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Single quantitative platforms such as label-based or label-
free quantitation (LFQ) present compromises in accuracy,
precision, protein sequence coverage, and speed of
quantifiable proteomic measurements. To maximize the
quantitative precision and the number of quantifiable pro-
teins or the quantifiable coverage of tissue proteomes, we
have developed a unified approach, termed QuantFusion,
that combines the quantitative ratios of all peptides meas-
ured by both LFQ and label-based methodologies. Here,
we demonstrate the use of QuantFusion in determining
the proteins differentially expressed in a pair of patient-
derived tumor xenografts (PDXs) representing two major
breast cancer (BC) subtypes, basal and luminal. Label-
based in-spectra quantitative peptides derived from
amino acid-coded tagging (AACT, also known as SILAC)
of a non-malignant mammary cell line were uniformly
added to each xenograft with a constant predefined ratio,
from which Ratio-of-Ratio estimates were obtained for
the label-free peptides paired with AACT peptides in each
PDX tumor. A mixed model statistical analysis was used
to determine global differential protein expression by
combining complementary quantifiable peptide ratios
measured by LFQ and Ratio-of-Ratios, respectively. With
minimum number of replicates required for obtaining the
statistically significant ratios, QuantFusion uses the dis-
tinct mechanisms to “rescue” the missing data inherent to
both LFQ and label-based quantitation. Combined quan-
tifiable peptide data from both quantitative schemes in-

creased the overall number of peptide level measurements
and protein level estimates. In our analysis of the PDX
tumor proteomes, QuantFusion increased the number of
distinct peptide ratios by 65%, representing differentially
expressed proteins between the BC subtypes. This quanti-
fiable coverage improvement, in turn, not only increased the
number of measurable protein fold-changes by 8% but also
increased the average precision of quantitative estimates
by 181% so that some BC subtypically expressed proteins
were rescued by QuantFusion. Thus, incorporating data
from multiple quantitative approaches while accounting for
measurement variability at both the peptide and global pro-
tein levels make QuantFusion unique for obtaining in-
creased coverage and quantitative precision for tissue
proteomes. Molecular & Cellular Proteomics 15: 10.1074/
mcp.O115.049791, 740–751, 2016.

The past decade has witnessed rapid progress in mass
spectrometry (MS)-based quantitative proteomics with the
development of software and data analysis tools to interro-
gate large amounts of MS data. Quantitative proteomic tech-
nologies have shown great potential in delineating dysreg-
ulated proteomes in diseases such as cancer (1–4).
Quantitative schemes via either stable isotope labeling or
label-free quantitation (LFQ)1 are used widely to assist MS for
quantitative assessments of the changes in protein expres-
sion, post-translational modifications (5), and protein-protein
interactions (6) in many biological systems, including tumor
samples (7–11). However, the integration of accuracy, sensi-
tivity, and totality in the analysis of tumor-specific proteo-
forms from individual patients still remains challenging with
the current quantitative platforms. For example, strategies to
increase analytical throughput (12) for tumor analysis have
utilized the multiplexing advantage of isobaric mass tags such

From the ‡Department of Biochemistry and Biophysics, §Line-
berger Comprehensive Cancer Center, and ¶Department of Biosta-
tistics, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27599; �Division of Oncology, Washington University, St.
Louis, Missouri 63110; **Lester and Sue Smith Breast Center, Baylor
College of Medicine, Houston, Texas 77030

Received March 11, 2015, and in revised form, September 25, 2015
Published, MCP Papers in Press, November 23, 2015, DOI

10.1074/mcp.O115.049791
Author contributions: H.P.G., J.O., and X.C. designed the research;

H.P.G. and J.O. performed the research; L.X., S.R.D., S.L., M.J.E.,
and B.F.Q. contributed new reagents or analytic tools; H.P.G., J.O.B.,
J.A.W., and X.C. analyzed the data; H.P.G. and X.C. wrote the paper.

1 The abbreviations used are: LFQ, label-free quantitation; RoR,
Ratio-of-Ratio; BC, breast cancer; PDX, patient-derived tumor xeno-
graft; FDR, false discovery rate; AACT, amino acid-coded tagging;
bRPLC, basic reversed phase chromatography; LH, light to heavy.

Technological Innovation and Resources
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

crossmark

740 Molecular & Cellular Proteomics 15.2

http://crossmark.crossref.org/dialog/?doi=10.1074/mcp.O115.049791&domain=pdf&date_stamp=2015-11-23


as tandem mass tags or isotope tagging for relative and
absolute quantitation (13, 14). However, for routine quantita-
tive analysis of large scale peptides/proteins, tandem mass
tags and isotope tagging for relative and absolute quantitation
reagents are prohibitively expensive due to the requirement of
large amounts of protein as input. The use of added internal
peptide standards, derived from isotope-labeled cell lines, or
18O labeling to quantify peptides (15) allows for quantitation of
proteome expression changes; however, these methods re-
quire high resolution in both LC separation and MS acquisi-
tion for accurate quantitation of overlapping isotopes. The
metabolic incorporation of in-spectra quantitative markers
through cell culture (16, 17), in vivo quantitation strategies
involving amino acid-coded tags (AACT, also known as SILAC
or stable isotope labeling by amino acids in cell culture (18)),
is still considered the gold standard for accurate quantitation
of relative changes in protein abundance across different
biological states. However, for tissue proteomics, neither a
single cell line as an add-in SILAC standard (19) nor a library
of cell lines (a super-SILAC mix (20)) is close to being a
universal standard due to peptides that are either missing or
present at low levels. The missing internal standards that fail
to cover tissue-peptide counterparts, referred to as orphan
peptides, preclude quantitative estimation of tissue proteome
differences, an issue that has been addressed recently by the
addition of peptide standards (21). A more universal labeling
strategy such as complete labeling of the equivalent tissue of
the organism of interest via stable isotope labeling of mam-
mals (SILAM) has found limited utility (22, 23). The relatively
high cost and laborious procedures associated with animal
feeding and labeling prevent widespread use of SILAM.

