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Introduction—Older patients are more likely to acquire and die from acute respiratory distress 

syndrome (ARDS) and muscle weakness may be more clinically significant in older persons. 

Recent data implicate muscle ring finger protein 1 (MuRF1) in lung injury-induced skeletal 

muscle atrophy in young mice and identify an alternative role for MuRF1 in cardiac metabolism 

regulation through inhibition of fatty acid oxidation.

Objectives—To develop a model of lung injury-induced muscle wasting in old mice and to 

evaluate the skeletal muscle metabolomic profile of adult and old acute lung injury (ALI) mice.

Methods—Young (2 month), adult (6 month) and old (20 month) male C57Bl6J mice underwent 

Sham (intratracheal H2O) or ALI [intratracheal E. coli lipopolysaccharide (i.t. LPS)] conditions 

and muscle functional testing. Metabolomic analysis on gastrocnemius muscle was performed 

using gas chromatography-mass spectrometry (GC-MS).

Results—Old ALI mice had increased mortality and failed to recover skeletal muscle function 

compared to adult ALI mice. Muscle MuRF1 expression was increased in old ALI mice at day 3. 

Non-targeted muscle metabolomics revealed alterations in amino acid biosynthesis and fatty acid 

metabolism in old ALI mice. Targeted metabolomics of fatty acid intermediates (acyl-carnitines) 

and amino acids revealed a reduction in long chain acyl-carnitines in old ALI mice.

Conclusion—This study demonstrates age-associated susceptibility to ALI-induced muscle 

wasting which parallels a metabolomic profile suggestive of altered muscle fatty acid metabolism. 

MuRF1 activation may contribute to both atrophy and impaired fatty acid oxidation, which may 

synergistically impair muscle function in old ALI mice.
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Introduction

Acute respiratory distress syndrome (ARDS), a syndrome of acute lung inflammation 

caused by both direct and indirect acute lung insults, affects at least 200,000 persons per 

year in the United States alone (Force et al. 2012; Rubenfeld et al. 2005). While ARDS 

mortality has decreased over the past decades (Matthay et al. 2012), a cadre of critical illness 

survivors has been left in the wake, many of whom are faced with severe functional 

limitation. One of the serious limitations that intensive care unit survivors face is persistent 

skeletal muscle weakness, which may persist for years after the resolution of ARDS in many 

patients (Bienvenu et al. 2012; Herridge et al. 2011). Studies have linked skeletal muscle 

weakness with mortality. One prospective multicenter cohort study investigated adults 

requiring at least 5 days of mechanical ventilation without evidence of pre-existing 

neuromuscular disease. They demonstrated that handgrip strength performed well as a 

diagnostic for the acquisition of ICU acquired paresis (ICUAP), with handgrip strength 

independently associated with hospital mortality (OR 4.5, p=0.007) (Ali et al. 2008). In a 

randomized controlled trial, prospectively collected data has demonstrated the impact of 

weakness on outcomes and costs in the adult ICU(Hermans et al. 2014). Of 415 long-stay 

assessable ICU patients, 122 were identified as weak using the MRC sum score (<36, based 
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on treatment, glucose levels, new infections and time to first MRC reflecting time to 

awakening) and matched to 122 not-weak patients(Hermans et al. 2014). Weak long-stay 

ICU patients significantly less likely to wean from mechanical ventilation, leave the ICU, or 

be discharged from the hospital(Hermans et al. 2014). The in-hospital costs per patients 

were +30.5% more than the matched not-weak patients and their 1 year mortality was 30.6% 

(vs. 17.2% in the not-weak group, p=0.007)(Hermans et al. 2014). While these studies 

demonstrate that ICU-acquired neuromuscular dysfunction independently increases 

mortality, prolongs duration of mechanical ventilation and contributes to long-term 

functional impairment (Ali et al. 2008; Hermans et al. 2014), the mechanisms underlying the 

development ICU acquired neuromuscular dysfunction are incompletely understood and no 

pharmacologic therapies currently exist.

One well-defined risk factor for both acquisition of and mortality from ARDS is increased 

age (Amato et al. 2015; Rubenfeld et al. 2005). Older ARDS patients also have profound 

functional impairment following severe critical illness, suggesting that ICU acquired 

neuromuscular dysfunction may be more severe in older patients (Ehlenbach et al. 2015; Ely 

et al. 2002; Ferrante et al. 2015). The etiologies for these potential age-associated disparities 

in ICU acquired neuromuscular dysfunction in ARDS are unknown, but may relate to the 

underlying loss of muscle mass and function (sarcopenia) associated with aging (Cruz-

Jentoft et al. 2010). Therefore, it is important to understand the fundamental differences in 

ARDS-induced neuromuscular dysfunction across the age-span, as therapeutic strategies 

may differ in young and old patients.

Using a previously established model (Files et al. 2012), the present study investigated ALI-

induced skeletal muscle wasting in adult (6-month) and old (20-month) lung-injured mice to 

evaluate potential age-dependent phenotypes. We then examined metabolic differences in the 

muscles of adult and old mice following lung injury, using both non-targeted and targeted 

metabolomics approaches. We identified distinct alterations in lipid and amino acid 

metabolism in the muscles of old ALI mice, paralleling their impaired functional recovery 

when compared to adult ALI mice.

