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Abstract

Purpose—High-resolution MR images can depict rich details of brain anatomical structures and 

show subtle changes in longitudinal data. 7T MRI scanners can acquire MR images with higher 

resolution and better tissue contrast than the routine 3T MRI scanners. However, 7T MRI scanners 

are currently more expensive and less available in clinical and research centers. To this end, we 

propose a method to generate super-resolution 3T MRI that resembles 7T MRI, which is called as 

7T-like MR image in this paper.

Methods—First, we propose a mapping from 3T MRI to 7T MRI space, using regression random 

forest. The mapped 3T MR images serve as intermediate results with similar appearance as 7T MR 

images. Second, we predict the final higher resolution 7T-like MR images based on sparse 

representation, using paired local dictionaries for both the mapped 3T MR images and 7T MR 

images.

Results—Based on 15 subjects with both 3T and 7T MR images, the predicted 7T-like MR 

images by our method can best match the ground-truth 7T MR images, compared to other 

methods. Meanwhile, the experiment on brain tissue segmentation shows that our 7T-like MR 

images lead to the highest accuracy in the segmentation of WM, GM, and CSF brain tissues, 
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compared to segmentations of 3T MR images as well as the reconstructed 7T-like MR images by 

other methods.

Conclusions—We propose a novel method for prediction of high-resolution 7T-like MR images 

from low-resolution 3T MR images. Our predicted 7T-like MR images demonstrate better spatial 

resolution compared to 3T MR images, as well as prediction results by other comparison methods. 

Such high-quality 7T-like MR images could better facilitate disease diagnosis and intervention.

Keywords

image enhancement; Magnetic resonance imaging (MRI); random forest regression; sparse 
representation; super-resolution

1. INTRODUCTION

In the last decade, several technical improvements propelled strengthening the magnetic 

field of Magnetic resonance imaging (MRI) to produce higher resolution MR images. The 

outcome is the introduction of ultra-high-field (7T) MRI scanners that have many 

advantages in comparison to the routine MRI such as 3T MRI.1 For instance, there has been 

an increase in the signal-to-noise ratio (SNR) of 7T MRI, which allows imaging with higher 

spatial resolution. In addition, 7T MRI has higher sensitivity to tissue changes and 

anatomical details, which thus produces higher spatial resolution and clearer tissue 

boundaries.

Therefore, 7T MRI contains more pathophysiological information compared to 3T MRI. 

Such information could help better diagnose and treat multiple sclerosis, brain tumors, 

aging-related changes, and cerebrovascular diseases.2,3 In addition, 7T MRI is more accurate 

in the segmentation of MRI brain tissues such as white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF), in comparison to 3T MRI. In addition, the segmentation of small 

brain structures such as hippocampal subfields is often difficult in 3T MR images, but more 

practical in 7T MR images.3–7 Besides, the cortical lesions and atrophies have higher quality 

in terms of resolution in 7T MRI in comparison to 3T MRI.3 However, at the current stage, 

7T MRI scanners are more expensive and less available in hospitals and clinical centers, and 

thus most MR images are still acquired using routine 3T scanners.8 Therefore, it is an 

alternative solution to predict high-resolution 7T MR images from 3T MR images with a 

computerized postprocessing. In this paper, we propose a method to predict images at the 

resolution of 7T MRI, referred to as 7T-like MRI, from the input 3T MRI, with applications 

to brain tissue segmentation.

In medical imaging, a number of resolution enhancement (RE) methods have been proposed 

to reconstruct a high-resolution (HR) image from one or more low-resolution (LR) 

images.9,10 The traditional RE methods use interpolation functions such as bilinear or 

bicubic. For instance, Peled et al.11 introduced subpixel shifting strategy in in-plane 

dimension to reduce slice thickness. Some other researchers (Greenspan et al.,12 Peeters et 

al.,13 and Kim et al.14) proposed methods to reduce thickness in the slice direction of 

volumetric images. Other methods (Herment et al.,15 Shilling et al.,16 Carmi et al.17) 

combined multiple shifted scans to achieve a HR result. Woo et al.18 proposed an 
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interpolation method for enhancement of tongue by generating a 3D image volume using 

three orthogonal images. However, HR reconstruction based on interpolation may cause 

some visual artifacts such as smoothing and ringing.

Another set of RE approaches are based on the image degradation models that try to solve a 

highly ill-posed inverse problem of recovering a HR image from one or more LR images. 

For example, Plenge et al.19 investigated the RE methods in the slice selection direction, as 

an alternative to high-resolution acquisition in terms of the SNR and acquisition time trade-

offs. They found that RE methods could improve the resolution and signal-to-noise ratio 

compared to the direct HR acquisition. Islam et al.20 solved the inverse problem in the 

wavelet domain to enhance the resolution of 3D MRI volumes by using prior models of the 

MRI data. In another work, Shi et al.21 combined low-rank and total variation as 

regularization terms in the spatial domain to better solve the inverse problem with the 

application to 3D MR images. To reduce the ill-posedness of the problem, Manjon et al.22 

proposed a RE method by using self-similarity as an additional constraint. Otazo et al.23 also 

introduced a RE method based on a collection of LR images, which is applicable to 

functional and spectroscopic imaging.

A recent trend in the RE of medical images is the use of learning-based methods that are 

more effective than the traditional methods, as they are able to produce novel details that do 

not appear in the LR image. The learning-based methods use paired LR and HR dictionaries, 

so that the high-frequency details lost in the LR image can be predicted from the 

corresponding HR dictionaries. Several works24,25,26,27,28,29,30,31 aimed to reconstruct 

super-resolution of natural images based on learning-based approaches. For instance, Yang 

et al.27 proposed a method for super-resolution of natural images and face images by 

assuming that the LR and HR image patch pairs share the same sparse representation with 

respect to LR and HR dictionaries, respectively.