Conversely, quantitation of tissue and tumor proteins is
very amenable to LFQ and has gained traction recently as an
alternative to spiked-in labeled standards (24, 25). Despite the
inherent low precision and low throughput of LFQ methods
(i.e. multiple separate or independent LC-MS runs as op-
posed to interdependent, multiplexed LC-MS runs), LFQ does
offer some advantages. Running each sample separately pro-
vides a higher number of peptide identifications, whereas LFQ
avoids issues inherent to multiplexing, such as low or discrep-
ant labeling efficiencies, inaccuracies in sample mixing, and
the need for scrambling/switching the isotope-labeled sam-
ples to test whether conversion of isotopically labeled arginine
to proline impacts results (26). Also LFQ using MS1 peak
intensities can significantly improve the sensitivity as much as
60% compared with label-based quantitative methods such
as AACT that rely on the MS1 peak intensities (18).

We therefore reasoned that the integration of multiple quan-
titative schemes would provide synergy, higher throughput,
and effectiveness to more precisely determine the changes of
protein expressions with a larger coverage of given tissue
proteome across different tumor subtypes. Specifically, com-
bining peptide abundance differences using both LFQ and
AACT label-based, Ratio-of-Ratio (RoR) estimations would

greatly increase the overall number of quantifiable peptide/
protein changes to distinguish various tumors. When a com-
mon set of peptide features cannot be matched and quanti-
tated between two independent LFQ LC-MS runs due to the
frequently occurring issues of retention-time misalignment,
the labeled-based quantification strategy could provide com-
plementary peptide ratio estimation. Conversely, when LFQ
provides quantitation ratios between samples after retention-
time alignment of features, a situation may also exist wherein,
at minimum, one of the samples lacks a labeled peptide
counterpart, making the label-based estimate impossible. To
achieve a complementary quantitative scheme, here we re-
port our development of a unified quantitative approach,
termed QuantFusion, that uses a multivariate mixed model to
interrogate quantifiable peptide data derived from both LFQ
and label-based AACT methods from a single MS experimen-
tal run. As stated above, LFQ and RoR measurements share
complementary information and therefore can be integrated
to reduce the number of replicates required for generating the
statistically significant LFQ ratios.

The complexity of combining dependent outcomes with
heterogeneous error structures and varying sample sizes
within each protein necessitated the use of a statistical model.
We demonstrate the merit of the mixed model-based ap-
proach on the integration of the global-scale proteome char-
acteristics implicated in two major breast cancer (BC) sub-
types. QuantFusion increased by 65% the number of distinct
peptide ratios to highlight BC-subtypic proteome differences.
This increase of quantifiable peptide coverage, in turn, in-
creased the number of measurable protein fold-changes by
8% and increased the average precision of quantitative pep-
tide estimates by 181%. The Statistical Analysis Software
code used to implement the statistical model along with a test
data set used in this study are available to investigators who
wish to perform QuantFusion experiments.

MATERIALS AND METHODS

Tumor Sample Generation and Protein Extraction—Patient-derived
xenograft (PDX) breast tumors were established (27, 28) and pro-
cessed to cryopulverized powders (4, 14). The powders (100 mg wet
weight) were subjected to lysis and protein extraction using a buffer
composed of 8 M urea, 50 mM Tris, pH 8.0, 75 mM NaCl, 1 mM MgCl2,
and 500 units Benzonase. Approximately 1 mg of total protein ex-
tracted was reduced with DTT and subsequently alkylated with iodo-
acetamide. The proteins were then subjected to proteolysis with
endoproteinase Lys-C (Wako Chemicals, USA, Richmond, VA) for �4
h at 37 °C. The solution was diluted 4-fold with 25 mM Tris, pH 8.0, 1
mM CaCl2 and further digested with trypsin (Promega, Madison, WI)
for �12 h at 37 °C. Digestion was stopped by the addition of TFA to
0.4%, and the precipitate was removed by centrifugation. The peptide
solutions were desalted on Sep-Pak Light C18 cartridges (Waters,
Milford, MA) and dissolved in 30% acetonitrile, 0.1% TFA before
loading on a 300-�m Source 15S (GE Healthcare, Pittsburgh, PA)
column for basic reversed phase chromatography (bRPLC). A linear
LC gradient was performed by increasing buffer B from 0 to 70%
within 60 min, where buffer A was aqueous 10 mM ammonium for-
mate, and buffer B was 90% AcCN (Acetonitrile) in 10 mM ammonium
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formate. A total of 30 fractions were collected for each of the basal
(WHIM2) and luminal (WHIM16) samples and non-contiguously re-
combined to five fractions per sample. The fractions were dried and
desalted using a stop-and-go-extraction tip (StageTip) protocol con-
taining 4 � 1-mm C18 extraction disk (3 M).

