively decipher individual isoforms, 

however, three distinct bands were observed; approx. 70 kDa, 65 kDa, and in MCF10AI and 

76N cells a third near 55 kDa (Fig.3B). In support, RNA-seq data from MCF7, MDA-

MB-231, SUM149, and SUM159 suggest the presence of six isoforms (Supplementary 

Fig.S8; uc002nyn.2, uc010xsr.1, uc002nym.2, uc002nyp.2, uc002nyl.2, uc002nyo that 

corresponds to LSR variants α/β, θ, γ, ε, α/β, δ, respectively). The projected molecular 

weight of these isoforms (59.8 to 71.4 KDa, Table 1) corresponded to the molecular weights 

observed by western analysis in the MCF7 and MDA-MDB-231 cell lines (Fig.5B). While 

LSR transcript variants were present in SUM149 and SUM159 cells, no detectable protein 

levels could be detected via western immunoblotting (Fig.5B). Collectively, these data 

suggest the presence of multiple LSR mRNA/protein isoforms, however, the potential also 

exists for post-translational modifications of the protein.

As either post-translational modifications or unique variants may provide insight in the 

diverse functions of LSR, we further investigated LSR for potential structural domains. The 

UniProt database was used to identify potential structural domains (Table 2). To evaluate 

domains of particular functional significance, we aligned the full-length human LSR protein 

sequence with the full-length sequences from 39 other vertebrate species; the subsequent 
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BLAST search did not reveal any more distantly related species, suggesting that LSR 
evolved in vertebrates with an overall 77.4% sequence conservation. The Ig-like, cysteine-

rich, short-chain dehydrogenase/reductase (SDR), and PDZ-binding domains showed high 

conservation across species (Table 2, Supplementary Fig.9A). Regions without known 

function in the cytoplasmic domain also displayed high levels of evolutionary conservation.

We next mapped LSR mutations found in human cancers from The Cancer Genome Atlas 

(TCGA) data using cBioPortal. Forty-seven unique mutations were identified in 54 samples 

(Supplementary Table 1). Cancer subtype showed no clear correlation with mutation type or 

distribution across the protein. Missense and in-frame insertion/deletion mutations were 

examined for domain-specific clustering. Sliding windows of 40 amino acids (42) were used 

to calculate the frequency of mutations (Supplementary Fig.9B). Of the seven clusters of 

mutations identified, the largest cluster (20.4% of samples) falls within the SDR domain. 

The clustering of mutations within this SDR region further underscores the potential 

importance of this domain for LSR function, either as an enzyme or as a redox sensor.

No robust nuclear localization sequence was identified; therefore we focused on nuclear 

export signals (NES, Table 2) to substantiate the ability of LSR to translocate between 

compartments. NucPred (43) identified amino acids 77-155, present in all human LSR 
transcript variants, as containing a weak to moderate NES. NetNES (44) predicted a NES at 

leucines 276 and 277 (L276 and L277) and a weaker NES at amino acids 640-LAL-642. Not 

all LSR transcript variants contain these sequences, so the potential exists for these 

sequences to affect subcellular localization. Immunofluorescence was used to identify LSR 

localization in breast cancer cells engineered to express only a transcript isoform that 

contains all three complete NES (LSR δ) or only the transcript isoform that lacked one of 

the NES (LSR ι). We found that isoform expression did not alter nuclear localization in the 

cell lines tested (Fig.6A). However to support nuclear transport, we established that nuclear 

levels of LSR could be altered via manipulation of the nucleocytoplasmic transport system; 

that is, chromosome region maintenance 1 (CRM1)-mediated nuclear export was blocked 

using the nuclear export inhibitor leptomycin B (45-47), resulting in nuclear accumulation of 

LSR in all cell lines assayed (Fig.6B). Thus, LSR contains an active NES, has the ability to 

translocate between compartments, and interaction with CRM1 is essential for exportation, 

but isoform specificity does not regulate subcellular localization.