Materials and Methods

Animals and acute lung injury model

All procedures were approved by the Institutional Animal Care and Use Committee of Wake 

Forest School of Medicine. 2-month (young), 6-month (adult) and 20-month (old) male wild 

type C57BL/6 mice (The National Institute of Health Aging Mouse Colony) were 

anesthetized with an intraperitoneal (i.p.) injection of 150 mg/kg ketamine and 13.5 mg/kg 

acetylpromazine and the trachea exposed. Escherichia coli lipopolysaccharide (LPS) 

(O55:B5 L2880, lot 111M4035V, Sigma-Aldrich, St. Louis, MO) (ALI mice) at specified, 

weight-based dosages or an equivalent volume of sterile water (Sham mice) was instilled 

intratracheally using a 20-gauge catheter as previously described (Files et al. 2012). Mice 

were observed for up to 10 days and harvested at specified time points. Daily food intake per 

mouse was obtained by weighing the daily food mass per cage divided by the number of 

mice in the cage in adult and old mice at baseline and following ALI conditions.
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In vivo force measurements

Force measurements were made with an in-vivo force transducer (Aurora Scientific, Aurora, 

Ontario, Canada) that measures force generation in-vivo longitudinally over time in a single 

animal. Briefly, this apparatus measures force production by plantarflexion of the ankle 

mounted to a foot-plate to which the mouse hind foot is attached. Animals were anesthetized 

with 2% inhaled isoflurane at a constant flow rate of 2 liters/minute. After removal of the 

animal's fur, the tibial nerve was located and an electrode was placed over the nerve. Resting 

tension, muscle length and stimulation current were iteratively adjusted for each muscle to 

obtain optimal twitch force. The nerve was then stimulated with 250 millisecond trains of 

pulses at increasing frequencies every 2 minutes and the maximum tetanic force was 

recorded for the force-frequency curves. The maximal force generated for each contraction 

was plotted as a percentage of the initial maximal force over the duration of the fatigue 

protocol. For the studies described, baseline force measurements were obtained on uninjured 

adult and old mice. Following the lung injury protocol at 0.75 μg/g or 1 μg/g LPS (low dose 

LPS), measurements were obtained again on days 3 and 10. The data is displayed as the 

percent change from baseline force at days 3 or 10 from the maximal tetanic forces 

generated at 125 Hz at each of these time points and is combined from two independent 

experiments.

Muscle extraction and morphometry

Following euthanasia, gastrocnemius (GAS), extensor digitorum longus (EDL), soleus 

(SOL) and tibialis anterior (TA) muscles were removed, blotted with tissue paper and 

immediately weighed. Muscles were snap frozen in liquid nitrogen as previously described 

(Files et al. 2015a). Soleus muscles were prepared as previously described for muscle 

morphometry. For fiber typing data, type I or type II myofibers of the soleus muscle were 

identified using the ATPase method at pH 9.4 as previously described (Files et al. 2012). 

Soleus muscle lipid content was identified on serial sections, using the Oil Red O (Poly 

Scientific R&D) staining method. Lipid droplet size measurements were obtained in at least 

20 myofibers per muscle section and quantified using Image J® software (NIH, Bethesda 

MD) as previously described (Choi et al. 2016).

Western blotting

Western blotting was performed as previously described using the following antibodies: 

Trim63 (MuRF1) (AF5366 R&D Systems, Minneapolis, MN, USA), GAPDH (AM4300 

Ambion, Austin, TX, USA) (Files et al. 2015a).

Non-targeted metabolomics determination by GC–MS instrumentation

Gastrocnemius muscle tissue was flash frozen in a liquid nitrogen, weighed (25–50 mg wet 

weight), then placed in buffer (50 % acetyl-nitrile, 50 % water, 0.3 % formic acid) at a 

standard concentration of 25 mg/475 μl buffer then fully homogenized on ice for 10–25 s 

and placed on dry ice/stored at -80C. Samples were then analyzed by GC/MS, as previously 

described (Banerjee et al. 2015). The raw, transformed, and sorted data used for each of the 

three comparisons in the metabolomics analyses can be found in Supplemental Table 1. In 

the acute lung injury studies, four groups of ten samples were analyzed (40 total). If more 
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than 3 individuals did not have a metabolite detected in a group (of 10 total), they were 

excluded from further analysis for that metabolite. In groups with fewer values missing, the 

lowest value of that group was used to impute those values. Supplemental Table 1 contains 

raw and imputed data sets including targeted and non-targed data and has been submitted to 

the UCSD metabolomics Workbench (http://www.metabolomicsworkbench.org/), accession 

number pending (uploaded March 21 2016). The MuRF1 Tg+ and MuRF1-/- metabolomics 

data was similarly analyzed, which included four groups (MuRF1 Tg+, strain-matched 

wildtypeMuRF1Tg+, MuRF1-/-, and strain-matched MuRF1+/+) with three replicates. 

Missing values were imputed only if 1 was missing; groups with 2 or more missing values 

were excluded from analysis for that metabolite. Supplemental Table 2 contains raw and 

imputed data sets including both targeted and non-targeted data.

Targeted metabolomics of acyl-carnitine and amino acid quantification by GC–MS 
instrumentation

Amino acids and acyl-carnitines were analyzed using stable isotope dilution techniques. 