Liquid Chromatography-Tandem Mass Spectrometry and Protein
Identification—Samples were desalted using PepClean C18 spin col-
umns (Pierce) according to the manufacturer’s directions and resus-
pended in aqueous 0.1% formic acid. Sample analysis was per-
formed via reversed phase LC-MS/MS using a Proxeon 1000
nano-LC system coupled to a Q Exactive mass spectrometer (Thermo
Scientific, San Jose, CA). The Proxeon system was configured to trap
peptides using a 3-cm long, 100-�m inner diameter C18 column at 5
�l/min liquid flow that was diverted from the analytical column via a
vent valve, whereas elution was performed by switching the valve to
place the trap column in line with a 15-cm long, 75-�m inner diam-
eter, 3.5-�m, 300-Å particle C18 analytical column. Analytical sepa-
ration of all the tryptic peptides was achieved with a linear gradient of
2–30% buffer B over 240 min at a 250 nl/min flow rate, where buffer
A was aqueous 0.1% formic acid, and buffer B was acetonitrile in
0.1% formic acid.

LC-MS experiments were also performed in a data-dependent
mode with full MS (externally calibrated to a mass accuracy of �5
ppm and a resolution of 70,000 at m/z 200) followed by high energy
collision-activated dissociation-MS/MS of the top 20 most intense
ions. High energy collision-activated dissociation-MS/MS was used
to dissociate peptides at a normalized collision energy of 27 eV in the
presence of nitrogen bath gas atoms. All five bRPLC fractions were
derived from three process technical replicates of each tumor sam-
ple and were subjected to two independent LC-MS runs resulting in
the production of 20 LC-MS runs for global peptide analysis. Mass
spectra were processed, and peptide identification was performed
using the Andromeda search engine found in MaxQuant software
version 1.3.0.5 (Max Planck Institute, Germany). All protein database
searches were performed against the UniProt human and mouse
protein sequence database downloaded from the Clinical Proteomic
Tumor Analysis Consortium Data Portal (29). This database contains
105,001 annotated proteins, and the sequences were derived from
the UniProt December 2012 assembly. Peptides were identified with
a target-decoy approach using a combined database consisting of
reverse protein sequences of the UniProt human, mouse, and com-
mon repository of adventitious proteins. The common repository of
adventitious proteins database was obtained from the Global Pro-
teome Machine. Peptide inference was made with a false discovery
rate (FDR) of 1%, and peptides were assigned to proteins with a
protein FDR of 5%. A precursor ion mass tolerance of 20 ppm was
used for the first search that allowed for m/z retention time recalibra-
tion of precursor ions that were then subjected to a main search using
a precursor ion mass tolerance of 6 ppm and a product ion mass
tolerance 0.5 Da. Search parameters included up to two missed
cleavages at Lys/Arg on the sequence, oxidation of methionine, and
protein N-terminal acetylation as a dynamic modification. Carbam-
idomethylation of cysteine residues was considered as a static mod-
ification. Peptide identifications are reported by filtering of reverse
and contaminant entries and assigning to their leading razor protein.
All of the mass spectrometry data on PDX tumor samples were
deposited at the CPTAC Data Coordinating Center as raw and mzML
files for public access.

Peptide and Protein Quantitation—LFQ was performed based on
peak area. The measured area under the curve of m/z and the reten-
tion time-aligned extracted ion chromatogram of a peptide were
performed via the label-free quantitation module found in MaxQuant
version 1.3.0.5 (30). All replicates for each PDX were included in the
LFQ experimental design with peptide-level quantitation performed

using unique and razor peptide features corresponding to identifica-
tions filtered with a posterior error probability of 0.06, peptide FDR of
0.01, and protein FDR of 0.05. The MaxQuant peptide and protein
groups files were processed and stored in an Oracle database, and
statistical analysis, model building, and visualization of a majority of
data were performed based on Statistical Analysis Software code and
R script that was developed in-house. All of the processed results are
found in supplemental Table S1, and single peptide identifications are
provided in supplemental Table S2 with annotated MS/MS spectra in
supplemental file spectra.zip.

QuantFusion for Comprehensive Quantitation of BC-subtypic Dif-
ferences in Global Protein Expression in PDX Tissues—Fig. 1A illus-
trates the proteomic workflow used for obtaining quantitative com-
parisons of the two PDX tumor samples, WHIM2 and WHIM16, with
addition of AACT-labeled, non-malignant mammary epithelial cell line
MCF10A used for generating in-spectra quantitation-reference pep-
tides. The cell line was grown in a culture medium with 13C6

15N4-
enriched arginine and 13C6,15N2-lysine (AACT-labeled or “heavy”).
The workflow starts with protein extraction from the cryopulverized
PDX tissues, followed by addition of heavy-labeled proteins from
MCF10A into the WHIM tissue tumor protein lysates at approximately
a 1:3 stoichiometric ratio. The peptide mixtures were then subjected
to reduction, alkylation and digestion to obtain tryptic peptides. To
reduce the complexity of the peptides in MS/MS analysis, the protein
mixture was fractionated into 30 fractions by a high-pH bRPLC.
Based on the distribution of HPLC-separated peptides, noncontigu-
ous fractions were selected and combined into five fraction pools that
allowed for the optimization of the chromatographic separation and
detection of peptides by LC-MS. Fig. 1B illustrates the tiered work-
flow where the spectra are first assigned identities at the global
peptide level, and then each identified feature was quantified, respec-
tively, using either LFQ of unlabeled spectra across both samples or
by obtaining an AACT ratio from the added in heavy labeled MCF10A
cells and the corresponding peptide counterpart on individual tissue
samples. It should be noted that both ratio measurements by LFQ and
AACT-derived ROR were obtained from the same raw dataset of each
single LC-MS/MS run, i.e. one LC-MS run for WHIM2 with MCF10A
added in (3:1) and another LC-MS run with WHIM16 with MCF10A
added in (3:1), respectively.

