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Abstract

Folate coenzymes are involved in biochemical reactions of one-carbon transfer, and deficiency of 

this vitamin impairs cellular proliferation, migration and survival in many cell types. Here the 

effect of folate restriction on mammary cancer was evaluated using three distinct breast cancer 

subtypes differing in their aggressiveness and metastatic potential: non-invasive basal-like (E-

Wnt), invasive but minimally metastatic claudin-low (M-Wnt), and highly metastatic claudin-low 

(metM-Wntliver) cell lines, each derived from the same pool of MMTV-Wnt-1 transgenic mouse 

mammary tumors. NMR-based metabolomics was used to quantitate 41 major metabolites in cells 

grown in folate-free medium versus standard medium. Each cell line demonstrated metabolic 

reprogramming when grown in folate-free medium. In E-Wnt, M-Wnt and metM-Wntliver cells 12, 

29, and 25 metabolites, respectively, were significantly different (p<0.05 and at least 1.5-fold 

change). The levels of eight metabolites (aspartate, ATP, creatine, creatine phosphate, formate, 

serine, taurine and β-alanine) were changed in each folate-restricted cell line. Increased glucose, 

decreased lactate, and inhibition of glycolysis, cellular proliferation, migration and invasion 

occurred in M-Wnt and metM-Wntliver cells (but not E-Wnt cells) grown in folate-free versus 

standard medium. These effects were accompanied by altered levels of several folate-metabolizing 

enzymes, indicating that the observed metabolic reprogramming may result from both decreased 

folate availability and altered folate metabolism. These findings reveal that folate restriction results 

in metabolic and bioenergetic changes and a less aggressive cancer cell phenotype.

Implications—Metabolic reprogramming driven by folate restriction represents a therapeutic 

target for reducing the burden of breast cancer.
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Introduction

Folate coenzymes participate in biochemical reactions of amino acid conversion and 

nucleotide biosynthesis and serve as acceptors or donors of one-carbon groups (1,2). 

Metabolic pathways requiring these coenzymes include the interconversion of serine and 

glycine, degradation of glycine and histidine, biosynthesis of methionine from 

homocysteine, and biosynthesis of purine nucleotides and thymidine monophosphate (1,2). 

Folate metabolism also plays a key role in the clearance of formate generated via several 

biochemical reactions in the cell (3,4) and in mitochondrial translation initiation (2). 

Furthermore, folate pathways contribute to cellular energy production through oxidation of 

carbon groups in folate-dependent reactions (5,6), and folate can serve as an acceptor of 

formaldehyde during histone demethylation (7). Such diverse roles in metabolic processes 

make folate indispensable for normal cell function, but it cannot be synthesized by higher 

animals and must be obtained from dietary sources. Folate deficiency impairs DNA 

synthesis and repair, changes protein expression patterns and affects numerous methylation 

reactions that depend on folate for methionine/SAM biosynthesis; these effects will be 

eventually translated to deregulation of homeostasis, decreased growth rate and inhibition of 

cell division (8–10).

Metabolic reprogramming is one of hallmarks of cancer (11). Rapidly proliferating cancer 

cells are especially dependent on an abundant supply of folate to support their metabolic 

needs for limitless division, including accelerated biosynthesis of nucleotides required for 

nucleic acids (10). Moreover, folate-dependent serine and glycine synthetic pathways have 

emerged as crucial for cancer cell proliferation (12,13). Several studies indicate that 

increased serine synthesis from glucose in cancer cells is a marker of poor prognosis 

(14,15). Serine derived from this pathway donates carbon groups to the de novo purine and 

thymidine monophosphate biosynthesis, but it can be also used for ATP production; this 

folate-dependent pathway involves the conversion of serine to glycine and the glycine 

cleavage system (16). Metabolic flux through this pathway is upregulated at the level of gene 

expression in a subset of human tumors and correlates with gene signatures defining cellular 

proliferation (6).

In addition to supporting cellular proliferation, folate pathways are also required to maintain 

cellular motility, including folate-dependent regulation of tumor cell migration and invasion 

(10). Positive correlations between the migratory ability of cancer cells and folate 

supplementation, as well as the inhibitory effects of antifolates on cancer cell migration, 

have been demonstrated (17,18). Folate pathways also modulate invasiveness of prostate 

cancer cells (19) with elevated levels of folic acid promoting both growth and invasiveness 

of several prostate cancer cell lines (20). Studies from this laboratory have demonstrated that 

folate regulates motility of A549 human lung cancer cells through an effect on cofilin-

dependent actin dynamics (21). Furthermore, the cofilin-actin axis underlies the inhibition of 

metastasis and increased survival associated with dietary folate restriction in a lung cancer 

model in severe combined immunodeficient mice (22). These results are in apparent conflict 

with findings of an inhibitory effect of increased folate on invasiveness of HCT116 human 

colon cancer cells via the activation of sonic hedgehog pathways (23). The same study also 

reported increased migration of HCT116 cell treated with the antifolate methotrexate (23).
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The apparent opposite effect of folate in A549 and HCT116 cells suggests a complex 

relationship between folate restriction and cancer cell behavior. Since these cells were 

derived from lung and colon tumors respectively, they are likely to differ in many biological 

characteristics, including genetic and molecular profiles, metabolic characteristics, stem cell 

enrichment, invasiveness, and metastatic potential. To better address the biological 

characteristics contributing to the response to folate restriction, we used a series of cell lines 

derived from the same tumor that spontaneously arose in MMTV-Wnt-1 transgenic mice. 