In medical imaging, learning-based methods have been investigated for HR reconstruction in 

different image modalities. For instance, Zhang et al.32 proposed a method for resolution 

enhancement of CT lung images based on a hierarchical patch-based sparse representation. 

In another work, Bhavsar et al.33 proposed an approach for enhancement of lung 4D-CT 

based on group sparse representation. Rueda et al.34 presented a sparse-based super-

resolution method with paired high- and low-resolution images, so that a HR version of a LR 

brain MR image can be generated. In another work, Coupe et al.35 proposed a method to use 

a non-diffusion image to constrain the reconstruction of diffusion-weighted images based on 

nonlocal patch-based strategy. Roy et al.36 introduced an MR image example-based contrast 

synthesis (MIMECS) approach to recover images with both the desired tissue contrast and a 

normalized intensity profile by using an atlas containing patches of the acquired and desired 

tissue contrasts. Konokuglu et al.38 proposed a restoration method for improving the quality 

of MRI acquisitions based on pairs of high- and low-resolution images. Besides, some other 

example-based methods have been proposed for transferring the images from one modality 

to another. For instance, Iglesias et al.37 proposed a patch-matching driven, multimodality 

synthesis work to synthesize T1 data from PD images. Some regression-based synthesis 

methods have also been proposed for transferring the images from MRI to CT modality,41,42 

or quality transfer between T1 and T2.43 Some other patch-based methods have been 
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proposed for modality propagation from T1 to T2 and DTI44 or from T1 and T2 to FLAIR.45 

While these methods need paired scans for training from input modality and to-be-estimated 

modality, in,46 a patch-based unsupervised cross-modal synthesis (PUCS) approach was 

proposed that works without paired training data.

However, the drawback of learning-based sparse representation methods is that they assume 

a high correlation between LR and HR images, which may not be completely satisfied in 

practice. In these methods, first, the dictionaries of LR and HR image patch pairs are 

constructed. Then, the LR image patches are represented by the LR dictionary to estimate 

the sparse coefficients and the estimated sparse coefficients are further used together with 

the HR dictionary to estimate the desired HR image patches. In this case, the assumption is 

that the sparse coefficients estimated in the LR space can be used in the HR space, while this 

may not be true if there is a large distribution gap between LR and HR spaces. To address 

this problem, in our previous work Bahrami et al.,39,40 we proposed multilevel canonical 

correlation analysis (CCA) transform, called M-CCA, to increase the correlation between 

LR and HR spaces. However, as the mapping from LR to HR space is nonlinear, CCA as a 

linear transformation is limited to increase the correlation of these two spaces. Furthermore, 

this method uses a one-step mapping, which may be insufficient to capture large structural 

gap between low-resolution and high-resolution MR images. In addition, it assumes that the 

sparse representation in the 3T space can be directly transferred to the 7T MR space, which 

limits the performance due to generally the low correlation between 3T MRI and 7T MRI 

spaces.

To overcome this weakness, we propose a method that bridges the large distribution gap 

between LR (3T) and HR (7T) spaces. Our method has two main steps. In the first step, we 

generate a direct mapping from 3T to 7T MRI based on random forest regression to create 

the initial 7T-like images which have higher correlation and similarity with the ground-truth 

7T MRI. In such case, we reduce the large distribution gap between the 3T and 7T MR 

spaces. Although some methods41,47,48 have been proposed for image quality transfer from 

LR to HR space, such direct mapping causes fuzzy results due to the following two reasons. 

First, the training step of random forest regression generates an average mapping of the 

patches from LR to HR space. Second, the training of the random forest is done using all the 

patches, which may not be good enough for the representation of the input patch. To 

overcome this problem, following the generation of initial 7T-like images, in the second 

step, we use sparse representation between initial 7T-like images and 7T MR images to 

achieve the final high-resolution 7T-like images.

Our main contributions include: (a) We proposed to sequentially use random forest 

regression and sparse representation to improve the reconstruction performance. Random 

forest is used to reduce the distribution gap between 3T and 7T spaces by generating a new 

space for the 3T images, while the sparse representation is used to achieve high-quality 

result by representing each input patch with the best representation patches from the new 

space of 3T images. (b) We introduced a new ensemble strategy based on the distribution of 

the outputs of random forest trees to remove outliers and avoid unreliable results. (c) We 

introduced a weighting scheme by assigning higher weights to the more representative 

training samples in random forest trees. (d) We proposed a preselection scheme based on the 
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images in the high-resolution space and further incorporate the group sparsity to share the 

sparsity among the outputs of regression random forests for more reliable and accurate 7T-

like image reconstruction.

The rest of this paper is organized as follows. In Section 2, we introduce materials and 

methods. Experimental results are given in Section 3. Section 4 presents the conclusion.

2. MATERIALS AND METHODS

2.A. MR image acquisition and preprocessing

In this work, we recruited 15 volunteers, including 10 healthy subjects, 2 mild cognitive 

impairment (MCI) subjects, and 3 epilepsy patients, who were scanned using both a 3T 

Siemens Trio scanner and a 7T Siemens scanner. For 3T images, 224 coronal slices were 

obtained in a 3T Siemens Trio scanner with a 3D MP-RAGE sequence using image 

parameters: TR = 1900 ms, TE = 2.16 ms, TI = 900 ms, Flip angle = 9°, and 

resolution=1×1×1 mm3. For 7T images, 191 sagittal slices were obtained in a Siemens 

Magnetom 7T whole-body MR scanner with a 3D MP2-RAGE sequence using image 

parameters: TR = 6000 ms, TE = 2.95 ms, TI = 800/2700 ms, Flip angle = 4°/4°, and 

resolution=0.65×0.65×0.65 mm3. Based on our observations, there are only minimal 

distortions between the obtained 3T and 7T images as these images were acquired with a 

gradient echo sequence. As for alignment, we registered the corresponding 3T and 7T 

images using FLIRT in FSL package with a 9-DOF transformation, to minimize the possible 

global distortions. To do so, all the 7T images were linearly aligned to the MNI space by 

using an individual template.51 The 3T image of each subject was rigidly aligned to its 

corresponding 7T image, which is sufficient as they are from the same subject and thus have 

the same anatomy. We also estimated and corrected the bias field of both 3T and 7T MR 

images by using the N3 method,49 and then performed the skull stripping50 to remove the 

nonbrain tissues.

