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Abstract

Cancer tissue functions as an ecosystem of a diverse set of cells
that interact in a complex tumor microenvironment. Genomic
tools applied to biopsies in bulk fail to account for this tumor
heterogeneity, whereas single-cell imaging methods limit the
number of cells which can be assessed or are very resource
intensive. The current study presents methods based on flow
cytometric analysis and cell sorting using known cell surface
markers (CXCR4/CD184, CD24, THY1/CD90) to identify and
interrogate distinct groups of cells in triple-negative breast cancer
clinical biopsy specimens from patient-derived xenograft (PDX)
models. The results demonstrate that flow cytometric analysis
allows a relevant subgrouping of cancer tissue and that sorting of

these subgroups provides insights into cancer cell populations
with unique, reproducible, and functionally divergent gene
expression profiles. The discovery of a drug resistance signature
implies that uncovering the functional interaction between these
populations will lead to deeper understanding of cancer progres-
sion and drug response.

Implications: PDX-derived human breast cancer tissue was
investigated at the single-cell level, and cell subpopulations
defined by surface markers were identified which suggest spe-
cific roles for distinct cellular compartments within a solid
tumor. Mol Cancer Res; 1–10. �2016 AACR.

Introduction
Cancer tissue is—like any tissue—by nature an ecosystem

formed by a variety of phenotypically distinct cells. With the
recognition of cancer as a genetic disease a few decades ago, the
focus of drug discovery efforts almost sidelined these differ-
ences in the hope that the genetic differences between "healthy"
and "diseased" would provide sufficient information to devel-
op effective therapeutics and associated diagnostic tools to
choose those drugs (1). Even today most molecular diagnostic
tests treat tissue as a bulk entity from which a single genotype is
determined in order to categorize the disease, derive a prog-
nosis, and decide on the optimal therapy. As a plethora of
targeted drugs were developed, a fast growing number of
clinical trials led to increased progression-free survival while

often reducing side effects compared with traditional chemo-
therapy or radiotherapy (2). While this lent preliminary con-
firmation to the general approach of aiming at one molecularly
defined target, the hopes for a major improvement in overall
survival were severely dampened as the clinical trials continued
to show that increased survival time was almost invariably
followed by relapse and emergence of drug resistance. Relapse,
and in the large majority of cases concomitant metastasis,
continues to be the main cause of mortality for many cancer
types (2).

The role of the tumor microenvironment (TME) which has a
strong influence on tumor fate (3) as well as the development
of the cancer stem cell (CSC) model (4–6) offered arguments
not to rely on a too simplistic tumorigenesis model and also the
motivation to include phenotypic cellular differences in the
investigation of cancer tissue. Deep phenotypic analysis of
tumor-associated immune cells provides ample evidence that
valuable information can be elucidated regarding the TME from
cells embedded in and surrounding a cancer lesion (7). The
initially rather static CSC concept was refined through the
realization that even cells initially classified as nonstem cells
can adopt a stem cell phenotype (8), and recent models
indicate that the view of cells able to switch between various
degrees of "stemness" may be more accurate (9).

The arguments for inclusion of phenotypic differences grew
even stronger with a better recognition of a second source of
intratumor heterogeneity (ITH)—in addition to TME cells colo-
calizedwith neoplastic cells—which develops as a consequence of
cancer evolution. The basic concept of cancer evolution was
defined almost 40 years ago (10), and several noteworthy experi-
ments were carried out to investigate interactions between sub-
clonal populations within a tumor (11). Partly due to technical
limitations, ITH remained on the periphery for the next three
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decades. Observations of correlation between high ITH and poor
prognosis in Esophageal cancer where evidence of heterogeneity
was more easily accessible (12) revived this "dormant" branch of
cancer research. Over the last decade, it has become clear that ITH
is not just a peculiar side effect but likely reflects essentialmechan-
isms enabling a tumor to react to dynamic selective pressures
caused by the immune system, hypoxia, cancer drugs, and other
environmental pressures (12, 13). Discovery of extensive genetic
and transcriptional heterogeneity (14, 15) added necessary func-
tional aspects to themodel which has since been widely accepted.
Finally, very compelling arguments for the clinical importance of
an ITH-based model come from data tying heterogeneity to
outcome across at least nine cancer types (16) as well as to major
mechanisms of drug resistance either in the form of pre-existing
resistant subclones or through de novo adaptive resistance driven
by evolutionary mechanisms (17–19).