These cell lines, defined as “epithelial (E)-Wnt”, “mesenchymal (M)-Wnt”, and metastatic 

M-Wnt to the liver (metM-Wntliver), share the same genetic background but vary in terms of 

molecular profiles, stem cell enrichment, metabolic characteristics and metastatic potential 

(24). M-Wnt and E-Wnt cells represent claudin-low and basal-like breast tumors, 

respectively according to their gene expression profiles, and recapitulated these tumors upon 

orthotopic transplantation into ovariectomized C57BL/6 mice (24). These cells classify with 

basal-like triple negative breast cancers (TNBCs), which represent ~20% of all breast 

cancers and have an especially unfavorable prognosis, high metastatic potential, and are 

refractory to targeted agents. Here we report the effect of folate on proliferation and motility 

of these cell lines and provide data on alterations in metabolic and protein expression 

profiles induced by folate restriction.

MATERIALS AND METHODS

Cell culture and reagents

Standard (2.2 μM folic acid) and folate-free RPMI 1640 media were obtained from 

Invitrogen (Carlsbad, CA). Fetal bovine serum and dialyzed fetal bovine serum were 

purchased from Atlanta Biologicals (Flowery Branch, GA). Other reagents were from Sigma 

unless otherwise indicated.

Cell lines

M-Wnt and E-Wnt cells were derived from spontaneous mammary tumors from MMTV-

Wnt-1 transgenic mice. These cell lines were tested for species verification, karyotyping and 

genomic instability, and were authenticated by the Molecular Cytogenetics Core facility at 

the University of Texas MD Anderson Cancer Center (Houston, TX). Metastatic metM-

Wntliver cells were derived from a metastatic liver lesion following orthotopic transplantation 

of previously authenticated M-Wnt cells (24).

Sample preparation for NMR metabolomics

Cells were grown for 72 h in 10-cm2 plates in either standard or folate-free medium. Plates 

at about 80% confluence were placed on ice, media removed and cells washed three times 

with ice cold PBS. After addition of 1.0 ml acetonitrile chilled to −20 °C and 750 μl ice cold 

H2O, cells were harvested by scraping and transferred into 15 ml polystyrene tube. This step 

was repeated using the same volume of acetonitrile/water to ensure that maximal number of 

cells was collected. After addition of 1.0 ml chloroform chilled to −20 °C and three small 

glass beads (3 mm diameter), cells were vigorously shaken using a vortex mixer and then 

centrifuged in swinging bucket rotor (3000xg for 20 min at 4 °C). The top aqueous layer was 

carefully transferred to 1.5 ml microcentrifuge tubes and lyophilized. The middle layer was 
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collected, dried using a SpeedVac, and the resultant pellet was weighted to assess the total 

amount of protein. All conditions were collected in triplicate.

NMR spectroscopy

Sodium phosphate buffer solution was prepared by dissolving 1,442.5 mg of NaH2PO4 and 

262.5 mg of Na2HPO4 in 100g of D2O and used without further pH correction (uncorrected 

pH meter reading 7.59; 100 mM final concentration). Water-soluble metabolite extracts were 

diluted in 550 μl of buffer containing trimethylsilylpropanoic acid (1.0 mM final 

concentration). All samples were briefly vortexed and centrifuged for 2 min at 14,000 rpm at 

room temperature and 500 μl of the resulting supernatant was subsequently transferred to 5 

mm tubes (Bruker-Biospin Corporation, Billerica, MA) for NMR analysis. All 1H- and 13C-

NMR experiments were performed at 298K on either Bruker Avance II 800 or 600 MHz 

spectrometers equipped with cryogenically cooled, triple resonance inverse (TCI) and dual 

resonance (13C-optimized) DCH cryoprobes with actively shielded Z-gradients, respectively. 

One-dimensional 1H spectra of the diluted cell extracts were collected using a Carr–Purcell–

Meiboom–Gill (CPMG) pulse sequence. All 1D experiments employed low-power pre-

saturation to suppress residual water. Typically, 1D-1H NMR spectra with a 7 s recycle delay 

were acquired with a total of 128 transients in addition to 8 dummy scans. A total of 32768 

real data points were collected across a spectral width of 15 ppm (acquisition time: 3.6 s). 