2.B. Outline of our proposed method

Followed by the collection of the dataset including 15 pairs of 3T and 7T MR images, we 

use leave-one-out strategy to use one pair as testing, where the 7T image is served as 

ground-truth, and the rest N = 14 pairs as the training. Our proposed method for the 

prediction of 7T-like images from 3T MRI is summarized in Fig. 1. First, using the training 

set, we propose a direct mapping between the training 3T MR and 7T MR images based on 

random forest regression. To further improve the result of random forest, we propose a 

weighted sampling scheme and a new ensemble technique. The outcome of such mapping is 

a new image with higher correlation with the ground-truth 7T images. Within the training 

dataset, we use the leave-one-out strategy to learn a mapping for each training image by 

using the rest N–1 training images. Each resulted mapping is applied to generate the initial 

7T-like training image for each 3T training image. Given a testing 3T image, the N learned 

mappings from the training images are respectively applied to construct N initial 7T-like 

testing images. In such case, we can achieve more reliable results for the reconstruction of 

local structures and local anatomical details by using N initial 7T-like testing images. Next, 

for each patch of the initial 7T-like testing images, a local initial 7T-like dictionary and a 
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local 7T dictionary are constructed from the training dataset. Then, each initial 7T-like 

testing patch is sparsely represented by the local initial 7T-like dictionary, while the obtained 

sparse coefficients are utilized to reconstruct the final 7T-like patch with the corresponding 

ground-truth 7T dictionary. To do so, a new preselection strategy based on K-means 

clustering is proposed and used to further improve the reconstruction. Furthermore, the 

similarity of sparse representation from the patches at the same location in N initial 7T-like 

images is also enforced using group sparsity. The following sections provide detailed steps 

of our proposed method.

2.C. Constructing paired 3T-7T local dictionaries

In the learning-based methods, usually two strategies are utilized to generate the pairs of LR 

and HR dictionaries, namely dictionary learning strategy and local dictionary strategy. In the 

dictionary learning strategy, with all of the patches of training LR and HR images, a pair of 

global LR and HR dictionaries are jointly learned.27 In contrast, in the local dictionary 

strategy, for each input LR test patch, LR and HR patches are extracted from a local 

neighborhood in the training sets of LR and HR images to generate the local LR and HR 

dictionaries. This strategy is applicable when the images have similar structures and 

contents, thus benefiting from similar local structures for generating local dictionaries, 

instead of a pair of global LR and HR dictionaries for the whole image.

In this paper, we use the local dictionary strategy. The reason is that all of the 3T and 7T 

images are aligned and have similar local anatomical structures. So the patches at the same 

location across different subjects have similar structures. Also, the neighboring patches are 

more likely to be similar, while faraway patches have less similarity. These issues motivate 

us to use local dictionary strategy to benefit such similarities for representation of input 3T 

patch with the local dictionary.

To construct the local 3T and 7T dictionaries, at a given voxel location, the overlapped 

patches are extracted from the 3T and 7T training images by considering a search window 

with size of W around the same location in the input 3T patch. We define x to be a column 

vector representing a 3T patch of size m× m × m extracted from the input 3T MR image X. 

Then, for 3T patch x, we build the local 3T dictionary D3T and local 7T dictionary D7T by 

extracting the overlapped patches at the same location and also neighboring locations from 

all N pairs of aligned 3T and 7T training MR images.

2.D. Direct mapping from 3T to 7T MRI

Followed by the generation of local dictionaries D3T and D7T for each input 3T patch, in this 

step the objective is to reconstruct the initial 7T-like image from the input 3T MRI by 

directly mapping from D3T to D7T dictionaries using random forest regression.

2.D.1. Random forest regression—Random forest is a learning-based approach 

proposed for classification and regression problems, and has been widely used in computer 

vision48 and medical imaging47 areas. In the current work, we use the random forest for the 

regression purpose to generate a mapping from 3T to 7T space. Generally, random forest is 

composed of multiple decision trees, which are trained independently, and the outputs of all 
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the trees are combined using a mechanism, for instance, averaging, to provide the final 

result. A training sample consists of an input feature vector and its output target value. Here, 

the input feature is the 3T MRI patch in vector representation, and the output target value is 

the intensity of a voxel in the corresponding 7T MRI patch. With such a mapping, we use 

the local 3T and 7T dictionaries to train the random forest regressors. Then, in the testing 

stage, we use the trained models to estimate each patch of the to-be-estimated initial 7T-like 

image.

Random forest includes a set of decision trees. For each tree, a subset of patches from D3T 

and their corresponding target values v ε v from D7T are randomly selected, denoted as S. 

An internal node j in each tree includes a set of samples Sj⊂S. At node j, the information 

gain of Sj is achieved by choosing the k-th feature to split the samples via

(1)

where L and R denote the left and right child nodes, 

 feature vector u,  is the splitting threshold 

chosen to maximize the information gain  for the k-th feature uk, and |.| is the cardinality 

of the set. H(Sj) denotes the average variance of all target values in Sj, and can be calculated 

by the variance of all target values in node j.