Image-based methods can reveal the presence of phenotyp-
ically different cells in tissue. Metrics to assess ITH based on
imaging have also been developed (20), but while they allow
basic quantification of the degree of ITH, their restrictions in
sampling (one slice at a time) and number of measured
parameters as well as the lack of downstream analysis options
severely limit the depth of information extractable from a
biopsy. Separation of cells according to specific properties
prior to applying downstream analysis methods, such as next
generation sequencing, gene expression, epigenetics, and other
"omics," on the other hand provides much deeper insight.
Blood-borne cancers for example provide evidence that sub-
clones display functional differences between each other when
tested in mouse tumor models (21). Once identified, such
subpopulations can be subjected to downstream analysis to
elucidate cellular function (22). Some large-scale screening
campaigns of cancer cell lines identified a range of potential
surface markers that can be used in this fashion (23). More
systematic tools and methods are urgently needed to make
this approach accessible to research and clinical laboratories
investigating solid tumor biopsies, and a more refined under-
standing of heterogeneity is necessary to positively affect pati-
ent care (24).

To assess solid tumor heterogeneity in human breast cancer,
we established a workflow to extract tissue biopsies, dissociate
the cells, and subject them to flow cytometric analysis and
sorting (Fig. 1). We generated surface marker profiles of biop-
sies obtained from patient-derived xenograft (PDX) mouse
breast cancer models using a range of reported CSC markers
(4, 25–27). CD24 and CD44 as the earliest reported breast
CSC markers (4, 25) and ERBB2 (HER2) as prominent breast
cancer target reported to show different expression levels
on the surface of breast cancer cells (28) were obvious choices
to include in our panels. ITGA6 (CD49f), CD90, PROM1

(CD133), CD184, and EPCAM (CD326) have been found to
be heterogeneously expressed in breast cancer cell lines (26).
ITGB1 (CD29) was reported to have a role in breast cancer
metastasis (29), and ALCAM (CD166) was also found to be
associated with breast CSCs (30). Our results provide a pro-
filing tool potentially complementing existing breast cancer
molecular subtyping systems. Despite showing some value in
predicting therapy responses, the systems in use are still
limited in their accuracy, and improvements are needed,
especially in triple-negative breast cancers (28, 31). To investi-
gate whether the variation in surface markers reflects an under-
lying phenotypic divergence, we sorted cells from triple-neg-
ative breast cancer PDX mice and discovered evidence for
profound differences in the expression profile of two distinct
subpopulations.

Our results suggest that flow cytometry provides a useful
tool for characterization of solid tumor biopsies and can
serve as a basis to identify multiple tumor cell subpopula-
tions of interest.

Materials and Methods
The PDX mouse tumor model system provides a renewable

source of human tumor tissue displaying similar tissue structures
as clinical material (32, 33). Mice were sourced from The Jackson
Laboratory. The properties of themouse cohorts used in the study
are listed in Table 1.

PDX tumor extraction
FemaleNOD/SCID/ILIIrg�/� (NSG)mice age 6 to 7weekswere

purchased from The Jackson Laboratory with tumor material
already implanted. All animal studies were performed under an
Institutional Animal Care and Use Committee–approved proto-
col. Tumors were assessedweekly for growth andmeasuredwith a
digital caliper. Tumor volumewas estimated by the formula 0.5�
(length � width2). Once tumor size reached >500 mm3 (several
weeks to several months), they were harvested for analysis. Mice
were humanely euthanized, and the tumor was immediately
removed via blunt dissection and placed in cold PBS for disso-
ciation and analysis.