Data were zero-filled to twice the original data set size, manually phased and automatically 

baseline corrected using Topspin 3.1 software (Bruker Biospin Corporation) and the 

Chenomx NMR suite (version 8.0) program (Chenomx Inc. Edmonton, AB), respectively. A 

0.3 Hz line-broadening apodization was applied prior to spectral analysis.

NMR data analysis

The singlet produced by the known quantity of the TSP methyl groups was used as an 

internal standard for chemical shift referencing (set to 0 ppm) and for quantification. A 

targeted metabolite profiling was carried out using the Chenomx NMR suite program 

(Chenomx Inc. Edmonton, AB). All spectra were imported into the Chenomx profiling 

software and concentrations of 41 metabolites were determined. After reference 

deconvolution was applied based on the 1 mM internal TSP standard line shape, absolute 

concentrations were determined. Concentrations are expressed as the mean ± standard 

deviation (SD) of the mean. Statistical significance was determined using Student’s t-test 

without assuming a consistent SD. A p-value of <0.05 was considered significant.

Western blot and dot blot assays

Cells were lysed in RIPA buffer containing protease inhibitors cocktail (Sigma). Lysates 

were normalized by the level of total protein and analyzed by SDS-PAGE followed by 

immunoblot with corresponding antibodies. 5-Aminoimidazole-4-carboxamide 

ribonucleotide formyltransferase (AICART), 10-formyltetrahydrofolate dehydrogenase 

(ALDH1L1), phosphoribosylglycinamide formyltransferase (GART), glycine N-

methyltransferase (GNMT) and cytoplasmic C1-synthase (MTHFD1) were detected using 

in-house polyclonal antibodies (1:10000) (25–27). Polyclonal antibodies against thymidylate 

synthase (THYMS) and cytosolic serine hydroxymethyltransferase (SHMT1) (both from 

Cell Signaling Technology, 1:1000) and dihydrofolate reductase (DHFR) (Abcam, 1:1000) 
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were used. Polyclonal antibodies against methionine synthase (MTR) (1:1000) were from 

Thermo Fisher. Actin monoclonal antibody (1:5000) was from Sigma.

Cell proliferation assay

Cell viability was assessed using an MTT cell proliferation assay (Promega). Cells were 

plated at a density of 5×103 cells/well in 96-well format, and MTT was added at specified 

time points. Plates were further processed according to the manufacturer’s instructions. 

Absorbance at 570 nm was read using a Wallace 1420 multilabel counter (PerkinElmer Life 

Sciences).

Measurements of lactate and glucose

L-lactate levels were measured in cell lysate and medium using a Lactate Colorimetric 

Assay Kit (Abcam, Cambridge, MA) according to manufacturer’s instructions. Glucose 

levels in cell lysate were measured using Glucose Colorimetric Assay Kit (Abcam) 

according to manufacturer’s instructions. In these experiments, cells were grown in standard 

or folate-free medium for 0–72 h. All experiments were repeated at least two times. Data 

were normalized to final cell counts.

Transwell invasion assay

Invasion assays were carried out using inserts precoated with extracellular matrix, and the 

Cell Invasion Assay Kit (Chemicon) according to the manufacturer’s protocol. Cells were 

kept in standard or folate-free medium for 72 h and then seeded into the upper chamber of a 

Transwell insert (BD Bioscience) in serum-free medium at a density of 5×104 cells/well. 

Medium containing 10% FBS was placed in the lower chamber as a chemoattractant, and 

cells were incubated for 24 h at 37 °C in CO2 incubator. Nonmigrating cells were removed 

from the upper chamber by scraping; the remaining cells were stained with Diff-Quick dye 

(Dade Behring, Inc.). Stained cells were counted in 10 random microscopic fields in three 

independent inserts. Alternatively, stained cells were lysed with 10% acetic acid (100–200 

μl/well) and quantified by absorbance at 560 nm. In experiments with replete medium, cells 

were grown in folate-free medium for 72 h and then in medium with 2.2 μM folic acid for 72 

h.

Wound healing assay

Cells (3.5×104 cells in 70 μl) were seeded in 35-mm μ-Dish culture inserts (ibidi GmbH, 

Munich, Germany) and cultured for 24 h in standard or folate-free medium. Inserts were 

removed and images of the denuded area were taken at 0, 12, 24 and 48 h using an inverted 

microscope (Carl Zeiss, 5x magnification).

Real-time cell analysis (RTCA)

Experiments were carried out using an xCELLigence RTCA DP instrument (ACEA 

Biosciences, San Diego, CA) placed in a humidified incubator at 37°C and 5% CO2 

according to manufacturer’s manual. Cell proliferation was monitored using E-plate 16 

(ACEA Biosciences). The background impedance reading for each well was set up using 

cell-free medium (100 μl per well) after pre-incubation at room temperature for 30 min. 
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Cells were seeded in each well in 100 μl cell suspensions across a concentration range of 

5×103 to 80×103 cell/well and allowed to attach for 30 min at room temperature. Plates were 

locked in the instrument and impedance readings of each well were automatically recorded 

every 15 min for the duration of the experiment. Cell migration experiments were performed 

using two-chamber CIM-plate 16 (ACEA Biosciences). The background reading was set up 

in the absence of cells after adding serum-free RPMI 1640 medium (50 μl) in the upper 

chamber and 10% serum-containing RPMI 1640 medium (150 μl) in the lower chamber and 

incubating plates in the instrument for 60 min. Cells (40×103 in 100 μl) kept on FBS-free 

medium for 24 hours were seeded in the upper chamber and incubated for 30 min at room 

temperature. Reading was performed as for the proliferation assay.