In the training stage, the splitting process is performed recursively until the information gain 

is not significant, or the number of training samples falling into one node is less than a 

predefined threshold. After training, each leaf node of the decision trees stores multiple 

training samples, which can be used to derive the final prediction result. The traditional 

regression random forest methods consider the same importance for all the training samples. 

However, in practice, the patches in the local dictionary may not have the same contribution 

in the generation of the mapping from 3T to 7T images. To address this weakness, we 

propose a weighting scheme to increase the performance of random forest regression by 

assigning higher weights to the patches with higher similarity to the input 3T patch as will 

be explained in the next section.

In the testing stage, the feature vector of each 3T image patch is passed through each tree, 

and finally reaches one particular leaf node per decision tree. To derive the final prediction 

result, we need a mechanism to combine all information stored in those arrived leaf nodes of 

all decision trees. A common ensemble approach is to average all the training samples in the 

arrived leaf nodes across all decision trees. However, this ensemble method may not be so 

much robust and accurate, especially when there are some outliers or the large variation of 

the results from different decision trees. To address this problem, we propose a new 

ensemble model, called averaging-voting ensembling, by reducing the effect of the outliers 

and unreliable results.
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2.D.2. Weighting scheme for input training patches—Let u ε D3T and v ε D7T be 

input feature vector and its corresponding target values for regression. Random forest 

regression generates a mapping from the atoms of the local 3T dictionary D3T to the atoms 

of the local 7T dictionary D7T. In such mapping, all the patches in the local dictionary are 

assumed to have the same importance in the generation of mapping. However, as all the 

patches in the local dictionary may not have equal importance in generation of the mapping 

from 3T to 7T MR images, we propose a weighting scheme for the patches in the local 

dictionary based on the similarity to the input 3T patch. To calculate the weights, we define 

an exponential function using L2-norm distance between the input 3T patch x and each atom 

u in the local 3T dictionary D3T,

(2)

where h is used for adjusting the weight decay speed and calculated based on the variance of 

the distribution of the similarity of 3T patch x with each atom u. To apply these weighting 

scheme, we repeat the training patches in the dictionary proportionally to the weights. First, 

for each atom u in D3T, we normalize the weight w to be an integer in the range of [0,5]. 

Then, proportionally on the weight, we repeat the patch in the dictionary. In such case, the 

patches with higher similarity to the input patch will be repeated a lot in the trees of random 

forest and thus the final result of random forest will be affected highly by these patches. In 

contrast, the patches with less similarity to the input patch will be rare in the final dictionary 

and the final result of random forest will be less affected by these patches.

2.D.3. Proposed ensemble model—To address the problem of traditional ensembling 

as discussed before, we propose a new ensemble model, called averaging-voting ensembling. 

Let T be the total number of decision trees in the random forest. In our approach, first, we 

separate the T trees into G groups T1, …, TG based on K-means clustering. To do so, in the 

testing stage, the feature vector of each 3T image patch is passed through each tree and 

finally reaches one particular leaf node per decision tree. We use the target values of that leaf 

node as feature to separate the trees into groups based on K-means clustering. Then, we take 

the average of arrived leaf nodes within each group g (g = 1,…,G) via

(3)

where vt
l is the 7T MRI voxel value of the l-th training sample contained in the arrived leaf 

node of decision tree t ε Tg of the g-th group, Lt is the number of training samples contained 

in the arrived leaf node of the decision tree t, and yg is the estimated initial 7T-like voxel for 

the g-th group.

Then, we compose the distribution of the outputs of all groups of decision trees by 

generating the histogram of the values with B bins. Finally, we select the bin with the 

maximum value in the distribution, which shows the value that the majority of groups of 
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trees achieved, as the output of the regression random forest. If two or more bins have the 

maximum value, we take the average of all the bins with the maximum value.

The output of such prediction is the initial 7T-like patch. Followed by the estimation of all 

the 7T-like patches, the initial 7T-like image can be reconstructed by taking the average of 

the overlapped patches. This procedure is performed for all the N training 3T MR images 

using leave-one-out strategy by considering one 3T MRI as testing and the rest N – 1 as 

training set to construct N initial 7T-like training images, which can be used as the initial 7T-

like training set for the second step. This same procedure is also repeated N times for the 

input 3T MRI by considering N – 1 training 3T MRI as the training set to construct N initial 

7T-like testing images Yi(i = 1, …, N). In fact, by generating N initial 7T-like testing 

images, in the next step we can use multitask representation to reconstruct the final 7T-like 

image. In such case, we can achieve more reliable results in the reconstruction of local 

structures and local anatomical details by enforcing the same sparse representation among N 
initial 7T-like testing images.

2.E. Reconstruction based on initial 7T-like images

After generation of all N initial 7T-like images Yi(i = 1, …, N), we generate local dictionary 

 for each patch yi in each initial 7T-like image Yi by extracting the patches from all the 

initial 7T-like training images using a search window around the same location.

2.E.1. Preselection based on K-means clustering—In the local dictionary, all the 

patches may not necessarily have high importance in representation of the input 3T patch. To 

select the best patches, we propose a method based on a K-means clustering to divide the 

local dictionary  into K local subdictionaries  by minimizing the 

intracluster variance. In our method, we use both 3T and 7T patches as input features for 

clustering the local dictionary into local subdictionaries. In such case, we benefit the high- 

quality 7T patches for better result in clustering. Correspondingly, we divide D7T into K 

local subdictionaries D7T,k (k = 1,…,K) using the same indices as . In this way, K 

paired local subdictionaries  are established.