Post-Translational Modifications of LSR

Post-translational modifications often promote subcellular localization; therefore we 

computationally predicted post-translational modifications that may influence LSR function 

(Supplementary Table 2). Multiple palmitoylation and phosphorylation sites were identified 

(43 serines, 8 threonines, 8 tyrosines; Supplementary Fig.S10). The ability of LSR to 

undergo these post-translational modifications was tested using pharmacological inhibitors 

(staurosporine for phosphorylation and 2-bromopalmitate for palmitoylation) and/or 

immunoblotting, however, altering these post-translational modifications did not appreciably 

alter nuclear localization in the cell lines examined under standard culture conditions 

(Supplementary Fig.S11A-C). These data suggest that palmitoylation and phosphorylation 

may not be primarily involved in regulating LSR nuclear localization.

Reaves et al. Page 10

Mol Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Of note, co-immunoprecipitation studies with LSR and phospho-serine identified several 

bands suggesting phospho-proteins co-immunoprecipiated with LSR (Fig7A). To identify 

putative LSR interacting protein, co-immunoprecipitation studies using MCF7 lysates were 

performed followed by LC MS/MS. Pericentrin was one potential LSR interacting protein 

identified via LC MS/MS that co-immunoprecipitated at one of the MW bands identified on 

the immunoblot (75KDa), translocates between the cytoplasm and nucleus, contains 

multiple serine phosphorylation sites, is leptomycin sensitive and subject to CRM-1 

mediated nuclear export (similar to LSR Fig.7B) and is often deregulated in cancers (48, 

49). We confirmed pericentrin co-immunoprecipitation using LSR, pericentrin, or non-

specific antibodies with breast cancer cell lysates. Western analysis shows LSR 

immunoprecipitated with pericentrin, and that pericentrin was detectable when anti-LSR was 

used for the immunoprecipitation (Fig.7B). The interaction between LSR and pericentrin 

was further confirmed using a proximal ligation assay (PLA, Fig.7C), where each species-

specific antibody with a unique short DNA strand attached binds either the LSR or 

pericentrin antibody. When the PLA probes are in close proximity (<40 nm), the DNA 

strands can interact through a subsequent addition of two other circle-forming DNA 

oligonucleotides. Several-hundredfold replication of the DNA circle can occur after the 

amplification reaction, and a fluorescent signal is generated by labeled complementary 

oligonucleotide probes, visualized by a fluorescent particle. In further support of pericentrin-

LSR interactions, data from our two independent, paired-end read ChIP-seq studies were 

visualized in UCSC Genome Browser. Overlapped peaks from the two datasets were 

retained and peaks within 10kb of each other were merged into larger peaks, leaving 377 

total peaks. Of these, 178 (a striking 47.2%) fall within 5Mb of centromeres (Supplementary 

Fig.S12). These data suggest LSR and pericentrin interact and present a novel mechanism 

for subcellular regulation/function of LSR.

Discussion

Together with our previous functional studies in breast cancer cell lines (1, 2), the current 

data support LSR as a novel transcriptional regulator that is responsive to 

microenvironmental cues. LSR is capable of nuclear localization and DNA binding, and its 

nuclear functions may be associated with poor patient outcome. LSR is upregulated in all 

molecular breast cancer subtypes, with highest expression in basal-like tumors, and is 

significantly associated with African-American race as well as poor outcome in Luminal A, 

Luminal B and Basal-like tumors. Further, orthotopic xenograft studies demonstrate LSR 

enhances tumorigenesis in vivo. Our data are consistent with previous observations linking 

LSR to metastatic signatures in two breast cancer models (3, 18).

LSR is reported to have two main effects: metabolic regulation and cell adhesion. The 

biological function of LSR may reflect roles of distinct transcript isoforms. Indeed, earlier 

studies have also found evidence that transcript isoforms of LSR may be expressed in 

specific cell types (e.g. prostate) or in certain types of cancer, such as lymphoma (50). We 

identified nine transcript isoforms, multiple unique sequence mutations, and potential post-

translational modifications that may be responsible for the differences observed in patient 

samples. Of the 47 unique mutations identified in TCGA, the majority was missense (83%), 

and may indicate LSR protein loss does not provide a selective advantage for developing 
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tumors. The highest mutation frequency in LSR was found in the SDR domain, potentially 