Metabolic flux analysis

Bioenergetics of cells in the presence or absence of folate was determined using the 

Seahorse XF96 Analyzer (Agilent Seahorse Technologies, Santa Clara, CA). Cells were 

seeded at a concentration of 1×103 or 5×103 cell/well and kept in standard or folate-free 

media for 24 h or 48 h. Prior to measurement, cells were incubated with standard or folate-

free RPMI 1640 medim supplemented with 2 mM glutamine, 10 mM glucose and 1 mM 

sodium pyruvate and incubated for 1 h at 37 °C in a CO2-free atmosphere. Basal oxygen 

consumption rate (OCR) (indicative of mitochondrial respiration) and extracellular 

acidification rate (ECAR) (indicative of lactic acid extrusion following glycolysis) were 

measured. OCR and ECAR responses following administration of oligomycin (1 μM), 

carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (1μM), and a combination 

of antimycin (3 μM) and rotenone (3 μM) (XF Cell Mito Stress Test Kit, Agilent Seahorse 

Technologies). For glycolysis analysis, cells were incubated as above without glucose or 

sodium pyruvate and measurements were taken following administration of glucose (10 

mM), oligomycin (1 μM) and 2-deoxyglucose (50 mM) (XF Glycolysis Stress Test, Agilent 

Seahorse Technologies). Results were normalized using a bicinchoninic acid (BCA) protein 

assay (Thermo Fisher, Waltham MA). All experiments were performed in sextuplicate.

Statistical analysis

Standard errors were calculated using Microsoft Excel or GraphPad Prism. GraphPad Prism 

was used to calculate p values. Principal component analysis (PCA) was carried out in the 

programming language R to reduce the dimension of the metabolic profile of each cell line. 

The first two principal components, i.e. PC1 and PC2, are displayed. In the PCA analysis, 

the cell line data was first mean-centered and subsequently the PCs were computed. The 

mean-centered data was not further scaled to obtain the z-score before the computation of 

the PCs.

RESULTS

Levels of major metabolites in Wnt cells

We performed targeted metabolic profiling of E-Wnt, M-Wnt and metM-Wntliver cells using 

NMR spectroscopy. This approach allowed us to detect and identify 41 major metabolites, 

including 15 common amino acids (Table 1). The number of analyzed metabolites in these 

experiments was limited essentially by the sensitivity of the NMR-based detection, which 
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was about 1 μM, in combination with the regional complexity of the NMR spectrum. 

Principal Component Analysis (PCA) was carried out to compare metabolic profiles of three 

cell lines. This mathematical method allows evaluation of differences between large data sets 

(levels of 41 compounds for each cell line in our case) upon the reduction of variables to a 

smaller number (“principal components”) and is commonly used for the analysis of 

metabolomic data (28,29). PCA has shown that, based on the overall metabolic signature, 

samples from the three cell lines are well segregated indicating that these cell lines are 

metabolically different (Fig. 1A). Most differences were between the epithelial E-Wnt cell 

line and the two mesenchymal cell lines (M-Wnt and metM-Wntliver). Levels of eight 

metabolites (4-aminobutyrate, aspartate, creatine phosphate, glucose, NAD+, proline, 

taurine, and β-alanine) were approximately two-fold or more higher and levels of two 

metabolites, glycine and putrescine, were approximately two-fold lower in E-Wnt cells 

compared to M-Wnt or metM-Wnt cells (Table 1). In addition, levels of ATP, NAD+ and 

NADP+ were higher in the E-Wnt cells relative to M-Wnt or metM-Wntliver cells (Table 1).

Alterations in major metabolites in response to folate restriction

Significant changes in response to folate restriction were observed in each of the cell lines 

with generally stronger effects on mesenchymal cells than epithelial cells (Table 1). PCA 

performed for metabolic profiles of cells growing in standard (control) versus folate-free 

medium demonstrated clear and strong treatment-dependent segregation in each case (Fig. 

1B), which we interpreted as metabolic reprogramming. Statistically significant changes 

(p<0.05) in levels of 12 metabolites occurred in E-Wnt cells as compared with 29 and 25 

metabolites, respectively, in M-Wnt and metM-Wntliver cells (Table 1). Eight metabolites 

(aspartate, ATP, creatine, creatine phosphate, formate, serine, taurine and β-alanine) were 

changed in all cell lines, with five of them (aspartate, ATP, creatine, serine and taurine) 

altered in the same direction in each cell line (Table 1). Between M-Wnt and metM-Wntliver 

cells, 22 metabolites were commonly changed with 20 of them altered in a similar way (up 

or down) and two metabolites (creatine phosphate and β-alanine) changed differently (Table 

1 and Fig. 1C).

