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Abstract

In this paper, we focus on joint regression and classification for Alzheimer’s disease diagnosis and 

propose a new feature selection method by embedding the relational information inherent in the 

observations into a sparse multi-task learning framework. Specifically, the relational information 

includes three kinds of relationships (such as feature-feature relation, response-response relation, 

and sample-sample relation), for preserving three kinds of the similarity, such as for the features, 

the response variables, and the samples, respectively. To conduct feature selection, we first 

formulate the objective function by imposing these three relational characteristics along with an 

ℓ2,1-norm regularization term, and further propose a computationally efficient algorithm to 

optimize the proposed objective function. With the reduced data, we train two support vector 

regression models to predict the clinical scores of ADAS-Cog and MMSE, respectively, and also a 

support vector classification model to determine the clinical label. We conducted extensive 

experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to validate the 

effectiveness of the proposed method. Our experimental results showed the efficacy of the 

proposed method in enhancing the performances of both clinical score prediction and disease 

status identification, compared to the state-of-the-art methods.
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1. Introduction

Alzheimer’s Disease (AD) is characterized as a genetically complex and irreversible 

neurodegenerative disorder and often found in persons aged over 65. Recent studies have 

shown that there are about 26.6 million AD patients worldwide, and 1 out of 85 people will 

be affected by AD by 2050 (Brookmeyer et al., 2007; Zhang et al., 2012; Zhou et al., 2011; 

Zhu et al., 2014a,b). Thus, there have been great interests for early diagnosis of AD and its 

prodromal stage, Mild Cognitive Impairment (MCI).
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It has been shown that the neuroimaging tools, including Magnetic Resonance Imaging 

(MRI) (Fjell et al., 2010), Positron Emission Tomography (PET) (Wee et al., 2013; Morris et 

al., 2001), and functional MRI (Suk et al., 2013), help understand the neurodegenerative 

process in the progression of AD. Furthermore, machine learning methods can effectively 

handle complex patterns in the observed subjects for either identifying clinical labels, such 

as AD, MCI, and Normal Control (NC) (Cheng et al., 2013; Franke et al., 2010; Walhovd et 

al., 2010), or regressing the clinical scores, such as Alzheimer’s Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE) (McEvoy et 

al., 2009; Wee et al., 2012).

In computer-aided AD diagnosis, the available sample size is usually small, but the feature 

dimensionality is high. For example, the sample size used in (Jie et al., 2013) was as small 

as 99, while the feature dimensionality (including both MRI and PET features) was 

hundreds or even thousands. The small sample size makes it difficult to build an effective 

model, and the high-dimensional data could lead to an overfitting problem although the 

number of intrinsic features may be very low (Weinberger et al., 2004; Suk et al., 2014; Zhu 

et al., 2015c,b). To this end, researchers predefined the disease-related features and used the 

low-dimensional feature vector for disease identification. For example, Wang et al. (2011) 

considered the brain areas of medial temporal lobe structures, medial and lateral parietal, as 

well as prefrontal cortical areas, and showed that these areas were useful to predict most 

memory scores and classify AD from NC subjects.

However, to further enhance diagnostic accuracy and better understand the disease-related 

brain atrophies, it’s necessary to select features in a data-driven manner. It has been shown 

that the feature selection helps overcome both problems of high dimensionality and small 

sample size by removing uninformative features. Among various feature selection 

techniques, manifold learning methods has been successfully used in either regression or 

classification (Cho et al., 2012; Cuingnet et al., 2011; Liu et al., 2014; Zhang and Shen, 

2012; Zhang et al., 2011; Suk et al., 2015). For example, Cho et al. (2012) adopted a 

manifold harmonic transformation method on the cortical thickness data. Meanwhile, while 

most of the previous studies focused on separately identifying brain disease and estimating 

clinical scores (Jie et al., 2013; Liu et al., 2014; Suk and Shen, 2013), there also have been 

some efforts to tackle both tasks simultaneously in a unified framework. For example, Zhang 

and Shen (2012) proposed a feature selection method for simultaneous disease diagnosis and 

clinical scores prediction, and achieved promising results. However, to our best knowledge, 

the previous manifold-based feature selection methods considered only the manifold of the 

samples, not manifold of either the features or the response variables.

For better understanding of the underlying mechanism of AD, our interest in this paper is to 

predict both clinical scores and disease status jointly, which we call as Joint Regression and 

Classification (JRC) problem. In particular, we devise new regularization terms to reflect the 

relational information inherent in the observations and then combine them with an ℓ2,1-norm 

regularization term within a multi-task learning framework for joint sparse feature selection 

in the JRC problem. The rationale for the proposed regularization method is as follows: (1) 

If some features are related to each other, then the same or similar relation is expected to be 

preserved between the respective weight coefficients. (2) Due to the algebraic operation in 
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the least square regression, i.e., matrix multiplication, the weight coefficients are linked to 

the response variables via regressors, i.e., feature vectors in our work. Therefore, it is 

meaningful to impose the relation between a pair of weight coefficients to be similar to the 

relation between the respective pair of target response variables. (3) As considered in many 

manifold learning methods (Belkin et al., 2006; Fan et al., 2008; Zhu et al., 2011, 2013b,c), 

if a pair of samples are similar to each other, then their respective response values should be 

also similar to each other. By imposing these three relational characteristics along with the 

ℓ2,1-norm regularization term on the weight coefficients, we formulate a new objective 

function to conduct feature selection and further solve it with a new computationally 

efficient optimization algorithm. Then, we can select effective features to build a classifier 

for clinical label identification and two regression models for ADAS-Cog and MMSE scores 

prediction, respectively.