Preparation of single-cell suspensions from tumor tissue
Excised tissue was weighed and then minced using a scalpel

or scissors to a size not exceeding 1 to 2 mm3. Tissue was then
enzymatically dissociated into single cells as previously
described (34–36) in a 37�C water bath for 30 minutes with
frequent agitation. The enzymatic reaction was stopped by
rinsing in PBS (Cellgro) and 1% BSA (Sigma-Aldrich). Disso-
ciated tissue was filtered through a 70 mm sieve and treated with
ACK Buffer (Life Technologies) to remove contaminating red

Tissue slice
(100s-1,000s mg)
or needle biopsies

Mechanical
(+Enzymatic)
Dissociation

Filtration
Washes,

RBC
removal

Staining & flow
analysis/sorting

Surface marker profile and analysis of subpopulations

Figure 1.

Work flow for sample preparation.
Tumor tissue resections from PDX
mice were dissociated and subjected
to flow cytometric analysis or
sorting followed by RNASeq.
Immunophenotyping can also identify
populations for use in other (�omics)
or functional methods.
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blood cells. Cells were resuspended in PBS, without magne-
sium and calcium.

Cell staining for flow cytometry and analysis
Before staining, single-cell suspensions were blocked for 30

minutes, on ice in FcR block (Miltenyi Biotec). For surface
marker characterization, cells were diluted in PBS and distrib-
uted into wells of a 96-well plate containing viability dye (LIVE/
DEAD Fixable Near-IR or Aqua, Invitrogen) and Hoechst 33342
(Invitrogen; at 0.2 mg/mL) for viable nucleated cell identifica-
tion. Monoclonal antibodies used are listed in Table 2.

Cells were incubated with antibody solutions for 30 minutes
at 4�C, in the dark, and then rinsed twice in PBS before
acquisition on BD LSRII flow cytometer. For sorting, cells were
stained using a four-color panel combining amine viability
reagent, anti-mouse cocktail, and markers identified from the
primary characterization plate. After staining, cells were rinsed,
and resuspended in BD FACS Pre-Sort Buffer, filtered again
through a 70 mm sieve, and populations of interest were sorted
on the BD FACSAria II (BD Biosciences) at 20 p.s.i. using a 100-
mm nozzle. Cell doublets or clumps were removed with elec-
tronic doublet discrimination gating. Post-sorting analysis of
sorted subpopulations regularly showed purity >95%. Analysis

of results was performed using FACSDiva software (version
6.1.3 LSRll and version 8.0 FACSAria II). For gating strategy, see
Supplementary Fig. S1.

Graphical representations of the data, cluster analysis, and
calculation of two-way correlations (Figs. 2–5) were performed
using R (37).

RNA isolation and RNASeq
A total of 80,000 or more cells chosen for a specific surface

marker status were collected and processed for RNA extraction.
Quality assessments were determined using Agilent BioAnalyzer
and NanoDrop readings. RNA specimens underwent analysis to
determine their suitability for target labeling. Analyses included
determination of concentration and volume, A260/A280 ratio,
and 28S/18S rRNA ratio (where applicable), and an RNA integrity
summary score (Agilent RIN or Caliper RQS). RNASeq was
performed using the Illumina RNASeq TruSeq Stranded mRNA
SQ905 Kit. For comparison with other breast cancer gene
expression profiles, a collection of 1,033 breast cancer samples
was used as reference dataset (38). Pathway analysis based on
the RNASeq data for the two cell populations sorted with
CD184 was performed using PathVisio3 (39, 40). Significant
biological functions were determined using the elim method of