Statistically significant elevations in serine and myo-inositol, and reductions in creatine and 

taurine, were detected in all cell lines after folate restriction (Table 1 and Fig. 1C). Taurine 

and serine were changed to about the same extent in all cells; changes in myo-inositol were 

less prominent in E-Wnt cells while levels of creatine decreased more in E-Wnt cells than in 

M-Wnt or metM-Wntliver cells (Table 1 and Fig. 1C). Most amino acids with the exception 

of glycine were elevated in cells grown on folate-free media (Table 1 and Fig. 1C). This 

trend had a higher magnitude in two mesenchymal cell lines (Fig. 1C). In mesenchymal 

cells, strong accumulation of glucose was observed with concomitant drop in lactate upon 

folate restriction, while levels of glucose was not changed in epithelial cells with only 

marginal decrease of lactate levels (Table 1 and Fig. 1C). Overall, clustering of samples after 

PCA has shown that following folate restriction both mesenchymal cell lines were very 

different metabolically from epithelial E-Wnt cells but were indistinguishable from each 

other (Fig. 1A).
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Changes in folate enzymes

Using Western blot assays, we evaluated changes in levels of several key folate enzymes in 

response to folate starvation. No noticeable increase in the levels of any of tested folate 

enzyme was observed while cell type-specific down regulation of several targets was 

apparent after folate withdrawal (Fig. 2A). Levels of several enzymes were not changed in 

Wnt cells, including TYMS, MTR, and the folate-dependent enzyme in the de novo purine 

biosynthesis, AICART (Fig. 2A). Another folate-dependent enzyme in the de novo purine 

pathway, GART, was noticeably down-regulated in each cell line (Fig. 2A). Dihydrofolate 

reductase (DHFR), the key enzyme to convert dietary folic acid to tetrahydrofolate, was 

down-regulated in mesenchymal type cells (M-Wnt and metM-Wntliver) but not epithelial E-

Wnt (Fig. 2A). Conversely, strong decreases in levels of MTHFD1 and SHMT1 were 

observed in E-Wnt cells with no changes for the latter protein and marginal changes in the 

former protein in M-Wnt and metM-Wntliver cells (Fig. 2A). Two folate enzymes, 

ALDH1L1 and GNMT, were not detected in any of the three cell lines (Fig. 2A), which is in 

agreement with the reported ubiquitous loss of these proteins in malignant tumors (25,27). 

Western blot data were confirmed by dot-blot assays (Supplementary Fig. 1), which allows a 

more robust assessment of proteins levels using triplicates of multiple sample dilutions to 

both increase accuracy and ensure that observed differences were not the result of sample 

variations. Reactions catalyzed by corresponding enzymes are depicted in Fig. 2B.

Metabolic flux analysis

Alterations in intracellular glucose and lactate levels in response to folate restriction were 

assessed using colorimetric assays and indicated the impairment of glycolysis. In cells 

maintained in a standard culture medium, both intracellular and extracellular levels of lactate 

increased in time-dependent manner (Fig. 3). In contrast, both intracellular and extracellular 

lactate levels were decreased if cells were cultured in folate-free media (Fig. 3). Likewise, 

compared to cells grown in control (standard) media, glucose levels were increased in M-

Wnt and metM-Wntliver (but not E-Wnt) cells grown in folate-free medium (Fig. 3). These 

results were consistent with NMR metabolomic profiling experiments (Table 1 and Fig. 1C). 

We further used a Seahorse metabolic analyzer to examine metabolic flux in cells grown in 

standard or folate-free medium. We observed that folate depletion resulted in significantly 

decreased oxygen consumption rate (OCR) in E-Wnt, M-Wnt and metM-Wntliver cell lines 

(Fig. 4). Inhibition of ATP synthase with oligomycin (mitochondrial stress test) and 

incubation with mitochondrial uncoupler FCCP demonstrated that folate depleted cells 

display reduced ATP production and reduced maximal mitochondrial respiration, as well as 

reduced respiratory capacity (the difference between maximal and basal OCR) (Fig. 4). 

Folate restriction also caused a significant reduction in glycolysis, as measured by 

extracellular acidification rate (ECAR) following stimulation with glucose (Fig. 4). In 

addition, all cell lines displayed reduced maximal glycolysis rate following incubation with 

oligomycin, and decreased glycolytic reserve (the difference between maximal and glucose 

stimulated ECAR) (Fig. 4). Overall, our data indicated the impairment of both mitochondrial 

respiration and glycolysis upon folate withdrawal from culture medium. Of note, the effect 

of folate restriction was stronger in M-Wnt and metM-Wntliver cells than in E-Wnt cells 

(Fig. 4).
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Proliferation and migration of Wnt cells

To investigate how the observed metabolic reprogramming following folate restriction 

influences cellular behavior, we evaluated the effect of folate withdrawal on cellular 

proliferation, invasion and migration. All three tested cell lines, E-Wnt, M-Wnt and metM-