Statistical Analysis—Analysis at the peptide level began with the
assumption that identification and spectral groupings are correct.
LC-MS/MS was performed on the WHIM2-MCF10A added in sample,
and the WHIM16-MCF10A added in sample with two replicates each,
respectively. MaxQuant was then used to process both the WHIM raw
spectra data together with an LFQ analysis and another AACT-based
quantitative analysis respectively, resulting in 3 separate datasets for
each replicate. These datasets were then merged into one file and the
outcomes were converted into log ratios. Note, that many different
methods exist to measure LFQ data and an analysis of these methods
is beyond the scope of this paper. We simply used the ratios of the
peptide level measurements as reported by MaxQuant but our model
would certainly permit different types of LFQ ratios to be substituted
here. We conducted a complete case analysis where only peptide
ratios are examined. For LFQ data, a single peptide ratio can be used
as a measure of the protein fold-change. However, a protein fold-
change from light to heavy in WHIM2 and from light to heavy in
WHIM16 is required for a RoR protein estimate. Thus, our analysis
was performed using only LFQ intensities that have matching inten-
sities in both samples and light to heavy ratios (LH) that belong to
proteins that can be feasibly RoR-estimated. In other words, a single
LH ratio in WHIM2 that belongs to a protein with no LH ratio in
WHIM16 must be discarded. With the data reduction complete, we
computed the appropriate ratios and their base 2 logarithms. For
each peptide, itself within a protein, there are now three ratios that
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can be observed. In protein i, each LFQ peptide ratio should equal the
protein ratio, and we call this quantity ai, whereas bi and ci represent
log protein ratios between the light and the heavy protein ratio in
WHIM16 and WHIM2, respectively. Then, based on the RoR model
assumptions, we expect that ci � bi � ai. This relationship leads to the
following model definition (Equation 1) for the log scale intensity
ratios,

LFQ: yi, j,LFQ � �LFQ � ai � �i, j,LFQ

AACT WHIM2: yi, j,LH2 � �LH2 � ai � bi � �i, j,LH2

AACT WHIM16: yi, j,LH16 � �LH16 � bi � �i, j,LH16

where yi,j,T is the type T (either LFQ or RoR) ratio of the jth
peptide within the ith protein, so that yi,j,LH2 is the log LH
intensity ratio in WHIM2 for the jth peptide from protein i (i.e.
type LH16 denotes a LH ratio in WHIM16, and type LFQ
denotes the LFQ peptide intensity ratio from WHIM2 to
WHIM16). �T is a fixed effect representing the average ratio
across all proteins within type T. bi is a random effect that
represents the light to heavy ratio in WHIM16 for protein i. ai

is a random effect representing the log fold-change for protein
i between WHIM2 and WHIM16 (ai is the parameter of inter-
est). Experimental variability (�) is represented Equations 2
and 3,

�i, j � � �i, j,LFQ

�i, j,LH2

�i, j,LH16

� � N�0,� �LFQ
2 �LFQ,LH2

2 �LFQ,LH16
2

�LFQ,LH2
2 �LH2

2 �LH16,LH2
2

�LFQ,LH16
2 �LH16,LH2

2 �LH16
2

��
and it is independent of

	i � � ai

bi
� � N�0,� 
a 
a,b


a,b 
b
��

which represents the natural variability among proteins. It is
common in proteomics experiments to center at zero the
average log fold-changes across all proteins. This practice
has been performed here by defining ai as a mean zero
random variable. In this setting, the parameters (�LH2 �

(�LH16) and �LFQ represent experimental effects that have
shifted the protein ratio profiles away from one for the RoR
and LFQ experiments, respectively. Notice that the asymme-
try of these equations is determined by the comparison of
interest. Our LH2 equation contains an extra parameter so
that an LH2 peptide minus an LH16 peptide will leave us with
the same parameter obtained from our LFQ equation, ai. If a
user wanted to reverse this relationship, study LH16/LH2,
then the parameterization would have to be switched and the
LFQ ratios would have to be inverted. Following only one of
these steps would be a mistake.

In this model, the predicted log protein fold-change âi is
informed from both the LFQ ratios and the LH ratios. For this
reason, we refer to âi as our Unified Estimate. Because we
have made the primary parameters of interest random effects,
our estimates of these quantities are in the form of Best Linear
Unbiased Predictors (31). This approach yields greatly im-
proved computational efficiency. A fixed effects model would

likely have forced us to break up the analysis into separate
partitions, as was done by Oberg and Mahoney (12). Our
random effects formulation allows us to analyze all the data at
once on any modern computer. The Best Linear Unbiased
Predictors also provides some built-in protection against out-
liers. When a protein is estimated from a small number of
peptide ratios, the estimate will be “shrunk” toward the aver-
age of all protein ratios. This shrinkage estimate provides
improved accuracy and repeatability in highly unbalanced
situations (32). Problems that arise from the stochastic miss-
ingness inherent to mass spectrometry experiments and the
potential for misidentifications are mitigated by the shrinkage
estimates.

Empirical Best Linear Unbiased Predictors were calculated
for each protein random effect (âi), and the error of the pre-
dictor was estimated as var(âi � a). To select proteins of
interest, we divided the fold-change estimates by their vari-
ance estimates. These values are similar to z scores in a fixed
effects analysis, and the values can be used to generate
q-values as described by Storey (33). All proteins with a
q-value of less than 0.05 were considered “significant.” Statis-
tical Analysis Software code for fitting the model QuantFusion.
sas and sample data file SampleDat.csv are provided in the
supplemental material.