Then, the local subdictionary whose elements have the minimum distance to the initial 7T-

like patch is selected for the sparse representation of the initial 7T-like patch, denoted as 

. The distance is defined based on the average distance of the 

intensity value of all voxels. Different from the previous preselection methods which often 

use only the similarity of the training LR patches to the input LR patch, in our proposed 

method, we benefit from the high-quality HR patches for better preselection by using both 

LR patches  and HR patches  as input features for clustering of local 

dictionary into local subdictionaries.

2.E.2. Group sparse representation—Followed by the construction of the local 

subdictionaries, in this step, the objective is to reconstruct the final 7T-like image Z from the 

initial 7T-like images Yi(i = 1, …, N). In the learning-based sparse representation 
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methods,27 each initial 7T-like image patch y can be sparsely represented with respect to the 

local subdictionary  via

(4)

where  is the column vector of the sparse coefficients. Then, the estimated sparse 

coefficients  can be utilized to reconstruct the final 7T-like patch z, as follows

(5)

Different from the previous methods, here we incorporate N initial 7T-like images Yi(i = 1, 

…, N) for reconstruction of the final 7T-like image Z. To do so, we enforce group sparsity to 

the patches at the same location of all the initial 7T-like images Yi(i = 1, …, N) for more 

reliable local structure reconstruction, by defining all the patches as a group. Instead of 

sparse representation of a single initial 7T-like patch, we incorporate the group sparsity 

using all initial 7T-like patches in order to let them share the same sparsity and thus make 

local structure consistent for the reconstructed patches. We reformulate the Eq. (2) to have 

group sparsity as below

(6)

where the first term is multitask least square minimizer for N patches from N initial 7T-like 

images Yi, with , yi and  denoting the initial local 7T subdictionary, initial 7T-

like patch of image Yi, and sparse coefficient vector of the i-th patch in the group, 

respectively. The second term is regularizer, which is a combination of L1 and L2 norms on 

, where each column of  includes the sparse coefficients of a patch in the 

group. The L2 norm is imposed to each row of  for making the patches at the same location 

have similar sparsity, while the L1 norm is imposed to the all rows of  to ensure sparsity.

3. EXPERIMENTAL RESULTS

In order to evaluate the proposed method for the prediction of 7T-like image from 3T MRI, 

we perform an extensive set of experiments. First, we study the effects of the different 

parameters used in our proposed method. Then, we compare the proposed method with the 

previous methods, including histogram-based, sparse representation,27 random forest 

regression,47 MIMECS,36 PUCS,46 and M-CCA,39 both visually and quantitatively. Next, 

we add the evaluation of intermediate results of 7T-like image reconstruction. We also 

discuss the major components of the proposed method. Finally, we investigate the 

postprocessing results of brain tissue segmentation from these reconstructed 7T-like images.
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3.A. Parameters settings

In this section, we study on the parameters used in the experiments. We used leave-one-out 

cross-validation strategy to evaluate our proposed method by considering one image for 

testing at each time and the rest of the images for training. We consider 100 trees in the 

random forest regression. For the averaging-voting ensembling, we use the K-means 

clustering with G = 10 clusters and the histogram with B = 5 bins. For sparse representation, 

we set λ = 0.1.

To select the patch size and neighborhood size W for dictionary, we evaluate the effect of 

these parameters on the performance of our proposed method. In Fig. 2, we show the result 

of our method by changing the patch size from 7 × 7 × 7 to 3 × 3 × 3 to see the effect of 

patch size on the performance of our proposed method. From Fig. 2, it can be observed that, 

by decreasing the patch size, the performance is decreased. By considering the larger patch 

size, we could capture more structure of the local regions, but this also increases the 

computational complexity. To balance between high performance and computational time, 

we chose patch size of 5 × 5 × 5.

In Fig. 3, we further show the result of our method by changing the neighborhood size for 

local dictionary from 11 × 11 × 11 to 7 × 7 × 7. It can be observed that, generally, by 

increasing the search window size, the performance is increased. The reason is that, in 

regression random forest and sparse representation, for smaller search window size, the 

number of samples is not enough for estimation. For larger search window size, there is 

higher chance to find the patches with the high similarity to the input 3T patch. However, 

increasing the search window size also increases the computational time. By considering a 

trade-off between performance and computational time, we chose the search window size of 

9 × 9 × 9. Also, we consider the overlap of 1 voxel between the adjacent patches and average 

results in the overlapping voxels to obtain the final predicted 7T-like image.

The experimental settings for the comparison methods are also optimized to achieve their 

best performances. For instance, the histogram-based method is applied to the whole image 

and we consider the patch size of 5 × 5 × 5 for both sparse representation and random forest 

regression.

3.B. Comparison with the state-of-the-art methods

In this section, we evaluate our proposed method by comparing, visually and quantitatively, 

with six state-of-the-art methods, i.e., (a) the histogram-based, (b) sparse representation,27 

(c) random forest regression,47 4) MIMECS,36 5) PUCS,46 and 6) M-CCA39 methods, as 

briefed below one-by-one.

1. A simple and straightforward idea of mapping 3T images to 7T images is to 

change the contrast. This could be implemented by histogram matching, which 

has been used for contrast matching between medical images with different 

intensities.52,53,54,55,56 Here, we use the histogram matching to change the 

intensity level of 3T to be like 7T. First, the histogram of the input 3T image is 

represented by the histograms of all the training 3T MR images by estimating the 

representation weights. To do so, the histograms of the training 3T and 7T 
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images are used to generate the dictionaries of histograms of 3T and 7T MR 

images, respectively, by defining each atom of the dictionary as the vector of 

histogram bins. Then, the same estimated representation weights are used 

together with the dictionary of histograms of 7T MR images to generate the 

histogram of to-be-estimated 7T-like image. Finally, by matching the input 3T 

image to the generated histogram, the 7T-like image can be reconstructed.