Amino acids and acyl-carnitine measurements were made by flow injection tandem mass 

spectrometry using sample preparation methods described previously(An et al. 2004; Jensen 

et al. 2006; Wu et al. 2004). The data were acquired using a Waters Acquity™ UPLC system 

equipped with a TQ (triple quadrupole) detector and a data system controlled by MassLynx 

4.1 operating system (Waters, Milford, MA). Metabolite concentrations were analyzed using 

Metaboanalyst v3.0 (Xia et al. 2009; Xia et al. 2015; Xia et al. 2011) run in the statistical 

package R (v2.14.0). Initial unsupervised evaluation using principal component analysis 

(PCA) identified the presence of acute lung injury as the primary source of variance. Data 

were next analyzed using PLSDA and VIP analyses in a similar manner to what was 

previously described. Metabolites that best differentiated the groups were individually tested 

using Metaboanalyst v3.0 t-test feature. Of note, metabolites were normalized by reference 

sample created from Sham group average.

Metabolomic Statistical Analyses

Metaboanalyst (v3.0) run on the statistical package R (v2.14.0) used metabolite peaks areas 

(as representative of concentration)(Xia et al. 2009; Xia et al. 2015). These data were first 

normalized to a pooled average sample created from their control- Sham group, and scaled 

using Pareto scaling feature, and then analyzed to calculate Fold change using 

Metaboanalyst fold change feature. Unsupervised principal component analysis (PCA) was 

performed next, which identified the presence of the acute lung injury in the mice as the 

principal source of variance. The metabolites that best differentiated the groups were then 

individually tested using univariate analysis of individual component by t-test 

(Metaboanalyst v3.0), and then both the t-test and VIP significant metabolites were matched 

to metabolomics pathways using the Pathway Analysis and enrichment analysis features in 

Metaboanalyst v3.0. To detect systemic metabolic signature of ALI in the context of age, a 

One-Way Analysis of Variance (ANOVA) and Fisher LSD post-hoc test across the two ages 

(adult, old) and experimental groups (sham, ALI)(adult sham, adult ALI, old sham, old ALI) 

using Metaboanalyst v3.0 including p values. Similarly, the metabolic signatures from these 

gastrocnemius groups were compared to MuRF1 Tg+ and MuRF1-/- hearts using a One-

Way Analysis of Variance (ANOVA) and Fisher LSD post-hoc test to compare adult Sham, 
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adult ALI, old Sham, old ALI, wildtypeMuRF1Tg+, MuRF1 Tg+, MuRF1+/+, MuRF1-/-. 

Only metabolites identified and detected in all groups were included in the One-Way 

ANOVA. If four or more values of each metabolite were missing in a given group, the entire 

metabolite was removed from the analysis. Only metabolites significantly altered in 2 or 

more organs were plotted. Data used in this study are available in Supplemental Table 1 and 

Supplemental Table 2. Heat maps were generated using the GENE- E software (http://

www.broadinstitute.org/cancer/software/GENE-E/index.html).

Other Statistical Analyses

All data is shown as mean +/- SEM, unless otherwise indicated. Differences between two 

groups were compared with the Student's t test or the Mann-Whitney test for nonparametric 

data, while comparisons between >2 groups used a One-Way ANOVA. Post-hoc analysis 

was performed using a t-test with the Bonferroni adjustment method using Prism 7.0 

(GraphPad Software, Inc., La Jolla, CA).

Results

Instillation of lipopolysaccharide (LPS) at a dose previously established to cause a 

survivable lung injury and muscle wasting in young mice caused a step-wise and age-

dependent increase in mortality. At 10 days following intratracheal (i.t) LPS, 87% of young 

and 77% of adult mice survived, but none of the old mice did (Figure 1A). Since this 

paradigm did not allow investigation of chronic skeletal muscle alterations post-acute illness, 

we adjusted the model to create a reproducible survival model of ALI in old mice. To do 

this, we incrementally reduced the LPS dose and observed the dose-related survival 

response. We found that reducing the dose to 0.75 or 1 μg/g LPS (low dose LPS) led to 

survival in ~75% of the old ALI mice and 100% survival in adult ALI mice (Figure 1B). 

Low dose i.t. LPS caused profound body weight loss (Figure 1C) in both adult and old ALI 

mice during the early phase (days 0 through 5), though maximal body weight loss peaked at 

day 3 in adult ALI mice (16% below baseline) and body weight loss peaked at day 5 in old 

ALI mice (21% below baseline). During the late phase (days 6 through 10), both adult and 

old ALI mice gained weight at a similar rate, but the old ALI mice body weight recovery 

started from a lower baseline. Mean daily baseline food intake was similar in young (3.7 g/

day) and old (3.2 g/day) mice. Following low dose ALI, food intake dropped to ~12% of 

baseline daily food intake for the first 2 days in both groups, and then slowly increased 

through day 9 where they were similar to the baseline levels of daily food intake (Figure 

1D).

Despite body weight recovery in old ALI mice during the late phase, muscle function failed 

to recover. Maximal tetanic force generated from the hindlimb ankle plantar flexor muscle 

group in the adult and old mice at baseline, days 3 and 10, was reduced in old ALI mice at 

day 10 (compared to both old baseline and adult ALI mice at day 10). In contrast, there was 

no evidence of significant weakness from baseline levels in adult ALI mice at either 

timepoint (Figure 1E). Analysis of the tibialis anterior (TA) and extensor digitorum longus 

(EDL) wet weights demonstrated reduced muscle mass both adult and old ALI mice at day 

10, although the percent of muscle mass lost in old ALI mice (vs old Sham) was equivalent 
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or less than that observed in the adult ALI mice (vs adult Sham) (Figure 1F, G). In contrast, 

muscle mass was preserved in the soleus in both adult and old ALI mice (Figure 1H), 

supporting a relative preservation of type I myofibers in the limb muscles under ALI 

conditions (Files et al. 2015a).