RESULTS AND DISCUSSION

Overview of QuantFusion, A ‘Ratio-based’ Statistical Model
for the Integration of LFQ and RoR—To recover peptide pairs
missed for quantitation when either LFQ or RoR is used alone,
we developed a data-dependent statistical model, termed
QuantFusion, to unify data obtained via each method. Fig. 1
shows a workflow integrating MS data from two methods as
follows: label-free peptide intensities of both tumor samples,
and ratios derived using the corresponding peptide intensity
of the added-in cell line. Note that the use of the MCF10A-
derived heavy peptides at lower concentrations provides a
common quantitative standard in both tumors without com-
promising the sensitivity of detecting endogenous peptides
from the WHIM tissues.

Protein abundances in MS data are computed from either
the mean or median of the corresponding peptide intensity
ratios (34) instead of from raw intensity values, because each
amino acid sequence potentially has a different probability of
ionization. Measuring average intensities provides an estimate
of the number of ions that make their way into a mass spec-
trometer, but to make inferences about protein concentra-
tions, one must note that the ionization probabilities are the
same for matching peptides across samples. As a result, the
ionization probabilities in a ratio will cancel out, leaving a ratio
of the concentrations in each sample. Furthermore, assum-
ing that the trypsin digestion efficiencies are the same for all
samples, these peptide ratios should be equivalent to the
protein ratio(s) found in the sample. Hence, estimating the
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protein ratio by computing the average peptide ratio is
reasonable.

Many statistical models exist that provide similar estimates
to the average ratio method just described (12, 35, 36). These
models do not attempt to take into account any missing
values and when “peptide” is included as a covariate, model
based estimates of protein fold changes will be very similar to
the median ratio estimate. The primary advantage to the
model based approach lies in the estimation of a single ex-
perimental variance parameter, obtained from information
across different proteins.

Attempting to account for missing data bias is a worthy
objective but not one that we address here. However, our

method does provide a way to decrease the number of miss-
ing ratios. In the LFQ framework, a peptide ratio will be
missing if a measured peptide in sample A has no corre-
sponding intensity aligned in sample B. Conversely, in the
RoR framework, a peptide ratio will be missing if the intensity
in sample A cannot be matched to the heavy-labeled peptide
also found in sample A. These missing data mechanisms
are distinct, which means that if we combine both quantitative
estimate schemes we can increase the amount of peptide
ratios available in either scheme for use in our analysis. How-
ever, combining both methods requires some thought. Con-
sider the case where we observe all of the possible data for a
given peptide. We will have raw intensity measurements for

A B
WHIM2 WHIM16

Protein
Extraction

Spike-in

Reduction
Alkylation

Trypsin Digestion

LC-MS/MS

Peptide Identification
Quantification in MaxQuant

Process MaxQuant output tables
using Perl Scripts

QuantFusion: Statistical Modeling
using R Scripts

Ratio of Ratio Quantification (RoR)Label-free Quantification (LFQ)

WHIM2
XIC of peptide i, 
in protein k

WHIM16
XIC of peptide i, 
in protein k

WHIM2 + MCF10A WHIM16 + MCF10A

Area ratios for tumor sample j
 (j = WHIM2 and WHIM16) 
each calculated via AACT
quantification of peptide i, 

in protein k, in sample j
and co-eluting heavy labeled peptide i, 

in protein k, in MCF10A

AUC of peptide i, in WHIM2 and WHIM16
calculated via MaxLFQ

RoR calculated for peptide i, between tumor
samples from MaxQuant AACT ratios

QuantFusion
Unified WHIM2/WHIM16 Protein Ratios

and variance measurements for global proteomic data

Statistical Modeling

Protein-level LFQ Protein-level RoR

High pH-RP-HPLC
Fractionation

3:1 1:3

Protein
Extraction

Protein
Extraction

Label-free Quant
with MaxLFQ

RoR Quant
with AACT

MCF10A
Arg LysC13C13

N15 N15,( )

FIG. 1. Proteomic workflow and QuantFusion model. A, proteomics workflow to analyze PDX tumors with heavy labeled added-in
standard peptides derived from an MCF10A cell line. The cell line proteins were added to each tumor lysate at a protein mass ratio of 1:3,
reduced, alkylated, and subjected to dual digestion with an endoproteinase Lys-C-trypsin enzyme combination. The resulting peptides were
fractionated by high pH reversed phase liquid chromatography into 30 fractions that were non-contiguously recombined into five fractions and
used for global LC-MS proteomic analysis. All data were subjected to LFQ analysis and AACT ratio determination. The LFQ and AACT outputs
were processed using a Perl script and subjected to statistical modeling. B, graphical depiction of LFQ and RoR quantitation schemes and
statistical model that merges LFQ and RoR estimates into a unified estimate.
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the peptide in samples A and B, yA and yB, respectively. We
will also have the corresponding heavy-labeled intensities hA

and hB. yA and yB will be processed according to the LFQ
protocol (30), which will create LFQ intensity values lA and lB.
Thus, three ratios will be formed as follows: the LFQ ratio lA/lB,
the light-to-heavy ratio within A, yA/hA, and the light-to-heavy
ratio within B, yB/hB. The RoR estimate for a peptide would
then be computed as yA/hB�hB/yB, which should equal yA/yB

because the heavy-labeled peptides were mixed in constant/
equal proportions in each sample. It might be tempting at this
point to simply average the RoR and LFQ ratios. However,
such averaging would be a significant mistake for two rea-
sons. First, the values are not independent. lA and lB come
from a transformation of yA and yB, which means that treating
them as two separate pieces of data to be used in estimating
the protein ratio will lead to anti-conservative estimates of
variability. Second, the methods have substantially different
error processes. If the variation of the LFQ estimates is much
greater than in the RoR estimates, then it will make more

sense to weight their contributions accordingly. To account
for the complications of this situation, we have developed a
statistical model that estimates and incorporates the covari-
ance structure of the data. This model is explained in detail
under “Materials and Methods.”