altering the protein's efficiency at catalyzing reactions, changing the substrates recognized 

by the protein, or even deregulating its function. LSR is also modified post-translationally 

with evidence of phosphorylation and palmitoylation. Two studies to date have been 

published on serine phosphorylation of LSR; one showed LSR bound to 14-3-3 via a 

phosphorylation site on serine 493 (S493) (51) and the other how phosphorylation of LSR 

regulates its membrane specific localization (52). Mutating serine 288 of mouse LSR to 

alanine decreased localization specificity to tTJs, instead appearing along the plasma 

membrane at bicellular tight junctions. Our data support serine phosphorylation, but further 

these data to indicate that other factors or cell type specificity contributes to LSR 

localization.

Whole genome ChIP-seq identified the LSR binding motif and associated significant 

pathways/networks and biological functions altered by LSR-DNA interactions. Our analysis 

was performed using MCF7 cells and given the diverse functional differences between 

breast cancer subtypes (and intricacies of tissue specificity) different subtypes may dictate 

different LSR binding targets based on the alterations in DNA such as methylation or histone 

modification. Indeed, distinct patterns of CpG island methylation according to molecular 

subtype has been reported (53), as well as specific methylation profiles and frequencies 

between the five subtypes (54). However, LSR target genes identified pathways including 

metabolic disease, oxidative phosphorylation and mitochondrial dysfunction are consistent 

with reports of LSR function regarding activation by free fatty acids (FA) subsequent LDL/

VLDL endocytosis (4). Each of these processes/pathways is intimately related to cellular 

bioenergetics. Given the disparity of increased obesity/metabolic syndrome, cardiovascular 

disease, and breast cancer mortality in African Americans (55, 56), metabolic factors that 

can link these comorbidities with survivorship are important. Our observation that LSR 

target genes are associated with metabolic function/disorder, and that LSR expression is 

higher in African American and basal-like breast tumors, present an exciting potential of 

LSR as a molecular link between metabolic status and breast cancer cell behavior via both 

transcriptome regulation and lipoprotein endocytosis to alter cellular bioenergetics.

We identified pericentrin as a potential LSR interacting protein that may promote nuclear 

localization and/or function. Pericentrin is an integral component of the centrosome that 

serves as a multifunctional scaffold for anchoring protein complexes (57). The nuclear 

import of pericentrin is mediated by importin α/β, regulated by Ran GTPase cycle, and 

similar to LSR, is sensitive Crm1 mediated export (58). Deregulation of pericentrin would 

cause alterations in centrosome number, structure, and function thereby altering mitotic 

spindle organization and function, leading to chromosome missegregation. The resulting 

losses and gains of chromosomes after cell division could generate aneuploidy or 

chromosomal instability, potentially selecting for cells with accumulations of chromosomes 

with activated oncogenes or inactivated tumor suppressors. Rapid proliferation accompanied 

with changes in chromosomes distribution may account for the phenotypic changes observed 

in particular breast cancer subtypes with increased LSR levels. Indeed, our data present the 

potential that LSR influences chromatin organization via pericentrin interaction, and not 

direct the transcriptional regulation of genes. Alternatively, LSR may serve as a 
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communication link between extracellular microenvironmental cues and nuclear events to 

induce proliferation and gene expression.

While the role of pericentrin has not been studied in breast cancer, breast cancer 

susceptibility, survival, and high-risk subtypes have been linked to chromosome defects (59, 

60). Further, increased pericentrin expression in cultured prostate cells reproduces many 

features of aggressive prostate cancer, including centrosome defects, abnormal spindles, 

chromosome instability, and enhanced anchorage-independent growth (57). However, 

pericentrin also plays a role in directing cilia assembly, and given the role of LSR in 

membrane organization and cell junctions, the potential for LSR-pericentrin to have a 

membrane function exists. The precise mechanisms and functional outcomes of LSR-

pericentrin interactions are beyond the scope of the present report, but hold future promise in 

understanding the role of these two complex molecules in cancer behaviors and patient 

outcome.