Previous studies have implicated the muscle specific ubiquitin ligase (MuRF1) in skeletal 

muscle atrophy (Bodine et al. 2001), and have demonstrated that MuRF1 expression is 

necessary to cause ALI-induced muscle atrophy (Files et al. 2012; Langen et al. 2012). We 

then investigated MuRF1 protein in all groups. Western blot analysis of MuRF1 in the 

gastrocnemius muscle, a mixed fiber type muscle, identified significant upregulation in both 

adult and old ALI mice (compared to Sham), which was higher in the old ALI mice 

compared to adult ALI mice at day 3 (Figure 1I). However, at day 10, when old ALI mice 

displayed profound muscle weakness, MuRF1 levels had returned to baseline (Figure 1J). 

This finding, along with the lack of reduced muscle mass at day 10, suggest that atrophy 

does not account for the loss of muscle function in old mice at day 10. Further histological 

evaluation of soleus muscle in ALI mice revealed increased intramyocellular lipid (IMCL) 

droplet size in old versus young ALI mice at day 10 in both type I and type II myofibers 

(Figure 1K), a finding associated with both impaired skeletal muscle function (Choi et al. 

2016; Picard et al. 2012) and metabolism (Consitt et al. 2009) in previous studies.

To explore potential underlying muscle metabolic defects in adult and old ALI mice during 

the late phase, we performed non-targeted metabolomics analysis on gastrocnemius muscle 

samples of adult and old, Sham and ALI mice at day 10. We first compared the adult ALI to 

adult Sham groups (Figure 2), then similarly analyzed the old ALI muscle metabolomic 

profile (Figure 3). Analysis of the adult ALI gastrocnemius profile identified 111 

metabolites, 66 of which were named (Figure 2A). A supervised partial least squares 

regression discriminant analysis (PLS-DA) identified distinct alterations in the 

metabolomics profile, with the first principal component accounting for 28.6% of the 

differences observed between groups (Figure 2B). The associated Variable Importance in 

Projection (VIP) analysis identified 5 metabolites with VIP scores >2, including lactic acid, 

taurine, cholesterol, glucose-6-phosphate, and glucose and other aldohexoses (Figure 2C). A 

t-test analysis identified 9 metabolites to be significantly different, including 

hydroxyprolines, glutamine, beta-alanine, aminomalonic acid, and linoleic acid that were 

significantly decreased 20-30% or significantly increased 30-236% from controls (Figure 

2D)(p<0.05). Parallel analysis of the old ALI muscle compared to old Sham identified 111 

metabolites, 69 of which were named (Figure 3A). PLS-DA identified distinct alterations in 

the metabolomic profile, with the first principal component accounting for 35.6% of the 

differences observed between groups (Figure 3B). The associated Variable Importance in 

Projection (VIP) analysis identified 3 metabolites with VIP scores >2, including lactic acid, 

phosphoric acid, and glucose/other aldohexoses (Figure 3C). A t-test analysis identified 18 

metabolites, including elevations in 2-aminoadipic acid, hydroxyprolines, lysine, linoleic 

acid, glutamic acid, aspartic acid, and phenylalanine to be significantly decreased to 55-85% 

or significantly increased 33-233%) compared to old Sham muscle (Figure 3D)(p<0.05). In 

contrast to the adult ALI gastrocnemius, the old ALI gastrocnemius generally had more 

significantly different amino acids (5 in old ALI compared to 3 in the adult ALI), and fatty 

acids identified by t-test (5 in old ALI compared to 2 in the adult ALI).

Files et al. Page 7

Metabolomics. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We next sought to determine what underlying pathways were altered in the adult and old 

ALI muscle using the specific metabolites identified in Figure 2D and Figure 3D as t-test 

and VIP significant. Using pathway enrichment analysis, we identified metabolomics 

alterations in the adult ALI enriched primarily in Inositol phosphate, pyrimidine, galactose 

and D- glutamine metabolism (Figure 4A), reflected in Ammonia Recycling pathway 

enrichment of 6+ fold and the lowest p value (Figure 4B). Additional enrichment analyses 

against disease-associated metabolite sets identified mammary-tumor-bearing mice and 3-

methylglutaonic aciduria (type II) (Supplemental Figure 1A), Alzheimer's disease, and 2-

methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (Supplemental Figure 1B) with the 

lowest p values. Enrichment based on location identified the basal ganglia (Supplemental 

Figure 1C) with the lowest p value. Pathway enrichment analysis in the old ALI muscle 

revealed alterations in lysine biosynthesis, amino acids biosynthesis and biosynthesis of 

unsaturated fatty acids (p<0.05) (Figure 4C). Further enrichment analysis of pathway-

associated metabolite sets highlighted significant enrichment of alpha-linoleic acid and 

linolenic acid metabolism (>9 fold enrichment), glucose-alanine cycle (7 fold enrichment), 

biotin metabolism (10 fold enrichment) and protein biosynthesis (7 fold enrichment and 

lowest p value) (Figure 4D). Additional enrichment analyses against disease-associated 

processes identified alterations with the lowest p value associated with the 2-ketoglutarate 

dehydrongenase process (Supplemental Figure 2A), Glut-1 deficiency (Supplemental Figure 

2B), 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency and metabolic enrichment 

in bladder and skeletal muscle (Supplemental Figure 2C). Interestingly, both adult and old 

ALI muscle was enriched for 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, an 

inborn error caused by a defect in the degradation of the branched chain amino acid 

isoleucine. Characterized by severe motor defects, disrupted mitochondria, and 

accumulation of intracellular lipids, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase 

deficiency exhibit aspects of altered fatty acid metabolism (Chatfield et al. 2015). Together, 

these findings helped focus our attention on the amino acid and fatty acid metabolic 

alterations in ALI muscle for further targeted analysis.