QuantFusion Is Superior to Any Single Quantitation
Scheme, Either LFQ or AACT-derived RoR, for Estimating
BC-subtypic Global Proteomic Differences—Fig. 2A shows
the overlaid histogram of all global peptides for WHIM2/
WHIM16 LFQ-ratios and MCF10A/WHIM2 AACT-ratios. It is
noteworthy that the LFQ ratio and AACT ratio are shifted by
1:3 and mirror the experimental added-in total protein ratio of
1:3 between MCF10A cells and WHIM2 tumor cells. The cor-
responding intensity (in log scale) is shown for each distribu-
tion with colors representing the density gradients. Analo-
gously, we obtained the MCF10A/WHIM16 AACT ratio
centered at 1:3 for global peptides, and by combining both
ratios, we obtained RoR estimates that quantified differences
in the expression of individual proteins between WHIM2 and

FIG. 2. Comparison of LFQ and RoR methods. A, histograms of the LFQ measurements between the PDX tumors (red) and ratio
measurements via the added-in heavy-labeled cell lines to obtain RoR (blue). The LFQ ratios of peptides between WHIM2 and WHIM16 are
median-centered on zero fold-change, although the RoR distributions of peptides between each WHIM and MCF10A (results shown only for
MCF10A/WHIM2) are medians centered at 1.58 (3-fold). Note that all the data points in each distribution are shown as density gradient plots
above each distribution. B, Venn diagrams showing the number of quantifications obtained for LFQ, RoR, and QuantFusion methods for global
peptides and global protein groups. With QuantFusion, the number of quantifiable peptides is 65,873, and the number of quantifiable protein
groups is 6,953. A Venn diagram showing the number of protein groups identified in the initial MaxQuant search is also displayed. C, scatter
plot showing the correlation between LFQ- and RoR-derived estimates for WHIM2/WHIM16 ratios.
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WHIM16 tumors with label added-in standards from the
MCF10A cell line as the common reference. Fig. 2B shows the
overall number of peptides and proteins quantified using LFQ,
RoR, and the QuantFusion method. The number of quantifi-
able peptides was 41,075, 62,618, and 65,873, respectively,
for LFQ, RoR, and QuantFusion. The number of quantifiable
protein groups was 6,409, 5,747, and 6,953, respectively, for
LFQ, RoR, and QuantFusion (these proteins are listed in sup-
plemental Table S3). This demonstrates the benefit of using
the unified approach to increase the number of assignments
of quantifiable peptides to the corresponding proteins. Fig. 2B
also shows a comparison of the number of LFQ (9,599) and
RoR (10,165) protein groups initially identified in the Max-
Quant search. Compared with an analysis that used only LFQ
data, the QuantFusion method increased by 65% the number
of unique peptides used for measurements of protein abun-
dance changes, which, in turn, led to an 8% increase in the
number of unique proteins quantified. More importantly, the
average estimate precision was increased by 181%. Fig. 2C
shows the correlation between LFQ and RoR for the global
scale overlapping protein quantification values with a Pearson
Correlation of 0.72. The unquantifiable protein groups are not
addressed in the context of missingness, where a missing
value can either be imputed, obtained by additional measure-
ments, or obtained by targeted quantification methods such
as selected ion monitoring (37) or data-independent acquisi-
tion (38). Our QuantFusion method provides an opportunity to
recover true quantification values as a unified estimate when
present in either LFQ or RoR separately. The unified quanti-
fication values for all missing values highlighted in either LFQ
or RoR are presented in supplemental Table S4. We selected
significant proteins based on a q-value of less than 0.05. This
criterion is basically arbitrary. One could reasonably look at
q-values of less than 0.001 or one might even prefer to ana-
lyze the posterior probability of being near zero instead of
using q-values. Any decision rule based on both fold-change
magnitude and the variability of the estimate yields similar
results. Fig. 3 shows precision versus fold-change magnitude
with the color scheme based on two different criteria. In Fig.
3, we color in green the points where the q-value was less
than 0.05. Points representing the posterior probability that
a � (�.1,.1) �0.05 are in blue, and points where both “signif-
icance” conditions are met are in red in Fig. 3. Fig. 4 compares
the volcano plots and corresponding correlation plots for
LFQ, RoR, and QuantFusion. The volcano plots show 826,
1,409, and 1,808 biologically significant protein groups that
are differentially expressed between WHIM2 and WHIM16
determined by LFQ, RoR, and QuantFusion, respectively, for
a q-value cutoff of 0.05. Applying the q-value criteria to the
two reduced models, which use only LFQ or RoR values,
respectively, the QuantFusion estimate increases the number
of biologically significant fold-changes by 119% from that
obtained by LFQ. The corresponding volcano plots were ob-
tained when applying a posterior probability to obtain signif-