While much is to be learned about the multifaceted functions of LSR, our data establish LSR 

as a potential transcriptional regulator with important implications for cell behavior. Future 

studies should determine the specific functions of LSR transcript variants and 

microenvironmental/cell autonomous cues that regulate its expression. However, given the 

significant increase in LSR expression in basal-like breast tumors, its cell surface 

expression, and regulation by dietary factors, LSR is an important regulator of breast cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Implications

LSR functions in the promotion of aggressive breast cancer phenotypes and poor patient 

outcome via differential subcellular localization to alter cell signaling, bioenergetics, and 

gene expression.

Reaves et al. Page 17

Mol Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Subcellular localization of LSR. A, Representative images of breast cancer cells (MCF7, 

SUM315mo, MDA-MB-468) and non-transformed normal breast epithelial cells (MCF10AI, 

FMEC2, HMEC) subjected to immunofluorescence using a LSR specific antibody (DNA 

stained with DAPI). Immunofluorescence was performed using an anti-LSR primary 

antibody and an anti-rabbit Alexa Fluor-488 labeled secondary antibody (LSR, Alexa-488/

green; DNA, DAPI/blue). Hs578t that do not express LSR were used as a control. Images 

were obtained at 60X. B, C, Representative western blots of cell lysate separated by cellular 

compartment (nuclear, membrane, cytosol, cytoskeleton) through subcellular fractionation. 

Resulting fractions were subjected to western immunoblotting to detect expression of 

subcellular compartment specific proteins (B, MCF7 representative fractionation) or western 

immunoblotting for LSR (C, representative cell lines). Data represent a minimum of three 

independent experiments.
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Figure 2. 
LSR binds to genomic sites in breast cancer cells. A, MCF10A1, MCF7, and SUM1315mo 

cells were cross-linked with 1% formaldehyde (X-link), or PBS as control (C). Isolation of 

DNA was performed by ethanol precipitation. Detection of LSR protein was determined by 

western immunoblotting. Data is expressed as the mean ± SD from three independent 

experiments. *P<0.05, ***P<0.001. B, ChIP-seq was performed in MCF7 cells for 

identification of LSR binding to genomic sites. MIME analysis of genomic sequences 

associated with LSR binding sites in breast cancer cells identified the LSR binding motif. C, 

Genomic distribution of LSR binding sites relative to genes in breast cancer cells. D, 

Ingenuity Pathway Analysis of three canonical pathways associated with LSR target genes.

Reaves et al. Page 19

Mol Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
LSR gene expression varies by clinical features in breast cancer. A, Analysis of LSR 

expression in TCGA breast cancer samples and corresponding adjacent normal breast tissue 

(N=1,218). B, Data from breast cancer samples were separated by race then evaluated for 

LSR expression, then data were stratified by breast cancer subtype within each race and LSR 

expression evaluated (C). Adj-norm, cancer adjacent pathologically normal breast tissue; 

Basal, basal-like; Her2, Her2-Enriched; LumA, Luminal A; LumB, Luminal B. D, 

Localization of LSR in breast tumor biopsies and association with patient survival. 

Histosections of breast tumor samples were examined by immunofluorescence using an 

LSR-specific antibody and an anti-rabbit Alexa Fluor-594 labeled secondary antibody (LSR, 

Alexa594/red; DNA, DAPI/blue) and confocal microscopy to establish LSR localization. 

Top panels show representative images of exclusive membrane and cytoplasmic localization 

of LSR, bottom panels are representative images of nuclear-localized LSR. All images were 
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obtained at 40×. E, Representative Z-stack projections of primary breast cancer tumors 

generated from deconvolved slices using the maximum intensity criteria. Top panel image 

indicates membrane localization of LSR and bottom panel shows nuclear localization. Scale 

bars, 10 μm. F, Data show percent of patients with ten-year survival data that had nuclear 

(blue) or non-nuclear (green) LSR expression. (Chi-square, P=5.82x10-8). G, LSR 

expression associated with overall survival within the METABRIC breast cancer sample 

datasets. Data was analyzed within all samples and in subsets of Luminal A, Luminal B, and 