Next, we next performed a targeted quantitative analysis of 15 amino acids and 40 acyl-

carnitines (grouped into short, medium, and long chain acyl-carnitines) on adult ALI (Figure 

5A) and old ALI muscle (Figure 5D). The Unsupervised PCA analysis of targeted 

metabolomics between adult ALI and adult Sham mice groups revealed that alanine as the 

only metabolite with a VIP score >2 (Figure 5B). Three t-test significant metabolites were 

also identified: 1) histidine, 2) citrulline, and 3) ornithine (Figure 5C). Complementary 

studies of the old ALI muscle (Figure 5D) revealed that alanine and glutamine had VIP 

scores >2 (Figure 5E). Similar to the adult ALI, the old ALI had t-test significant increases 

in citrulline and ornithine (Figure 5F), but uniquely old but not adult ALI mice had a nearly 

50% reduction in long chain acyl-carnitines (Figure 5F).

To delineate the underlying mechanisms occurring in both an age-dependent and ALI-

dependent manner across all four groups studied, we next performed a One-Way ANOVA 

across both adult and old Sham and ALI groups (Figure 6). Of the 64 metabolites identified 

in all four groups (Figure 6A), unique PCA patterns were seen between the four groups 

(Figure 6B). 22 metabolites were significantly different using ANOVA analysis (Figure 6C). 

Further inter-group analysis identified age-dependent differences, between old Sham and 
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adult Sham muscle in metabolites including docosahexaenoic acid, 2-aminoadipic acid, 

pyruvic acid, lysine, and ononitol (see $, Figure 6C). In addition to these metabolites that 

were different between the adult Sham and old Sham muscle, we also evaluated metabolite 

alterations in both old groups (old Sham and old ALI) and identified urea and 

docosahexanoic acid (DHA)(Supplemental Figure 3A). To identify metabolites that were 

significantly altered in ALI regardless of age, we identified altered metabolites found in both 

ALI groups (Supplemental Figure 3A). DHA was significantly increased in an age-

dependent fashion (Supplemental Figure 3B), whereas linoleic acid was significantly 

increased in with ALI conditions regardless of age (Supplemental Figure 3C). In addition, 

lactate, serine, and alanine were differentially regulated in ALI conditions regardless of age 

(Supplemental Figure 3A).

In order to further examine potential changes in of acyl-carnitines observed in old ALI mice, 

we grouped measured acyl-carnitines by chain length and plotted the fold change in old ALI 

versus old Sham muscle against carbon chain length. This analysis further illustrates that the 

long chain species were most affected (Supplemental Figure 4). These alterations were 

reminiscent of the reduced long chain acyl-carnitines seen with increased MuRF1 expression 

in a prior metabolomics cardiac muscle analysis (Rodriguez et al. 2015). To determine if 

there were any similarities in the present study (particularly old ALI) with altered MuRF1 

signatures in the heart, we performed an ANOVA across the four groups in the present study 

with the four groups in our previous study (MuRF1 Tg+ and MuRF1-/- and their strain 

matched controls). Significant alterations in both the grouped long chain (C14-C22) and 

short chain (C2-C5) acyl-carnitines were seen, along with specific species (Supplemental 

Figure 5A). Interestingly, the total long chain acyl-carnitines (C14-C22) were significantly 

depressed similarly to the MuRF1 Tg+ hearts, with the MuRF1-/- hearts having significantly 

increased levels of total long chain acyl carnitines (Supplemental Figure 5B). We then 

plotted all of the acyl-carnitines C2-C20 levels for each of the four groups compared to their 

wildtype controls, which run along the dotted line at 1.0 (Supplemental Figure 5C). We find 

that the old ALI and MuRF1 Tg+ hearts with increased cardiomyocyte MuRF1 expression 

follow a parallel acyl-carnitine reduction, affecting the longer acyl-carnitines most 

(Supplemental Figure 5C, red and green lines). Similarly, adult ALI muscle has reduced 

levels of longer chain acyl-carnitines (blue line), but are not as severely affected as the old 

ALI mice. In contrast, the loss of MuRF1 (MuRF1-/- hearts) have increased levels of short 

and medium chain acyl-carnitines, with the largest increases (compared to wildtype) being 

in the long chain acyl-carnitine species (gray line)(Supplemental Figure 5C). The 

significantly altered acyl-carnitine species (vs. adult Sham) determined by ANOVA in any 

group are indicated in Supplemental Figure 5D, having enrichment for cyanoaminoacid, 

linoleic, and methane metabolism (Supplemental Figure 6).

Discussion

The relationship between age and increased incidence of and mortality from acute lung 

injury (ALI)/acute respiratory distress syndrome (ARDS) has been established in both 

humans and animal models (Manzano et al. 2005; Prows et al. 2015; Rubenfeld et al. 2005). 