2. The sparse representation method27 originally has been proposed for super-

resolution of natural images and face images. In Yang et al.,27 using a large set of 

training images, LR and HR dictionaries are jointly learned for reconstruction of 

a HR image from a LR image. Here, we use the local dictionary strategy as 

discussed before, as the brain MR images have been aligned and have similar 

structure. Specifically, we generate local 3T and 7T dictionaries for each patch of 

the input test 3T image.

3. Alexander et al.47 used random forest for image quality transfer for diffusion 

MRI. Here, we use random forest regression for quality transfer from 3T to 7T 

MRI, i.e., mapping 3T to 7T MR images. Note that mapping is done from each 

cubic patch from the 3T space to one voxel in the 7T space. Learning is done 

using local dictionary, and the learned random forest is used for reconstruction of 

7T voxels from the input 3T cubic patches.

4. Roy et al.36 introduced a restoration technique (MIM ECS) to recover MR 

images with both the desired tissue contrast and normalized intensity. Here, we 

used this method for reconstruction of 7T-like MRI from 3T MRI.

5. Vemulapalli et al.46 proposed a method (PUCS) that works with/without paired 

training data for modality transfer from T1 to T2 and vice versa. Here, we used 

this method with paired training data for modality transfer from 3T to 7T MRI.

6. In our previous work Bahrami et al.,39 we proposed a hierarchical framework for 

reconstruction of 7T-like images from 3T MRI based on multilevel CCA and 

group sparsity.

Figure 4 shows the reconstructed 7T-like images by the six comparison methods and our 

proposed method, together with the difference maps. It should be mentioned that the 

difference maps is more useful in highlighting the errors of the local regions. The cross-

views and also their respective close-up views are shown in Figs. 4(a), (b), and (c).

It can be seen that the reconstructed 7T-like image by our proposed method is the closest to 

the ground-truth 7T MRI, compared to all of six previous methods. Our results have clearer 

tissue boundaries and contain more structural details, while the results by other methods are 

fuzzy. For instance, the results by the histogram-based method shows blocky boundary 

between the white matter and gray matter. Results by sparse representation are also fuzzy 

and tissue boundaries are not clear. The main reason is that the sparse representation method 

assumes high correlation between LR and HR spaces. But, such assumption may not be 

valid in practice, especially for the regions with tissue boundaries. Regression random forest 

produces better results than sparse representation method due to more effective learning of 

mapping from 3T to 7T space. MIMECS also produces fuzzy results because it assumes the 
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LR and HR dictionaries share the same sparse representation. PUCS has fuzzy result and has 

lower performance compared to our method. M-CCA offers much better results, compared 

to the PUCS, MIMECS, random forest, and sparse representation methods; however, in 

some regions the results are also blocky and lack of details.

In another experiment, we show the results of our proposed method for six axial slices of 

three subjects 1, 4 and 8 in Figs. 5 (a), (b), and (c), respectively. For each subject, from top 

to bottom rows, the 3T MRI, reconstructed 7T-like image by our proposed method, and 

ground-truth 7T MRI are shown. Compared to the 3T MRI, our reconstructed 7T-like images 

are much closer to the actual 7T MRI, which also shows the ability of our proposed method 

in reconstruction of different brain regions.

We also evaluate our proposed method numerically by comparing the reconstructed 7T-like 

image with the ground-truth 7T image of the same subject. We use three image similarity 

evaluation measures, including peak-signal-to-noise ratio (PSNR), structural similarity 

(SSIM), and universal quality index (UQI). PSNR is defined as the ratio between the 

maximum intensity value of the ground-truth image and the power of corrupting noise. 

SSIM is defined to measure the quality of an image based on mean, variance and cross-

correlation. UQI measures the image quality based on image distortions such as loss of 

correlation, luminance distortion, and contrast distortion. There are other metrics for 

evaluation of resolution enhancement such as point spread function. However, we would like 

to mention that generally, global point spread function is used for the estimation of the blur 

kernel of the blurred images, while the estimation of global point spread function is not very 

accurate to be used as a metric for resolution enhancement evaluation for 3T and 7T MRI.

In general, higher PSNR, SSIM, and UQI indicate that the reconstructed 7T-like images 

closer to the ground-truth 7T MR images. A comparison between the reconstruction results 

of 15 subjects by histogram-based, sparse representation,27 random forest regression,47 

MIMECS,36 PUCS,46 M-CCA,39 and our proposed method is given in Table I. Our proposed 

method has a much higher PSNR, SSIM, and UQI for all 15 subjects, compared to the six 

previous methods. In the last row of Table I, we also show the averages of PSNR, SSIM, and 

UQI for all the 15 subjects.

3.C. Initial and final 7T-like reconstruction results

In this experiment, we show the outcomes of the two main steps in our method, i.e., (a) 

random forest regression and (b) sparse representation, to show the impact of each step in 

the 7T-like image reconstruction.

Figure 6(a) shows some selected patches from the axial view of a 3T MRI. In Fig. 6(b), we 

show the initial 7T-like image estimated by random forest regression. From this initial 7T-

like image, the final 7T-like image is produced by sparse representation, as shown in Fig. 

6(c). It can be observed that by reconstructing an initial 7T-like image using random forest 

and then the final 7T-like image using sparse representation, the final result is much closer to 

the ground-truth 7T as shown in Fig. 6(d). The main reason is that, random forest can 

generate the initial 7T-like images by mapping from 3T to 7T MRI and making the initial 

7T-like image highly correlated with the actual 7T MRI. Then, sparse representation method 
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can reconstruct the final 7T-like image just based on the same sparse representation 

estimated for the initial 7T-like image. In such case, the reconstructed final 7T-like image is 

much closer to the ground-truth 7T MR image.