Table 2. List of monoclonal antibodies used

Target Fluorophore Vendor Catalogue number Clone

CD326 PerCP-Cy5.5 BDB 347199 EBA-1
CD24 PE-CF594 BDB 562405 ML5
CD44 Alexa Fluor 700 BDB 561289 G44-26
CD45 APC-H7 BDB 560178 HI30
CD90 PE-Cy7 BDB 561558 5E10
CD49f BV421 BDB 562582 GoH3
HER-2/neu PE BDB 340552 Neu 24.7
CD133/1 APC Mil 130-090-826 na
CD166 PE BDB 559263 3A6
CD184 APC BDB 555976 12G5
CD29 APC BDB 559883 MAR4
Mouse CD45 FITC BDB 553080 30-F11
Mouse H-2Kd FITC BL 562003 SF1-1.1
Mouse CD41 FITC BDB 553848 MWReg30
Mouse CD31 FITC BDB 558738 390
Mouse CD31 FITC BDB 553372 MEC13.3
Mouse CD71 FITC BDB 553266 C2
Mouse Ter119 FITC BDB 561032 TER-119
Live dead Near-IR Invitrogen L10119 n/a
Live dead Horizon FV510 BDB 564406 n/a

NOTE: Antibodies with mouse specificities were used as a species cocktail.
Abbreviations: BDB, BD Biosciences, San Jose, CA; BL, BioLegend, San Diego, CA; Mil, Miltenyi Biotec, Auburn, CA.

Table 1. Breast cancer PDX mouse cohorts used

Name Description ER PR Her2 Passage N JAX Labs Des.

BRC3a Mixed ductal carcinoma; lung metastasis � � � 3 7 TM00096a

BRC4 IDC � � � 4 6 TM00099
BRC5 IDC þ þ � 1 5 TM00991
BRC7 Carcinoma/BRCA1þ � � � 3 4 TM00089
BRC8 IDC � � � 4 10 TM00090
BRC9 IDC/BRCA1þ � � � 4 10 TM00091
BRC10 IDC/Her2þ � � þ 2 4 TM00129
BRC12a Mixed ductal carcinoma; lung metastasis � � � 4 8 TM00096a

BRC13 IDC � � � 4 7 TM00999

NOTE: Clinical information for patient sample used to create tumor model retrieved from The Jackson Laboratory website http://tumor.informatics.jax.org/mtbwi/
pdxSearch.do 8/4/16 where additional pathology data can be found.
aNote that BRC3 and 12 are different passages of the same tumor model.
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the Kolmogorov–Smirnov test with the topGO R package:
Adrian Alexa and Jorg Rahnenfuhrer (41).

Results
Flow cytometry analysis of PDX breast cancer biopsies

We analyzed human breast cancer cells obtained from 54
different PDX breast tumor biopsies (1 per mouse) from 9
different mouse cohorts by flow cytometry using a panel of 10
antibodies to human surface markers. The 9 cohorts were derived
from 8 individual patients; BRC3 and -12 were different passages
of the same original tumor model (Table 1). The antibody panel
comprised surface markers previously identified on cell popula-
tions enriched in tumor-initiating cells or cells with enhanced
metastatic capability or signs of epithelial–mesenchymal transi-
tion (EMT; refs. 26, 27, 29, 30, 42–44). We developed a gating
strategy tailored for the detection of humanmarkers on cells from
tumor tissue excised from host mice. The percentage of cells
positive for a given surface marker within all human cells of the
excised tumor tissue was determined after successive exclusion of

debris, dead cells, and cell aggregates as well as mouse cells from
the events detected by the flow cytometry (Fig. 2 and Supple-
mentary Fig. S1). Cell viability varied between cohorts and low
viability generally correlatedwith signs of necrosiswithin abiopsy
(data not shown).

These surface marker measurements provide an immunophe-
notypic profile for each PDX cohort which was reproducible and
distinct among the different PDX tumor models (Fig. 2). The
interpretation that this profile may be a specific and stable
property of a given tumor is further supported by the high
similarity between the profiles of BRC3 and -12—two passages
of the same PDX tumor model (Figs. 2 and 3). In addition, the
tumor sizes and times that different mice from each cohort were
analyzed varied in a range that suggests that the stability of the
profile also extends through much of the tumor development.