Wntliver were sensitive to the loss of folate: proliferation was essentially arrested by 48 h of 

folic acid withdrawal from the media (Fig. 5A). Significant cell death was observed if cells 

were cultured without folate for more than 72 h (data not shown). As assessed by the 

transwell assay, folate restriction (72 h in folate-free medium) strongly inhibited cell 

invasion with a more profound effect observed in M-Wnt cells than either E-Wnt or metM-

Wntliver cells (Fig. 5, B and C). This inhibitory effect was reversible upon repletion of cell 

culture medium with folic acid (Fig. 5, B and C). Wound healing scratch assays further 

indicated that the migration of Wnt cells was strongly inhibited in the absence of folate 

(Supplementary Fig. 2). We have also measured cellular migration using impedance-based 

ACEA technology (30). The setup in this approach corresponds to the conventional 

transwell assay but allows the constant monitoring of migration in real time and minimizes 

the input of cell proliferation. The real-time monitoring of cellular migration confirmed that 

folate restriction more strongly affected migration of cells with mesenchymal (M-Wnt and 

metM-Wntliver) relative to epithelial (E-Wnt) phenotype (Fig. 5, D–F). Similar to invasion, 

the effect of folate restriction on migration was reversible: cells restored their proliferation 

and migration capacity after folate in medium was replete (data not shown).

DISCUSSION

Folate is involved in several major metabolic processes (Fig. 2B), and modulation of folate 

levels has a pleiotropic effect on the cell, directly or indirectly influencing levels of 

numerous metabolites (pathways connecting folate metabolism to metabolites altered in our 

study are depicted in Fig. 6). Targeting folate metabolism using antifolates such as 

methotrexate and aminopterin was one of the earliest cancer chemotherapeutic approaches 

(31). However, antifolates, and more recently specific inhibitors aimed at counteracting 

upregulation of key biosynthetic/salvage enzymes involved in folate metabolism, are 

typically quite toxic and prone to inducing tumor cell resistance (31). Folate restricted diets 

have been suggested as a possible alternative to pharmacologic antifolate agents, but the 

limited studies to date regarding breast cancer have shown both enhancing and inhibitory 

effects of low-folate diets and suggest factors such as tumor stage and molecular subtype can 

influence the effect of folate restriction on breast cancer. To begin to deconvolute the 

complex relationship between folate restriction and breast cancer, we assessed folate 

restriction effects on mammary cancer cell lines (derived from MMTV-Wnt-1 transgenic 

mouse mammary tumors) with differential metastatic potential and molecular characteristics. 

Cells representing basal-like (epithelial type E-Wnt cell line) and claudin-low (mesenchymal 

M-Wnt and metM-Wntliver cell lines) breast tumors were analyzed. We found that folate-free 

medium, compared to standard medium containing 2.2 μM folic acid, induced changes in 

several metabolites (serine, glycine, histidine, formate and taurine) and decreased some key 

folate enzymes involved in metabolism of serine, glycine and formate and supporting the 

flux of one-carbon groups to the intracellular folate pool. Significant changes in levels of 

glucose and several metabolites derived from glucose were observed in mesenchymal (M-
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Wnt and metM-Wntliver) cells but not in epithelial E-Wnt cells. Folate restriction also 

strongly inhibited glycolysis in M-Wnt and metM-Wntliver cells in association with 

inhibition of cellular proliferation, migration and invasion. Overall, our findings indicated 

that folate restriction can initiate cell type-specific metabolic reprogramming of breast 

cancer cells towards a less aggressive phenotype.

Based on metabolic pathways of folate (1,2), the immediate downstream effects of altered 

levels of folate should be on serine, glycine, histidine, methionine, homocysteine, formate 

and nucleotides (Fig. 2B). Interestingly, we have observed that overall levels of amino acids 

in folate-starved cells are increased, though this increase is marginal in E-Wnt cells (Fig. 

1C). We have interpreted this effect as an indication of decreased protein synthesis, 

consistent with the antiproliferative effect of folate restriction observed in the three studied 

cell lines. While levels of most amino acids were elevated upon folate restriction, levels of 

glycine were only marginally elevated in M-Wnt cells but decreased in two other cell lines. 

This finding is in agreement with the deficiency of folate coenzymes, which would prevent 

the generation of glycine from serine. It should be noted that the consumption of 

extracellular glycine is not sufficient to support metabolic needs of cancer cells (32). 

Furthermore, strong elevation of serine, as well as the elevation of histidine and formate 

(Table 1 and Fig. 1C), fit the signature of folate deficiency. The drop in ATP observed in 

folate-starved cells conforms with recent findings that folate pathways contribute to cellular 

energy production (5,6). This ATP reduction was less profound in E-Wnt cells, possibly due 

to input of activated phosphate groups from creatine phosphate. Indeed, a significant 

decrease in creatine phosphate upon folate withdrawal was measured in E-Wnt cells but not 

M-Wnt or metM-Wntliver cells (Table 1). While the replenishment of ATP by creatine 

phosphate is a well-known phenomenon, the capacity of this process in M-Wnt and metM-

Wntliver cells might be insufficient due to low levels of creatine phosphate in these cells.