3.D. Super-resolution of low-resolution 7T MRI

In this section, we perform an experiment to evaluate our method for super-resolution of 

low-resolution 7T MRI. To do so, we resample all 7T MR images with a factor of 3 (i.e., 

down-sampling by a factor of 3, followed by up-sampling by a factor of 3), to reduce the 

quality of 7T MR images. By doing so, down-sampling decreases the number of voxels and 

also causes the loss of image details, while up-sampling increases the number of voxels by 

interpolation on the existing voxels but does not recover the lost information. We repeat this 

experiment by considering the resampling rate of 2, and 4, also. The result of super-

resolution based on average PSNr over 15 subjects for different resampling rates has been 

shown in Table II.

Figure 7 visualizes the super-resolution results by our method for the factor of 3. Notably, 

our reconstructed 7T-like MRI improves the low-resolution 7T MRI and also looks much 

similar to the ground-truth 7T MRI.

3.E. Resolution enhancement of 3T MRI

In this section, we evaluate our method for resolution enhancement of 3T MRI. Figure 8 

shows the generated 7T-like MR image of a selected slice of a representative subject, 

together with the 3T MRI and ground-truth 7T MRI. Also, we display a close-up on middle 

brain region to better show the anatomical details. These visual results indicate that our 

generated 7T-like MR image clearly improves the resolution of the 3T MRI.

3.F. Discussion on the contributions of our proposed method

There are several contributions in the proposed method for the reconstruction of super-

resolution 7T-like images from 3T. In this section, we discuss the impact of these 

contributions on the result of our proposed method in terms of PSNR, as shown in Fig. 9.

The first contribution is the successive use of regression random forest mapping followed by 

sparse representation. As we discussed earlier, random forest regression is used to establish 

direct mapping relationships between the 3T and 7T images. The outcome of such mapping 

improves correlation with the ground-truth 7T MR images. Then, each patch of the initial 

7T-like images can be sparsely represented by the local initial 7T-like dictionary, and then 

the obtained sparse coefficients can be directly utilized to reconstruct the 7T-like patch with 

the corresponding local 7T dictionary. In Fig. 9, the result of this contribution is denoted 

as ’Random Forest + Sparse Representation (RF+SP)’, which shows improvement compared 

to ’Random Forest (RF)’ itself.

In the regression random forest, as all the patches in the local dictionary may not have equal 

importance in generation of the mapping from 3T to 7T images, we proposed a weighting 

scheme for the patches in the local dictionary based on their similarity to the input 3T patch. 

The output of our method by adding this contribution is denoted as ’Random Forest + Sparse 
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Representation + Weighted Input (RF+SP+WI)’. The result shows that by using weighting 

scheme the result is improved, because the patches with higher similarity to the input 3T 

patch are repeated more in building trees of random forest and then eventually guide the 

final reconstruction result.

As additional contribution, we introduced a new ensembling method based on the averaging 

and voting of the outputs of all decision trees, called ’averaging-voting’ ensembling. The 

output of our method with this contribution is denoted as ’Random Forest + Sparse 

Representation + Weighted Input + Averaging-Voting Ensembling (RF+SP+WI+AV)’. The 

result shows that this averaging-voting ensembling improves the reconstruction result by 

reducing the effect from outliers and unreliable results.

Finally, we evaluate our proposed patch preselection strategy, based on the K-means 

clustering, by dividing the local dictionary into local subdictionaries. The output of our 

method by adding this contribution is denoted as ’Random Forest + Sparse Representation + 

Weighted Input + Averaging-Voting Ensembling + Clustering based Preselection (RF+SP

+WI+AV+CP)’. The results reveal that, by selecting the best patches using the proposed 

patch preselection method, the final reconstruction result can be further improved.

4. APPLICATION TO TISSUE SEGMENTATION

In this experiment, we evaluate the influence of the reconstructed 7T-like image on 

postprocessing steps, such as brain tissue segmentation, where brain tissues are separated 

into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). We compare the 

segmentation results of our proposed method with those by the 3T MRI, histogram-based 

method, sparse representation,27 random forest regression,47 MIMECS,36 PUCS,46 and M-

CCA,39 by considering the segmentation result of 7T MRI as ground-truth. Here, we employ 

a widely-used FAST in FSL package (Zhang et al.57) for tissue segmentation.

The segmentation results for the axial view of a subject, together with the close-up view of 

selected regions, based on 3T MRI, 7T MRI, and the reconstructed 7T-like images by six 

different methods are shown in Fig. 10. Compared to six previous methods, the segmentation 

result by our proposed method is closer to the segmentation of the ground-truth 7T image.

Figure 11 shows the average dice ratio of segmentation maps of WM, GM, and CSF for all 

15 subjects. As can be observed, the segmentation result by our method significantly 

outperforms the direct use of 3T MRI and also other six comparison methods, for all WM, 

GM, and CSF tissues (P < 0.01 by two-sample tests).

5. CONCLUSION

In this paper, we have proposed a new framework to predict high-resolution 7T-like MR 

image from 3T MR image by incorporating both the advantages of regression random forest-

based mapping and sparse representation into the two main steps. In the first step, we 

propose a direct mapping from 3T MRI to 7T MRI based on a training set of paired 3T and 

7T MR images using regression random forest, to reduce the large distribution gap between 

3T and 7T MR image spaces. To further improve the result of such mapping, a weighting 
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scheme and a new ensemble technique are proposed. The output of this step is the estimation 

of the initial 7T-like MR image with higher correlation and similarity with the actual 7T 

MRI. In the second step, followed by patch-based image partitioning in the new space of the 

initial 7T-like MR image, we use the same sparse representation in the new space and the 7T 

MRI space to reconstruct the final 7T-like MR image. To do so, a new patch preselection 

based on K-means clustering is also proposed to select the best patches for sparse 

representation.