We built a model from this dataset using the 9 most significant
surfacemarkers and performed a distance tree categorical analysis
that demonstrated that for 53 of the 54 individual tumors ana-
lyzed, each is groupedwith the correct cohort (Fig. 3). TumorT177
from BRC5 was an exception because the expression pattern
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Figure 2.

Phenotyping of human breast tumor
mouse models. BRC3–13 designate
individual PDX cohorts (see Table 1).
The Y axis indicates cells positive for
each human marker in % of the human
cell population for each cohort. Each
dot represents one individual mouse;
the number of mice analyzed per
cohort ranges from 4 to 10.
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clustered with the closely related BRC10 cohort (marked by arrow
in Fig. 3). A possible explanation is that CD29 was not measured
for T177 and was missing for the clustering. Alternatively, adding
other surfacemarkers to the surveymight allow further separation
of individual cohorts.

A surprising finding was that clustering based on the surface
markers chosen did not correlate well with their hormone
receptor status. Although the BRC 5 and 10 (only non-TNB)
clustered together as might be expected, the fact that several

triple-negative (TN) cohorts (BRC 7, 9, 13) clustered more
tightly with those two cohorts than with other TN cohorts
(especially BRC8) is a direct indication of the intertumor
heterogeneity of TN breast cancer. We did not observe any
correlation between the immunophenotype and growth or
tissue appearance (data not shown).

Next, we examined the dataset for pairwise correlations
between markers. We performed permutation testing (10,000
permutations) for each pair of markers and adjusted the P values
to correct for multiple testing in order to apply a meaningful
statistical cutoff. As an example, we detected a negative correlation
between the expression of CD24 and CD90 (Fig. 4; R2¼ 0.77; P <
10�13). We investigated the 66 potential two-way correlations
between the 10 human markers, fraction of murine cells in the
biopsy, and%cell viability (Fig. 5). Therewas very low correlation
of viability with any of themarkers (P > 0.05), which is consistent
with the notion that none of the surface markers is uniquely
affected by our processing methods. On the other hand, 22
correlations (11 positive, 11 negative) proved to be statistically
significant (two-tailed, alpha ¼ 0.05), suggesting that the expres-
sion levels of several marker pairs are coordinated. This coordi-
nation would be consistent with bothmarkers being regulated by
connected cellular processes (e.g., proliferation, migration, etc.)
because independent processes presumably lead to random co-
occurrence.

Analysis of these correlations can thus generate specific
hypotheses, and the surface marker surveys can contribute
functional information in addition to the value as a categori-
zation tool.

Transcriptional regulation in sorted cell populations
Profiling of PDX samples as described can be used as a tool in

itself, but the data also revealed that each cancer analyzed here
shows strong indications of ITH,which canbe the starting point of
deeper molecular investigations. Defined as the simultaneous
presence of cells with and without a marker in question, ITH was
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Two-way correlation between marker expression
levels (CD24 and CD90) in all cohorts. Each dot
represents a biopsy from an individual mouse
within one of the nine cohorts.

Figure 3.