Levels of several metabolites not directly relevant to folate pathways were significantly 

changed upon folate restriction. Of particular interest was the drop in lactate with 

simultaneous elevation of glucose, a phenomenon observed only in mesenchymal M-Wnt 

and metM-Wntliver cells but not E-Wnt cells. In many tumor types high lactate production 

and concentration have been associated with increased migratory ability and invasiveness of 

cancer cells, more aggressive cancer stages, and metastasis (33,34). While changes in 

metabolites not associated directly with folate metabolism could be a consequence of 

inhibited proliferation, at least in case of lactate our results suggest otherwise. Thus, strong 

difference in levels of lactate between cells grown in standard versus folate-free medium 

were recorded at time points when proliferation was not yet arrested (compare Figs. 3 and 

5A).

One advantage of a high glycolytic rate in cancer cells is the acidification of the tumor 

microenvironment by lactate extrusion, which is associated with higher proliferation, 

migration and invasion, angiogenesis and increased cell survival (35). For example, the 

decrease of lactate production by knocking down lactate dehydrogenase inhibits migration 

and invasion of 4T1 breast cancer cells (36). Similar effects were demonstrated in several 

cancer cell lines by targeting lactate transporters (37,38). Lactate may also serve as a 

signaling molecule in breast cancer regulating nutrient uptake and potentially cell viability, 
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proliferation and migratory capacity (39). In addition, through the conversion to pyruvate 

lactate can be used for energy generation, particularly in breast tumors (33,40). Thus, within 

the same tumor, lactate produced by glycolytic tumor cells can be consumed by oxidative 

tumor cells for the energy generation (41). In our study the drop in lactate in folate-deficient 

cells was not associated with increased lactate excretion since the extracellular 

concentrations of this metabolite were also significantly decreased. While such a drop could 

be associated with enhanced lactate utilization for the energy production, the accumulation 

of glucose in folate-deficient cells was in agreement with the decreased lactate generation. 

Likewise, metabolic profiling using Seahorse technology indicated reduced glycolytic 

capacity in folate-starved cells with stronger effect on mesenchymal (M-Wnt and metM-

Wntliver) cells.

In recent years numerous studies have attempted to use metabolomic data to define a 

signature for tumorigenic potential of different malignancies, including breast tumors (42). 

Lactate, taurine, glucose and myo-inositol have been linked with tumor aggressiveness, 

although precise associations between their levels and disease need further clarification 

(34,42,43). Interestingly, changes of these four metabolites in folate deficient versus folate 

supplemented M-Wnt and metM-Wntliver cells (Fig. 1C) mirror the pattern of their 

alterations in colorectal cancer, where glucose and myo-inositol are decreased while lactate 

and taurine are increased compared to normal tissues (34). Specifically to myo-inositol, it 

has been also reported that this metabolite was significantly increased in breast cancer 

survivors who underwent chemotherapy (44) and in healthy control subjects compared to 

men with prostate cancer (45). These findings suggest that the drop in myo-inositol levels is 

a common trend in malignancies. Accordingly, significantly increased levels of myo-inositol 

in folate-restricted cells imply a shift towards less aggressive phenotype, which is in 

agreement with the loss of migratory and invasive ability in these cells. While it is unclear 

how folate restriction results in the elevation of myo-inositol, this elevation was 

accompanied by an elevation of glucose, the substrate for myo-inositol biosynthesis (46). 

Levels of taurine, which in our study significantly decreased with folate restriction, have 

been used in several studies as a tumor marker (43,47–49). Relevant to our study, levels of 

taurine increased in breast cancer biopsies (50) yet decreased in MCF-7 breast cancer cells 

treated with curcumin, a compound with known antiproliferative activity (51). Thus, 

decreased taurine levels in response to folate restriction may be indicative of an overall 

antiproliferative effect. Interestingly, while creatine levels were decreased in all cell lines, a 

much greater decrease occurred in E-Wnt cells. To the best of our knowledge, creatine levels 

have not previously been investigated with regard to folate status. Creatine synthesis, 

however, might have connections to folate metabolism: glycine and SAM, required for this 

pathway could originate from folate metabolism (Fig. 6).

The observed changes in the pattern of major metabolites in response to folate restriction 

were associated with the strong inhibition of cellular proliferation, migration and invasion of 

mammary cancer cells. The immediate effect of folate restriction on cellular processes most 

likely is associated with the direct input on specific folate-dependent biochemical reactions. 

Thus, recent studies underscore a link between folate-dependent serine and glycine 

metabolism, and cellular proliferation, migration and overall aggressiveness of tumors 

(6,32,52). Further down-stream effects could be mediated by alterations in the protein 
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expression profile, a phenomenon reported previously for folate deficiency (53). In our 

study, folate restriction led to the decrease of levels of some folate enzymes with a more 

strong effect observed for SHMT1 and MTHFD1 in E-Wnt cells. Of note, MTHFD1 has 

previously been linked to melanoma metastasis (54). While the effect of folate withdrawal 

can perhaps be additionally mediated by alterations of folate enzymes, we suggest that the 

primary effect on cellular metabolite is due to the direct input on folate-dependent reactions. 