We have conducted a comprehensive set of experiments to show the superiority of our 

proposed method both visually and numerically, compared to several comparison methods 

including histogram-based method, sparse representation, random forest regression, 

MIMECS, PUCS, and M-CCA. The results based on pairs of 3T and 7T MR images of 15 

subjects demonstrated that our proposed method is better in recovering anatomical details, 

compared to the previous methods. Then, as a medical application, we have investigated the 

performance of the high-resolution 7T-like MR images in segmenting WM, GM, and CSF 

brain tissues. We have compared the segmentation maps generated using the proposed 7T-

like MR images to those generated using the original 3T MRI, as well the 7T-like MR 

images produced by the histogram-based method, sparse representation, random forest 

regression, MIMECS, PUCS, and M-CCA. We considered the segmentation of the actual 7T 

MRI as ground truth. Based on both visual and numerical results, our proposed method 

outperforms all other methods under comparison.

It should be mentioned that beside reconstructing 7T-like image with higher resolution in 

comparison to the input 3T image, our method is also suitable for many applications. For 

instance, more accurate tissue segmentation can be achieved using 7T-like images. 

Specifically, the segmentation of WM, GM, and CSF from reconstructed 7T-like MR images 

has higher accuracy, compared to the original 3T MRI, as we have shown in this paper.

However, there are some other applications that will be our future work such as 7T MRI 

atlas construction based on 3T MRI, multimodal registration based on 3T and 7T-like MRI, 

and more accurate segmentation of small brain regions, such as segmentation of 

hippocampus subfields regions which is generally difficult in the 3T MR images due to low 

resolution, while it is relatively easier in 7T MR images.

Despite the high accuracy of our method for super-resolution, it has some weaknesses. For 

instance, our method fails to generate high-resolution patches with any abnormality, if the 

training 3T patches are all normal. For instance, if cortical lesions are not visible in the 3T 

MRI, it will be hard to be reconstructed in the 7T-like images. However, if such information 

exists in the 3T MRI with low-resolution, it could be reconstructed with high-resolution in 

the 7T-like MR images. On the other hand, the sample size of this study is still limited. A 

larger number of samples could provide more training subjects, make the model more 

representative, and has better generalizability. The use of different MRI acquisition protocols 

and scanners may also affect the performance, which needs further research.
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Of note, although we evaluated our proposed method by using a dataset of 3T and 7T MR 

images from brain, however, the same method can also be applied to other body organs as 

well.

We will release our software and the datasets of 3T and 7T MR images later in our software 

website (http://www.med.unc.edu/bric/ideagroup/free-softwares).
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FIG. 1. 
Proposed framework for the prediction of 7T MRI from 3T MRI. [Color figure can be 

viewed at wileyonlinelibrary.com]
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FIG. 2. 
Performance of our proposed method for patch sizes of 79797, 59595, and 39393 for all the 

15 subjects. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 3. 
Performance of our proposed method for window sizes of 11911911, 99999, and 79797 for 

all the 15 subjects. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 4. 
Visual comparison of (a) axial, (b) sagittal, and (c) coronal views of reconstructed 7T-like 

images, together with close-up views of selected regions. From left to right columns: 

histogram-based method, sparse representation,27 random forest,47 MIMECS,36 PUCS,46 

M-CCA,39 and our proposed method.
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FIG. 5. 
Results by our proposed method for 6 axial slices of subjects 1, 4 and 8, together with the 

corresponding 3T and 7T images for visual comparison. (a) Subject 1; (b) Subject 4; (c) 

Subject 8.
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FIG. 6. 
Evaluation of intermediate results for some axial patches of a selected subject: (a) 3T image, 

(b) output of random forest, (c) output of sparse representation based on the result of random 

forest, (d) 7T image. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 7. 
Super-resolution of low-resolution 7T MRI. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIG. 8. 
Super-resolution of 3T MRI. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 9. 
Evaluation of different contributions on performance of our proposed method. RF+SP: 

random forest + sparse representation. RF+SP+WI: random forest + sparse representation + 

weighted input. RF+SP+WI+AV: random forest + sparse representation + weighted input + 

averaging-voting ensembling. RF+SP+WI+AV+CP: random forest + sparse representation + 

weighted input + averaging-voting ensembling+ clustering-based preselection. [Color figure 

can be viewed at wileyonlinelibrary.com]
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FIG. 10. 
Comparison of tissue segmentation results by different methods. (a) from left to right: axial 

view of a subject for 3T MRI and the reconstructed 7T-like MRI generated by histogram-

based method, sparse representation,27 random forest regression,47 PUCS,46 MIMECS,36 

M-CCA,39 our proposed method, and 7T MRI. (b) Segmentation results from 3T MRI, and 

the reconstructed 7T-like MRI generated by histogram-based method, sparse representation, 

random forest regression, our proposed method, and 7T MRI, together with the close-up 

views of selected regions. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 11. 
Box plot of the dice ratio for segmentation of (a) GM, (b) WM, and (c) CSF by different 

methods. From left to right: 3T MRI and the 7T-like images generated by histogram-based, 

sparse representation, random forest, MIMECS, PUCS, M-CCA, and our proposed method, 

respectively.
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TABLE II

Average PSNR over 15 subjects for super-resolution of low-resolution 7T MRI when the resolution of 7T MR 

images is decreased with the resampling rate of 2, 3, 4.

Resampling rate Ave. PSNR for low-resolution 7T MRI Ave. PSNR for reconstructed rate 7T-like MR images

2 27.2 33.4

3 25.4 30.1

4 22.8 26.8
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