Heatmapwith distance tree displaying cluster analysis based on 9markers for all
61 tumors. Numbers on the left indicate the point at which the respective cohort
cluster splits off from its closest neighbor; position of the branch connector to
the left reflects the degree of cluster difference (i.e., further left equals greater
difference). The arrowmarks the only tumor (T177, BRC5)which clusters outside
of the cohort it was derived from. White boxes indicate the marker was not
measured for the sample in question.
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detected in each cohort examined (Fig. 2). Interestingly, the
markers which show such divisions varied among the cohorts.
To investigate whether this immunophenotypic difference can
reflect a more general subclonal organization of the tumor tissue,
we chose one of the cohorts which reproducibly contained
distinct populations either positive or negative for CD 184 (aka
CXCR4) and positive for CD24. Both markers have been used to
identify cells with CSC properties (25, 45) and our observation
that distinct positive and negative populations for CD184 could
be detected consistently in cohort BRC12. We subjected cells
dissociated from tissue extracted from three different BRC12mice
to FACS sorting, creating four different cell pools fromeachmouse
for RNA isolation: (1) unsorted bulk tumor cells; (2) bulk cells
depleted of mouse cells; (3) CD24þ/CD184lo cells; and (4)
CD24þ/CD184hi (Supplementary Fig. S2). RNASeq analysis on
the whole transcriptome was performed, and gene expression
differences were analyzed. A principal component analysis (PCA)
of the entire dataset indicated a clear separation between popula-
tions based on species identity (PC2) and surface marker expres-
sion (PC1), which was very consistent among the triplicate
samples (Fig. 6).

We compared our transcriptome data with a published
dataset comprising 1,033 breast cancer samples of various
intrinsic molecular subtypes (38). Our samples clustered with
basal breast cancer, showing that the PDX subpopulations as
well as the parent population retained the basal phenotype
(Fig. 6B). However, subpopulations defined by CD184 surface
expression showed major differences in their transcriptional
profiles. We detected 1,197 genes which differed by more than
2-fold and below a false discovery rate (FDR) of 0.05, 246 of
which were below FDR of 0.01. More intriguing even is the fact
that most of these genes fell into a few distinct categories. Many
of the genes highly expressed in the CD184hi cells are associated
with cell proliferation, whereas genes overexpressed in the
CD184lo pool are associated with regulatory processes within the
cellular environment such as hypoxia, EMT, extracellular matrix
(ECM) regulation, and angiogenesis (Fig. 6C). A group of genes

known to be related to drug resistance inmelanoma (46) showed
significant upregulation on average in this pool as well (Fig. 7B),
which is consistent with the notion that drug resistance is fre-
quently associated with less proliferative cells and may point
further to an important role of this subpopulation. Although
these two distinct expression profiles reside in the same tumor
tissue, the properties of the CD184lo subpopulation (see Fig. 2)
would likely be undetectable in a bulk analysis.

A comprehensive analysis of the pathways upregulated in the
respective populations expanded upon this finding; the pathways
identified for CD184hi cells relate to cell proliferation. In contrast,
the pathways active in the CD184lo population include down-
regulation of proliferation and are mostly related to extracellular
communication, for example, ECM organization, cell–cell junc-
tion organization, and signal transduction (Fig. 7A).

Discussion
The utility of surface markers for identifying and isolating

specific cell types of interest within tumor samples has been
previously demonstrated (4, 8). These studies show the benefit
of this approach, offering more detailed characterization and
analysis than with conventional bulk methods (7, 23, 47). Our
study shows that a systematic flow cytometry survey with an 11-
color panel resulted in a novel characterization tool capable of
phenotypically profiling a range of breast cancer samples beyond
the current standard (e.g., hormone receptor status). This presents
an opportunity especially for triple-negative breast cancers where
there is a need for further subgrouping (31). Surface marker
profiles may offer useful functionally relevant categorization with
comparatively low resource commitment. We demonstrated that
our method allows correct clustering of replicate PDX mice with
similar and dissimilar tumors through analysis of their surface
marker phenotype with high accuracy (Fig. 3). This finding
indicates that the surface marker phenotype may be a reflection
of tumor intrinsic properties which can be detected reproducibly
by our methods. This notion is further supported by the tight
clustering of BRC3 and BRC12, which represent two passages
from the samemodel. Interestingly, the two cohorts which are not
triple-negative breast cancer (TNB) models (BRC5 and BRC10)
cluster very tightly aswell, suggesting that there is overlap between
hormone receptor/IHC-based categorization and surface marker
patterns. Because all but two models investigated are TNB, our
data do not support any strong conclusions on other breast cancer
types. Surprising in this regard however is the finding that one of
the TNBmodels (BRC8) has an immunophenotype that is unique
from all the others, and the relationship between the other TNBs
and the hormone receptor cohorts is closer than between BRC8
and any other cohort. This observation indicates either that
surface immunophenotyping provides independent phenotypic
information beyond the hormone receptor status or that PDX
breast cancer models may not maintain their hormone receptor
status detected in the patient material. Because 5% to 40% of
breast cancer patients have discordant ER status when comparing
metastases with primary lesions or among multiple primary foci
(48), a switch in hormone receptor status during tumor graft
development cannot be excluded.