Overall, we conclude that restriction of folate in mammary cancer cells reprograms cellular 

metabolism towards a less proliferative or migratory phenotype, with a more profound effect 

exerted in cells with a mesenchymal, relative to an epithelial, phenotype. Folate restriction-

related metabolic reprogramming may therefore represent a therapeutic target for reducing 

the burden of breast tumors that have undergone EMT, such as claudin-low breast cancers.
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Figure 1. 
Metabolic profiling of cells grown in standard (2.2 μM folic acid) or folate-free medium. A. 
Principal component analysis (PCA) for metabolites measured in Wnt cells by NMR 

spectroscopy shows how metabolically distinct are corresponding cell lines when grown in 

standard (left panel) or folate-free (right panel) medium. There is a good separation between 

cell lines when they grow in standard medium but M-Wnt and metM-Wntliver cell lines 

become metabolically indistinguishable when grown in folate-free medium. A total of 41 

metabolites were measured for each of the cell lines. In order to visualize the metabolic 

profiles of different cell lines, principal component analysis (PCA) was carried out in the 

programming language R to reduce the dimension of the metabolic profile of each cell line. 

The first two principal components, i.e. PC1 and PC2, are displayed. In the PCA analysis, 

Ashkavand et al. Page 16

Mol Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the cell line data was first mean-centered and subsequently the PCs were computed. The 

mean-centered data was not further scaled to obtain the z-score before the computation of 

the PCs. Ellipses are the confidence regions for the corresponding group of cell types B. 
PCA shows strong differences in the metabolic profile for each cell line grown in standard 

vs. folate-free medium. C. Metabolites most significantly altered in Wnt cells after folate 

withdrawal (fold change calculated from Table 1 is shown). Dashed lines designate a 

threshold of 1.5-fold. AA, total amino acids; UDP-Glc, UDP-glucose; m-Inos, myo-inositol.
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Figure 2. 
Levels of folate enzymes in Wnt cells. A. Western blot assays of the level of cytosolic folate 

enzymes in Wnt cells grown in standard (control, C) or folate-free (FF) media for 72 h. 

metM, metM-Wntliver cells. B. Schematic depicting folate pathways and reactions catalyzed 

by enzymes evaluated in panel A. FA, folic acid; DHF, dihydrofolate; THF, tetrahydrofolate; 

5mTHF, 5-methyl-THF; 10fTHF, 10-formyl-THF; HCys, homocysteine; Sarc, sarcosin. 

Enzymes catalyzing corresponding reactions are shown in grey ovals. AICART, 5-

aminoimidazole-4-carboxamide ribonucleotide formyltransferase; ALDH1L1, cytosolic 10-

formyltetrahydrofolate dehydrogenase; DHFR, dihydrofolate reductase; GART; glycinamide 

ribonucleotide formyltransferase; GNMT, glycine N-methyltransferase; MTHFD1, cytosolic 

C1-synthase; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase; 

SHMT1, cytosolic serine hydroxymethyltransferase; TYMS, thymidylate synthase.
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Figure 3. 
Levels of glucose and lactate in E-Wnt, M-Wnt and metM-Wntliver cells grown in standard 

or folate-free medium were measured by calorimetric assays. Measurements were performed 

in duplicates (averages are shown).
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Figure 4. 
Effect of folate restriction on mitochondrial respiration (oxygen consumption rate, OCR) 

and glycolysis (extracellular acidification rate, ECAR) of Wnt cells. A Seahorse metabolic 

analyzer was used to examine metabolic flux in cells. Differences for OCR between cells 

grown in standard and folate-free (FF) media were statistically significant (p<0.001). 

Differences for ECAR were statistically significant for E-Wnt and metM-Wntliver cells 

(p<0.05); for M-Wnt cells p<0.14.
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Figure 5. 
Effect of folate withdrawal on proliferation, invasion and migration of Wnt cells. A. Cell 

proliferation was evaluated by MTT assay. (B) Invasion was evaluated by transwell assay 

after cells were grown in folate-free medium for 72 h. In control experiments cells were kept 

in a standard (2.2 μM folic acid) medium. In experiment with replete folate cells were kept 

in folate-free medium for 72 h and then grown in standard medium for 72 h. Pictures show 

cells, which traversed through matrix. C. Calculation of cells traversed through the 

extracellular matrix (based on absorbance at 560 nm after staining with Diff-Quick dye). D–
F. Real-time monitoring of cellular migration using xCelligence instrument. Cell index 

reflects cellular migration. Experiments were performed in duplicate with automatic 

averaging of reading from two wells. FF, folate-free medium.
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Figure 6. 
Schematic depicting pathways of metabolites altered in response to folate restriction. The 

bottom box highlights pathways directly or indirectly associated with folate metabolism and 

thus expected to be responsive to folate restriction. The connection between glucose and 

folate metabolism is not yet established (upper box). FA, folic acid; THF, tetrahydrofolate; 

C1, one-carbon group; HCys, homocysteine.
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