Increasing evidence suggests that neuromuscular weakness developing from critical illness 

is independently associated with morbidity and mortality, and is therefore an attractive 
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therapeutic target (Ali et al. 2008; Hermans et al. 2014). While it has been suggested that 

older patients exhibit increased the severity of ICU acquired neuromuscular weakness, this 

has been understudied and the mechanisms are unknown (Ehlenbach et al. 2015; Ely et al. 

2002; Ferrante et al. 2015; Ferrante et al. 2016). In this manuscript, we present a model of an 

age-associated increase in mortality from lung injury, coupled with prolonged 

neuromuscular dysfunction. Muscle wasting in old ALI mice is associated with increased 

MuRF1 expression during the early phase relative to adult mice; however, no difference is 

observed in MuRF1 expression in the late phase. Additionally, similar or decreased relative 

muscle loss is observed in the old mice in the late phase, suggesting that prolonged muscle 

weakness is due to processes other than muscle atrophy.

The dissociation of muscle mass and muscle strength found in the present study has been 

previously described in various conditions, including sarcopenia (Baehr et al. 2016; 

Goodpaster et al. 2006; Metter et al. 1999). The potential physiologic explanations for this 

dissociation are many, including neuropathies, neuromuscular junction injury, and 

excitation-contraction uncoupling among others. In light of our findings of profound 

metabolic alterations during the late phase of lung injury, we believe changes in muscle 

metabolism represent a potential mechanism underlying the dissociation between muscle 

mass and function. Previous work has demonstrated that changes in energy substrate and 

utilization (metabolism) can affect muscle performance (Li et al. 2015; Pugh et al. 2013). 

While the mechanistic link between the metabolic changes seen in old mouse muscle and the 

reduction in muscle contractile force are not fully elucidated in this study, we find increased 

size of intramyocellular lipid droplets in old ALI muscle at day 10. Other studies have found 

an association between intramyocellular lipid accumulation and impaired muscle 

contractility in mice and humans (Choi et al. 2016; Duval et al. 2007; Picard et al. 2012; 

Pugh et al. 2013), though the mechanisms underlying this association remain unclear.

Age-related changes have been identified in rat muscle related to glycolytic metabolism (32 

month vs. 15 month rats) (Garvey et al. 2014). Specifically, an accumulation of glycolytic, 

glycogenolytic, and pentose phosphate pathway intermediates in addition to increases in 

monounsaturated fatty acids (e.g. oleate and palmitoleate) were found in aged rat 

gastrocnemius (Garvey et al. 2014). The age-associated increases in long chain fatty acids 

(oleate and palmitoleate) found in this study, are similar to our findings of elevated long 

chain polyunsaturated docosahexaenoic acid (DHA) in old versus adult Sham mice. Low 

plasma DHA levels in cancer patients have been associated with myosteatosis, and 

supplementation with DHA and other ω-3 fatty acids may improve muscle function in this 

population (as recently reviewed (Ewaschuk et al. 2014)). The etiology and causality of 

elevated DHA in the muscle of old mice from our study is unclear. This finding may reflect 

an inability of old muscle to utilize DHA, or alternately, DHA may be a compensatory 

adaptive response in aged muscle. As dietary supplementation with DHA holds potential for 

therapy for muscle wasting in cancer and other conditions, further study is needed to explain 

the etiology of DHA and other long chain fatty acids in aged muscle (Ewaschuk et al. 2014; 

Kamolrat, Gray 2013; Smith et al. 1999).

The poly-unsaturated ω-6 fatty acid, linoleic acid was significantly increased after ALI in 

both adult and old mice. While a mechanistic link between ALI and increased linoleic acid 
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in muscle is not clear, several studies have linked alterations in plasma linoleic acid with 

acute lung injuries, including ARDS, pneumonia, and septicemia though underlying 

mechanisms appear unclear (Kumar et al. 2000; Prabha et al. 1991). While these alterations 

have been implicated in ARDS pathogenesis, their roles still remain unclear. The potential 

role of enhanced inflammation and utilization of polyunsaturated fatty acids via lipid 

peroxidation (Quinlan et al. 1996) deserves further study.

Linoleic acid is a substrate required for inflammation, but has also been proposed as an 

antiinflammatory therapy for skeletal muscle disorders (Tarnopolsky, Safdar 2008; Tian et 

al. 2011). Conjugated linoleic acid has been used therapeutically and for its anti-

inflammatory properties (Larsen, Crowe 2009; Pariza et al. 1999; Zulet et al. 2005), 

however, its use to protect against muscle weakness has not specifically been investigated. 

While linoleic acid unexpectedly was not protective in a tumor-mediated model of skeletal 

muscle atrophy using the C26 cell line in vivo, it enhanced markers of inflammation (Tian et 

al. 2011). In resistance training, the addition of conjugated linoleic acid has been shown to 

reduce body fat after 6-months of resistance training in older adults (Tarnopolsky, Safdar 

2008). The observed increase in muscle linoleic acid in our study may reflect its role as a 

substrate for inflammation used to mobilize energy stores from fat systemically. Further 

work is needed to evaluate the etiology of this pathway in skeletal muscle functional 

recovery in the ALI model.

The significant decrease in long chain acyl-carnitines that were unique to the old ALI 

muscle suggests impaired uptake and/or utilization of long chain fatty acids for β oxidation. 