Aparticular strength of the classification by immunophenotype
is the ability to capture sample heterogeneitywhich is not reflected
as exhaustively in any of the current classifications. IHC reveals a
small amount of this information but is limited with regard to

Figure 5.

Comprehensive Correlogram of all two-way correlations. The pie charts depict
the R value (marked by circle filling and color intensity) for each pairwise
correlation; blue¼ positive correlation; red¼ negative correlation. Correlations
determined to be statistically significant (Supplementary Table S2) are marked
with a green circle. Seven hundred thirty-two single-marker measurements (61
samples � 12 markers) were used.
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number of parameters and suitable objective metrics. Some
classification systems (e.g., based on gene expression patterns)
treat a biopsy as a clonal population, assigning a single-cell
property to the entire tissue while more sophisticated sequencing
methods may detect the presence of subclonal mutations, but
only provide cell- or population-specific information with
resource commitments prohibitive for medium to high sample
throughput. In contrast, immunophenotyping specifically calls
out the presence of subpopulations and their respective fraction
within the sample. There are multiple recent studies demonstrat-
ing the functional relevance of these subpopulations, such as cell–
cell communicationwithin a cancer lesion, which further suggests
that their assessment may have clinical importance (49–52). Use
of a novel classification system reflecting on quantified hetero-
geneity seems very compelling. Supporting this argument is our
finding of multiple statistically significant two-way correlations
between markers which are consistent with coordinated cellular
states rather than independent regulation of single entities. These
correlations may spark new hypotheses and guide the search for
relevant cellular pathways controlling specific states within the
context of tumor development. Interestingly, one of the strongest
negative correlations detected is CD24 or CD44 (Supplementary
Table S2). Given that both markers have been found to be
ambiguous with regard to their ability to identify CSCs (25), it
is conceivable that in some cases (as in the original report of
CD44þCD24� being a breast cancer CSC signature; ref. 4), the
success of finding CSCs through a combination may be based on
higher sensitivity with two antibodies rather than a bona fide role
as CSC marker for both proteins.

Prompted by this apparent dynamic regulation of subpopula-
tions, we performed a whole transcriptome analysis of subclones
identifiedby the presence or absence of the cell surface chemokine
receptor CD184 (CXCR4). This marker plays a role in tumor
communication with the microenvironment (44), in metastasis

(53), and intratumor communication (52). CXCR4/CD184 is
also being pursued as cancer drug target (54). We identified
distinct cell subpopulations, CD184hi andCD184lo, in our tumor
model BRC12 (Supplementary Fig. S2) and performed gene
expression analysis on the subpopulations. Although a compar-
ison of the samples with a database of breast cancer–intrinsic
subtypes grouped all within the basal breast cancer category,
comparison between the CD184hi and CD184lo populations
revealed stark contrasts in very specific cell signaling pathways.
Proliferation-related genes were highly upregulated in cells
expressingCD184,whereas theCD184lo profile showed increased
activity in ECM organization, angiogenesis, and promotion of
differentiation of adjacent cell types. This contrast is consistent
with the hypothesis that tumor tissue employs organizational
elements present inhealthy tissues to pursue various aspects of the
hallmarks of cancer (55). Our observation that similar propor-
tions of CD184hi and CD184lo populations were detected in two
different passages of the same tumor model (BRC3 and BRC12;
Fig. 2) supports the argument that these two subpopulations
reflect a stable equilibrium. Reports by other investigators on
more efficient engraftment of co-inoculation with CD184hi and
CD184lo cells compared with either population alone and evi-
dence for communication between those two populations
(43, 52) support this view. Despite these demonstrations of the
value of CD184, our results show variability in the proportion of
CD184hi cells. Thus, the nature of heterogeneity regarding CD184
is likely more complex and dependent on other factors. Further
studies are needed to clarify the nature of this association.