icant changes between WHIM2 and WHIM16 (supplemental
Fig. S1). The volcano plots show 1,976, 2,088, and 2,615
significant protein groups differentially expressed between
WHIM2 and WHIM16 in LFQ, RoR, and QuantFusion, where
the posterior probability that a � (�.1,.1) �0.05. The dramatic
improvement in the number of biologically significant protein
differences between WHIM2 and WHIM16 makes the Quant-
Fusion method an attractive option for discovery proteomics
experiments, as it provides the largest protein candidate list
for follow-up biological exploration or verification. In addition
to the improved quantitative coverage, QuantFusion demon-
strated substantial variance reduction and improved repeat-
ability. Repeatability error is used to measure the experimen-
tal precision obtained with each method. In our primary
analysis, we had two replicates from each sample. To analyze
repeatability, as shown on the right of Fig. 4, we analyzed
each replicate separately with LFQ only, RoR only, and Quant-
Fusion, giving us a total of six sets of protein estimates. The
repeatability error was computed by taking the within-protein
variance (across experiments) and then computing the aver-
age of these variances. The repeatability error was 0.3249,
0.2726, and 0.2704 for LFQ, RoR, and QuantFusion, respec-
tively. The Pearson correlation coefficient is the retest corre-
lation that provides a measure of how well the ranking of
protein estimates is preserved across experiments. The Pear-
son correlation between two process/technical replicate runs
was 0.7048, 0.6891, and 0.7465 for LFQ, RoR, and QuantFu-
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FIG. 3. Scatterplot of every QuantFusion estimate of log2 fold-
changes plotted against the square root of the precision esti-
mates (1/(variance)). Points plotted toward the upper right and upper
left corners have the highest precision and greatest absolute fold-
change estimates. Selecting significant proteins should always be
based on both the magnitude of a fold-change and the precision of
the estimate. This plot demonstrates the results from two different
methods for selecting significant fold-changes. The first criterion for
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ines the posterior probability that the log2 fold-change falls in the
interval (�.1,.1). If this probability is less than 0.05, then the protein is
considered significant. Points that are significant according to both
criteria are plotted in red; points that are exclusively q-value signifi-
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significant under either criterion. Both of these methods are similar, as
expected of any method that utilizes both magnitude and precision.
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sion, respectively. Our results demonstrate that QuantFusion
provides the best retest correlation, and RoR shows the best
precision measurement. These results demonstrate that, de-

spite the higher precision of RoR estimates, QuantFusion still
provides greater repeatability. This outcome should not be
surprising because the QuantFusion estimate comes from a
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FIG. 4. Volcano plots and corresponding repeatability plot. The volcano plot shows �log10 of q-value that each protein fold-change is �0.05
plotted against the log2 fold-changes. Here, we consider multiple ways to analyze the same data. On the left, we have the results from measuring
both replicates together with each of three methods. On the right, we are splitting up the data and analyzing each replicate separately. This enables
us to measure the repeatability error for each method. Repeatability error is used to measure the experimental precision obtained with each method.
This error was computed by taking the within-protein variance (across experiments) and then computing the average of these variances. The
Pearson correlation coefficient is the retest correlation that provides a measure of how well the ranking of protein estimates is preserved across
experiments. A, LFQ analysis. B, RoR analysis. C, QuantFusion analysis. Note that our results demonstrate that the QuantFusion method provides
both the best retest correlation and the best precision. Note that the RoR method has the least variability, which suggests that the advantages
gained from the extra data used in the QuantFusion method outweigh the disadvantage of incorporating into the model the noisier LFQ data.
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substantially larger set of data, suggesting that the advan-
tages gained from the additional data of quantifiable peptides
used in QuantFusion analysis outweigh the disadvantage of
incorporating into the model the noisier LFQ data.

When comparing QuantFusion to an analysis using LFQ
alone, the benefits are substantial. Fig. 5A shows log2 fold-
change estimates using QuantFusion (x axis) and LFQ (y axis).
The fold-change estimates are very similar between methods
with a Pearson correlation coefficient of 0.82. QuantFusion
reduced the prediction variance by 40%. For comparison, we
found that running an entire replicate experiment reduced the
variance by 35%. This reduction was estimated by comparing
estimates from the LFQ model with both replicates and to
estimates from the LFQ model that only utilize one replicate.
The variances obtained in this fashion are plotted in Fig. 5B.
Average standard prediction variances for LFQ, RoR, and
QuantFusion models are 0.35, 0.17, and 0.21, respectively.
Prediction variances for all three methods are displayed in Fig.
5C. These error values confirmed our hypothesis that the RoR
estimates would be the most precise but the LFQ estimates
would be greater in number. The combined effect of increas-
ing the number of estimates and decreasing estimate varia-
bility has a synergistic effect on the biological significance of
quantified protein ratios.

The relationship between prediction error and detectable
effect size is displayed in supplemental Fig. S2, showing the
relationship between power, effect size, and prediction error
that would be found in experiments with prediction errors
similar to what we found. The average prediction standard
error across proteins (�type

2 ) was computed for each model
type and used as the true process variation to calculate power
as follows. Let � be the CDF (Cumulative Distribution Func-
tion) of N(0,1) random variable; let X be the prediction of our
protein fold-change, and let � be the true log2 fold-change of
the protein. Then the test statistic formed under the null
hypothesis is distributed as shown in Equation 5,

x � 0

��type
2 � N	�,1
.

Power for a given � is calculated as the probability of this
statistic being greater than 2.326 or less than �2.326. These
cutoff points were selected because the FDR corrected p
value of 0.05, in these experiments, was close to 0.01 that has
associated Z score cutoff values of �2.326 and 2.326.