We also found that old ALI muscle closely parallels a similar acyl-carnitine profile from the 

MuRF1 Tg+ hearts and contrasts the observed profile in MuRF1-/- hearts. Since MuRF1 is 

elevated to a greater degree in old compared to adult ALI mice during the early phase, these 

alterations in acyl-carnitine levels may reflect increased MuRF1 activity in old ALI mice. 

The mechanism in the heart for this inhibition of fatty acid oxidation has been found to be 

due to MuRF1 mono-ubiquitination of PPARα, which targets PPARα for nuclear export 

thereby decreasing PPARα activity (Rodriguez et al. 2015). Further studies are needed to 

evaluate the potential link between elevated MuRF1 and the observed metabolomic pattern 

of impaired fatty acid oxidation in the muscles of old ALI mice.

Subsets of patients with a variety of diseases affecting seemingly disparate organ systems 

experience muscle wasting syndromes, which are associated with poor outcomes (Morley et 

al. 2006). However, the kinetic relationship between muscle wasting and the presence of the 

underlying disease in various muscle wasting syndromes appear to differ. For instance, in 

diseases such as cancer, heart failure and chronic obstructive pulmonary disease (COPD), 

muscle wasting occurs in parallel with the ongoing disease state. In contrast, in critical 

illnesses, such as ARDS or sepsis, a massive inflammatory response likely drives the initial 

muscle injury, yet weakness persists in many patients despite resolution of the initial disease 

process (Files et al. 2015b). While the muscle proteolytic response in these diseases many 

have common underlying mechanisms, such as MuRF1 involvement (Bodine, Baehr 2014), 

the differing kinetics suggest that the underlying mechanisms and metabolic responses might 

differ.
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Recent studies have demonstrated that the metabolomics profiles of muscle atrophy are 

different depending upon the underlying causes of muscle loss. In healthy mice challenged 

with cancer (no cachexia/muscle loss), cancer cachexia (early and late time points), calorie 

restriction-induced muscle loss, and a control group, NMR analysis of serum identified 

distinct profiles of the cancer cachexia compared to other groups (hyperlipidemia, 

hyperglycemia, reduced branched-chain amino acids) (Der-Torossian et al. 2013). While 

these findings confirmed previous studies finding increases in cancer-cachexia plasma 

(O'Connell et al. 2008), they offered a proof that cure (by surgical resection) paralleled 

predictable resolution of these changes (Der-Torossian et al. 2013). In another model of 

cancer cachexia, incubation of human muscle cells with cachectic conditioned media led to 

upregulation of fatty acid metabolism pathways and in increase in acyl-carnitines. This 

process was associated with muscle atrophy, and inhibition of FA metabolism attenuated 

atrophy (Fukawa et al. 2016). These studies demonstrate similarities to our present work, but 

differences may be due to the methodologies employed (NMR), the differences in the 

metabolite kinetics between disease processes, age differences, and the lack of ongoing 

atrophy in the clinically relevant present model. Future studies should evaluate the plasma 

and muscle metabolomics response during the early phase of our model and investigate the 

mechanistic link to MuRF1 to determine its potential as a therapeutic target. These studies 

might shed light on common metabolic mechanisms that may underlie muscle wasting in 

various disease states.

Conclusions

• Acute lung injury (ALI) in old mice reproduces the observed increase in 

mortality and muscle weakness in older humans with ALI/ARDS.

• The early phase of muscle wasting in old ALI mice is marked by increased 

MuRF1, while the late phase is marked by prolonged neuromuscular weakness 

and metabolomics alterations despite cessation of atrophy.

• Age-dependent muscle metabolite alterations included altered DHA and urea 

concentrations. ALI-dependent muscle metabolite alterations included linoleic 

acid, lactate, serine, and alanine, with old ALI muscle demonstrating 

significantly higher levels of linoleic acid than adult ALI.

• Long chain (C14-C22) acyl-carnitine species were depressed in old ALI muscle 

suggestive of impaired uptake or utilization of long chain fatty acids for β 
oxidation.

• The acyl-carnitine profile in old ALI muscle in the late phase coupled with early 

MuRF 1 upregulation during the early phase parallels the MuRF1 Tg+ cardiac 

muscle profile, suggesting that MuRF1 may contribute to the metabolic changes 

in old ALI muscle.
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Refer to Web version on PubMed Central for supplementary material.
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ARDS acute respiratory distress syndrome

LPS lipopolysaccharide

GAS gastrocnemius

EDL extensor digitorum longus

SOL soleus

TA tibialis anterior
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Figure 1. Lung injury in old mice results in increased mortality and prolonged muscle weakness
A) Survival curves for young (2 month old), adult (6-month old) and old (20-month old) 

acute lung injury (ALI) mice following high dose (3μg/g) LPS. N=37/very young, N=13/

adult, N=3/old. B) LPS dose titration in old ALI mice, at doses ranging from 0.75 to 1.5 

μg/g. N=11/adult (0.75μg/g), N=11/old (0.75 μg/g), N=8/old (1μg/g). N=6/old (1.25 μg/g). 