The presence of a cell compartment with apparently slower
proliferative capability, but high activity, in intercellular commu-
nication raises the interesting questionwhether diagnostics focus-
ing on the most abundant cells may miss significant properties
residing in a minority of the cells. The apparent coexistence of a
slow and fast proliferating cell compartment also implies that the
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tumor may use diverse strategies for greater resilience (56).
Particularly any role in therapy resistance and recurrence warrants
deeper investigation, and there are indeednumerous observations

linking slower proliferating cells with drug resistance (57). The
expression of 100 genes upregulated by the AXL kinase (Fig. 7B),
which has been implicated in drug resistance in lung cancer and

Figure 7.

A, Top 10 pathways (by P value) affected by gene expression differences between CD184hi and CD184lo cancer cells. Minimum P values on the list are 2.5 � 10�5

for CD184hi and 2.6 � 10�4 for CD184lo. B, Differential regulation of the AXL kinase gene set (38) between CD184lo and CD184hicells (see Supplementary
Table S2 for list of genes on the x axis).
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melanoma (46), is significantly higher in CD184lo cells, adding a
further facet to this picture.

Some specific gene expression differences further suggest a
distinct role of theCD184lo compartmentwithin the tumor tissue.
Integrin beta 6 mRNA expression, which is 7.7-fold higher in this
subpopulation, has been shown as an independent predictor of
survival, and high expression is associated with distant metastasis
and poor survival in breast cancer (58) as well as in colon cancer
where it also appears to confer chemoresistance (59). Anumber of
upregulated secreted factors with roles in cancer metastasis,
angiogenesis, and hypoxia (e.g., TGFB1, LOXL4, WNT4) add to
the interpretation that these cells communicate actively with their
surrounding and may have a more significant role in the inter-
action with the TME than their CD184hi counterparts. Finally,
overexpression of CD274 (PD-L1) (5.8-fold; FDR ¼ 0.047) sug-
gests CD184lo cells may also be more resilient against the host
immune system.

Analysis of the bulk tissue (unsorted sample) did not reveal any
of those properties, demonstrating that important traits in cancer
biology are missed by the current standard.

Our results have to be interpreted within the context of the
inherent limitations of a model system. Differences between
the xenotransplantation host animal and the actual patient
situation inevitably exist, most of all in the presence of an
intact immune system interacting with the patient cancer tissue.
The methods described here should allow to uncover powerful
biological insights from patient biopsies, especially if the added
heterogeneity of the immune cells can be included. On the
other hand, the experimental control in the model system
allows to establish some basic principles as shown in our study.
Because similarities between cancer tissue from a PDX model
and clinical samples are well documented (32), one can rea-
sonably expect some of these principles to apply to the clinical
situation. We believe our study forms an important building
block on the way to cell subtype-specific studies which allow a
comprehensive exploration of the cellular networks comprising
clinical cancer tissues.

Conclusion
We have described novel single-cell–directed immunopheno-

typing methods for solid tumor cells. The deep immunopheno-
typing provides a new method of subtyping breast cancer cells.
Most importantly, we have demonstrated that solid cancers can
include cell subpopulations with substantial and biologically
impactful differences comparedwith thewhole population. These
properties are undetectable with current standard methods based
on bulk gene expression analysis. Our findings could have major
implications for cancer biology and monitoring and predicting
therapy response.
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