Basal-like subtypes.
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Figure 4. 
Effect of LSR on tumorigenesis in vivo. A, Representative images of tumor xenografts. Mice 

were injected into the right abdominal mammary gland with 5.0 × 105 Hs578t cells 

transfected with control or LSRδ overexpression vectors in 25% Matrigel. B, Tumor 

incidence, data from one representative experiment of three independent experiments, 

n=8-10 mice per treatment group. *P<0.001. C, Histosections of xenograft tumor samples 

were examined by immunofluorescence using an LSR-specific antibody and confocal 

microscopy to determine LSR localization. Immunofluorescence was performed using an 

anti-LSR primary antibody and an anti-rabbit Alexa Fluor-594 (left) or Alexa Fluor-488 

(right) labeled secondary antibody. (LSR, Red [left] /Green [right]; Blue/DAPI, nucleus/

DNA). Top panels show representative images of membrane/cytoplasmic exclusive LSR 

localization, bottom panels are representative images of nuclear-localized LSR at the two 

indicated magnifications. D, Histosections of xenograft tumor samples were examined by 

immunohistochemistry to examine regions of nuclear and membrane localized LSR. 

(Brown, LSR; Blue, nucleus/DNA). Arrows indicate potential nuclear localized LSR. 

Images obtained at 40×.
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Figure 5. 
Potential LSR transcript variants. A, LSR transcripts α-ι were identified from online 

databases and are shown with putative structural and protein-binding domains. Most LSR 

transcript variants appear to be the result of alternative splicing of particular exons. Ig-like – 

immunoglobulin-like; NLS – nuclear localization sequence; TM – transmembrane; C – 

cysteine-rich; SDR – short-chain dehydrogenase/reductase. B, Fourteen cell lines were 

examined for the expression of LSR (top panel) and a GAPDH loading control (bottom 

panel) by western blot analysis. Different cell lines expressed LSR at varying levels and at 

different molecular weights when using a polyclonal antibody that recognizes all predicted 

isoforms of LSR. Immunoblots are representative of a minimum of three independent 

experiments.

Reaves et al. Page 23

Mol Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Localization of LSR variants and regulation of export via Leptomycin B. A, Hs57st, 

SUM149 and SUM159 cells that do not express detectable levels of LSR via western 

analysis, and MDA-MB-231 with below detectable levels via immunofluorescence, were 

transfected with a plasmid containing the full length gene for LSR variant δ that contains all 

nuclear export signal sequences, or transfected with a plasmid containing the full length 

gene for LSR variant ι that lacks one of the nuclear export signal sequences. All cell lines 

were subjected to immunofluorescence to identify LSR localization. B, Leptomycin B 

(LMB) treatment. Cells growing in log phase were treated with either vehicle or 37 nM 

Leptomycin B (LMB) for one hour prior to fixation and immunofluorescence. 

Immunofluorescence was performed using an anti-LSR primary antibody and an anti-rabbit 

Alexa Fluor-594 or -488 labeled secondary antibody (LSR, Alexa594/red top panels and 

Alexa-488/green on lower panel; DNA, DAPI/blue). All images were obtained at 40×.
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Figure 7. 
Post-translational modifications of LSR. Representative western blot of immunoprecipitation 

studies. A, Serine phosphorylation of LSR. T47D cells were serum starved overnight then 

treated with medium containing 10% fetal bovine serum, 20 ng/mL recombinant human 

leptin, and 0.8 mM oleic acid. Immunoprecipitation was performed on cell lysates using 

either an anti-LSR, anti-pSer, or non-specific antibody followed by western blot analysis. B, 

Co-immunoprecipitation of LSR and Pericentrin. MCF7 cells were treated as stated above. 

Immunoprecipitation was performed on cell lysates using either an anti-LSR, anti-

pericentrin (PCNT), or non-specific antibody followed by western blot analysis. C, Proximal 

Ligation Assay using MCF7 cells with an anti-LSR antibody (#1 Santa Cruz or #2 Atlas) 

together with an anti-pericentrin antibody. A positive interaction (<40 nm) emits a punctate 

red signal. Control images obtained from MCF7 cells with LSR knocked-down below 
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detectable levels and subjected to the PLA. IP, immunoprecipitation; input, cell lysates. 

Images at 40×.
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