N=6/old (1.5 μg/g) C) Cumulative body weight changes in adult and old Sham and ALI 

(0.75 μg/g) mice following intratracheal (i.t.) H2O or i.t. LPS. N=3 for Sham groups, N=10 

ALI groups. D) Mean daily food intake in Adult and Old baseline and ALI mice. N=6 per 

group. E) The percent change in maximal tetanic force by ankle plantarflexion generated at 

125 Hz stimulation at days 3 and 10 following 0.75 μg/g or 1 μg/g LPS was compared to 

baseline values in individual animals; #Old baseline vs Old Day 10 p=0.007, @Adult ALI 

Day 10 vs Old ALI Day 10 p=0.004, N=10 Adult baseline, N=13 Old baseline, N=6 ALI 

Adult day 3, N=6 ALI Old day 3, N=10 ALI Adult day 10, N=7 ALI Old day 10. Sham or 

ALI (0.75 μg/g) muscle wet weights of the F) tibialis anterior (TA) G) extensor digitorum 

longus (EDL) or H) soleus (SOL) muscles at day 10. Gastrocnemius protein lysates from I) 
Day 3 and J) Day 10 ALI (0.75 μg/g) or Sham mice were probed for MuRF1 expression, 

normalized GAPDH and quantified by densitometry (N=3 for Sham mice, N=5-6 for ALI 

groups). K) Staining for intramyocellular lipid (IMCL) accumulation (red arrows) in type I 
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and type II myofibers of the soleus in Adult and Old ALI mice at day 10. N=3/group, 

*p=0.04 for group differences.
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Figure 2. Non-targeted metabolomics of adult ALI muscle at day 10 compared to adult Sham 
mice
A) Heat map of metabolites identified by non-targeted GC/MS analysis. B) Partial least 

squares-discriminant analysis (PLS-DA). C) Partial least squares-discriminant analysis 

(PLS-DA) and variable importance in the projection (VIP) analysis and D) Heat map of t test 

significant (p<0.05) results. N=10/group.
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Figure 3. Non-targeted metabolomics of old ALI muscle at day 10 compared to old Sham mice
A) Heat map of metabolites identified by non-targeted GC/MS analysis. B) Partial least 

squares-discriminant analysis (PLS-DA) C) Partial least squares-discriminant analysis (PLS-

DA) and variable importance in the projection (VIP) analysis and D) Heat map of t test 

significant (p<0.05) results. N=10/group.
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Figure 4. Pathway enrichment of significant metabolites found in adult ALI muscle compared to 
adult Sham mice
A) Pathway enrichment analysis for adult (6-month) acute lung injury compared to Sham 

controls. a-e indicates top pathways identified, along with the specific significant 

metabolites found that placed it in this category. B) Enrichment by metabolite sets 

determined from VIP and t-test significant metabolites identified in adult ALI mice 

compared to their adult Sham. C) Pathway enrichment analysis for old ALI compared to old 

Sham a-e indicates top pathways identified, along with the specific significant metabolites 

found that placed it in this category. D) Enrichment by metabolite sets determined from VIP 

and t-test significant metabolites identified in old ALI compared to old Sham. a-e indicates 

top pathways identified, along with the specific significant metabolites found that placed it 

in this category.
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Figure 5. Quantitative targeted metabolomics analysis of grouped acyl carnitines and amino 
acids in adult and old ALI and Sham mice
Targeted metabolomic analysis of adult ALI muscle showing A) Heat map of grouped acyl 

carnitines and amino acids, B) Partial least squares-discriminant analysis (PLS-DA) with 

variable importance in the projection (VIP) analysis, and C) Heat map of t test significant 

results. Targeted metabolomic analysis of old ALI showing D) Heat map of grouped acyl 

carnitines and amino acids, E) Partial least squares-discriminant analysis (PLS-DA) with 

variable importance in the projection (VIP) analysis, and F) Heat map of t test significant 

(p<0.05) results. N=10/group.
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Figure 6. ANOVA analysis of non-targeted metabolomics from both adult and old ALI and Sham 
muscle
A) Heat map and B) Principal components analysis of metabolites identified by non-targeted 

GC/MS analysis among all groups of comparison. C) Summary heat map of OneWay 

ANOVA significant metabolites, determined by Fisher-LSD post hoc test results. 

Metabolites identified to be altered by post hoc test, and classified depending on the factor 

that induced the changes. Six Fisher LSD post hoc comparisons were made: *, Sham 20 vs. 

ALI 20 (Column 1); #, Sham 6 vs. ALI 6 (Column 2); $, Sham 6 vs. Sham 20 (Column 3); 

**, Sham 6 vs. ALI 20 (Column 4); ##, ALI 6 vs. ALI 20 (Column 5); ***, ALI 6 vs. Sham 

20 (Column 6). Metabolites previously related to ALI and age are boxed in red; metabolites 

related to age only are shown in green. Significance defined as p<0.05.

22 metabolites were significantly different using ANOVA analysis (Figure 6C). Further 

inter-group analysis identified age-dependent differences, between old Sham and adult Sham 

muscle in metabolites including docosahexaenoic acid, 2-aminoadipic acid, pyruvic acid, 

lysine, and ononitol (see $, Figure 6C). In addition to these metabolites that were different 

between the adult Sham and old Sham muscle, we also evaluated metabolite alterations in 

both old groups (old Sham and old ALI) and identified urea and docosahexanoic acid (DHA)

(Supplemental Figure 3A). To identify metabolites that were significantly altered in ALI 

regardless of age, we identified altered metabolites found in both ALI groups 
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(SupplementalFigure 3A). DHA was significantly increased in an age-dependent fashion 

(Supplemental Figure 3B), whereas linoleic acid was significantly increased in with ALI 

conditions regardless of age (Supplemental Figure 3C). In addition, lactate, serine, and 

alanine were differentially regulated in ALI conditions regardless of age (Supplemental 

Figure 3A).
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