Results show that, on average, true log-scale fold-changes
of �1.88, �1.31, and �1.46 are needed to have a 0.8 prob-
ability of detecting the difference with LFQ, RoR, and Quant-
Fusion, respectively. Although RoR provides the lowest pre-
diction variability, far fewer total protein estimates could be
obtained by RoR compared with estimates obtained by
QuantFusion.

QuantFusion Identifies or Rescues More Breast Cancer
Subtype-specific Proteins—We then examined how QuantFu-

sion increases the number of the quantifiable proteins that
show the statistically significant BC subtype-specific changes
in their expressions, which in the case of this study will pro-
vide a larger proteome coverage for distinguishing the biolog-
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FIG. 5. Comparing protein estimates and prediction of vari-
ances. A, scatter plot of log2 fold-change estimates using QuantFu-
sion (x axis) and LFQ (y axis), with data from both replicates com-
bined. The fold-change estimates are very similar between methods
with a Pearson correlation coefficient of 0.82. B, estimates of predic-
tion variances of the log2 fold-changes obtained by using only LFQ
results with one replicate are compared with the variance estimates
from performing LFQ with two replicates. Adding a full experimental
replicate reduces the average variance by 35%. C, boxplots of the
prediction variances for each method. Label-free fold-change esti-
mates exhibit the highest variability. Using QuantFusion to combine
the noisier LFQ data with the more precise RoR data results in a 40%
reduction of average variability.
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ical differences between basal and luminal breast cancer
tumors. As shown in the volcano plot in Fig. 4C, QuantFusion
identified 1,808 differentially expressed proteins. After apply-
ing QuantFusion, 1,035 proteins that were not significantly
differentially expressed (or in a few cases not quantifiable or
identified) in LFQ were promoted to differentially expressed
status. For RoR, 447 proteins were promoted to differentially
expressed status. When considering proteins that were not
significantly differentially expressed (or not quantifiable or
identified) in both LFQ and RoR, 272 proteins were promoted
to differentially expressed status. Fig. 6 indicates were these
rescued proteins are located in the QuantFusion volcano plot
of q-value plotted against WHIM2/WHIM16-fold-changes. A
look at the volcano plots shows that in terms of proteins
promoted with increased significance and differential expres-
sion values, LFQ benefits the most from QuantFusion. A list of
these promoted proteins can be found in supplemental Table
S5 (LFQ), supplemental Table S6 (RoR), and supplemental
Table S7 (both LFQ and RoR). For example, we found a
number of QuantFusion-rescued proteins up-regulated in
WHIM2 (basal) that are described to be associated with
the more aggressive basal/triple-negative subtype of breast
cancer. SHC1 (SHC-transforming protein 1, UniProt P29353)
is associated with tumor aggressiveness (39). For both LFQ
and RoR, the q-values for P29353 are not significant. With
QuantFusion, the q-value becomes significant. Likewise,
MORC2 (MORC (microrchidia) family CW (cysteine-trypto-
phan)-type zinc finger protein 2, UniProt Q9Y6X9) is a predic-
tor of recurrence of triple-negative breast cancer (40) and was
not significantly differentially expressed in both LFQ and RoR
but was in QuantFusion. STAT3 (signal transducer and acti-
vator of transcription 3, UniProt P40763) was not differentially
expressed in LFQ but was in QuantFusion and RoR. STAT3
signaling has been shown to play a distinct role in basal
breasts cancers (41). Another protein promoted from both
LFQ and RoR is SENP3 (Sentrin-specific protease 3, UniProt
Q9H4L4). SENP3 has been shown to be overexpressed and
to promote epithelial-mesenchymal transition in gastric can-
cer (42). Because epithelial-mesenchymal transition plays a
role in metastasis, SENP3 could be a candidate for additional
studies to see whether it plays a similar role in basal breast
cancer.

CONCLUSIONS

Here, we present the development of a unified quantitative
approach, QuantFusion, for maximizing the number of pep-
tides to determine global protein expression differences be-
tween tissues. Our approach combines direct measures of
peak intensities via LFQ and MS1 ratios between tumor pep-
tides and corresponding added-in stable isotope-labeled
peptide standards. QuantFusion indirectly facilitates the
quantitative estimation of differences between tumor sub-
types by obtaining an RoR measurement. We have analyzed
all data with a random effects model that frequently augments

missing data in either LFQ or RoR, allowing for more compre-
hensive unified estimates for protein expression changes. The
analytical workflow and the data modeling approach we have
used for combining two different quantitative measurements
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into a single unified estimate we call “QuantFusion.” Quant-
Fusion provided more significant assignments of global pro-
tein expression differences in WHIM2 (basal) and WHIM16
(luminal) PDX tumor subtypes when compared with each in-
dividual method (i.e. LFQ or RoR). Although the missing val-
ues present in both LFQ and RoR methods have not been
addressed from an imputation standpoint or collection of
additional replicates, the unified approach addresses the
missing values to some degree by using all the data from both
methods in estimating global protein expression differences
between the WHIM tumors. QuantFusion increased by 65%
the number of distinct peptide ratios used in our analysis. This
increase, in turn, increased the number of measurable protein
fold-changes by 8% and increased the average precision of
our estimates by 181%. The Statistical Analysis Software
code used to implement the statistical model along with test
data set used in this study are made available to investigators
who wish to perform QuantFusion experiments. In principle,
QuantFusion can be extremely useful for other types of pro-
teomic workflows such as affinity enrichment and label-free
interaction proteomics experiments, where reproducibility in
pulldowns can impact the ability to detect bona fide interac-
tors. The use of QuantFusion in other proteomic workflows
will be reported in a future study.
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