2. Image Preprocessing

In this work, we used the publicly available ADNI dataset for performance evaluation.

2.1. Subjects

We selected the subjects satisfying the following general inclusion/exclusion criteria1: (1) 

The MMSE score of each NC is between 24 and 30. Their Clinical Dementia Rating (CDR) 

is of 0. Moreover, the NC is non-depressed, non MCI, and non-demented. (2) The MMSE 

score of each MCI subject is between 24 and 30. Their CDR is of 0.5. Moreover, each MCI 

subject is an absence of significant level of impairment in other cognitive domains, 

essentially preserved activities of daily living, and an absence of dementia. (3) The MMSE 

score of each Mild AD subject is between 20 and 26, with the CDR of 0.5 or 1.0.

In this paper, we use baseline MRI and PET obtained from 202 subjects including 51 AD 

subjects, 52 NC subjects, and 99 MCI subjects. Moreover, 99 MCI subjects include 43 MCI-

C and 56 MCI-NC2. The detailed demographic information is summarized in Table 1. For 

reference, we presented sample slices of MRI and PET for one typical subject belonging 

each class (AD, MCI, and NC) in Fig. 1.

2.2. Image Processing

We downloaded raw Digital Imaging and COmmunications in Medicine (DICOM) MRI 

scans from the ADNI website3. All structural MR images used in this work were acquired 

from 1.5T scanners. Data were collected across a variety of scanners with protocols 

individualized for each scanner. Moreover, these MR images were already reviewed for 

quality, and automatically corrected for spatial distortion caused by gradient nonlinearity 

and B1 field inhomogeneity. Moreover, PET images were acquired 30–60 minutes post 

Fluoro-DeoxyGlucose (FDG) injection. They were then averaged, spatially aligned, 

interpolated to a standard voxel size, intensity normalized, and smoothed to a common 

resolution of 8mm full width at half maximum.

1Please refer to ‘http://adni.loni.usc.edu/’ for up-to-date information.
2Here, MCI-C and MCI-NC denote, respectively, those who progressed to AD in 18 months and those who didn’t.
3http://www.loni.usc.edu/ADNI.
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The image processing for all MR and PET images was conducted by following the same 

procedures in (Zhang and Shen, 2012). Specifically, we first performed anterior 

commissure-posterior commissure correction using MIPAV software4 for all images, and 

used the N3 algorithm (Sled et al., 1998) to correct the intensity inhomogeneity. Second, we 

extracted a brain on all structural MR images using a robust skull-stripping method (Wang et 

al., 2013), followed by manual edition and intensity inhomogeneity correction. After 

removal of cerebellum based on registration (Tang et al., 2009; Wu et al., 2011; Xue et al., 

2006) and also intensity inhomogeneity correction by repeating N3 for three times, we used 

FAST algorithm in the FSL package (Zhang et al., 2001) to segment the structural MR 

images into three different tissues: Gray Matter (GM), White Matter (WM), and CSF. Next, 

we used HAMMER (Shen and Davatzikos, 2002) to register the template into subject 

specific space for preserving local image volume of each subjects. We then obtained the 

Region-Of-Interest (ROI) labeled images using the Jacob template, which dissects a brain 

into 93 ROIs (Kabani, 1998). For each of all 93 ROIs in the labeled image of a subject, we 

computed the GM tissue volumes in ROIs by integrating the GM segmentation result of the 

subject. For each subject, we aligned the PET images to their respective MR T1 images 

using affine registration and then computed the average intensity of each ROI. Therefore, for 

each subject, we obtained 93 features for MRI and 93 features for PET.

3. Method

3.1. Notations

In this paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its 

i-th row and j-th column are denoted as xi and xj, respectively. Also, we denote the 

Frobenius norm and ℓ2,1-norm of a matrix X as , and 

, respectively. We further denote the transpose operator, 

the trace operator, and the inverse of a matrix X as XT, tr(X), and X−1, respectively.

3.2. Relational Regularization

Let X ∈ ℝn×d and Y ∈ ℝn×c denote, respectively, the d neuroimaging features and c clinical 

response values of n subjects or samples5. In this work, we assume that the response values 

of clinical scores and clinical label6 can be represented by a linear combination of the 

features. Then, the problems of regressing clinical scores and determining class label can be 

formulated by a least square regression model as follows:

4http://mipav.cit.nih.gov/clickwrap.php.
5In this work, we have one sample per subject.
6In this paper, we represented the class label with 0–1 encoding.
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(1)

where W ∈ ℝd×c is a weight coefficient matrix and Ŷ = XW. While the least square 

regression model has been successfully used in many applications, it is shown that the 

solution is often overfitted to the dataset with small samples and high-dimensional features 

in its original form, especially, in the field of neuroimaging analysis. To this end, a variety of 

its variants using different types of regularization terms have been suggested to circumvent 

the overfitting problem and find a more generalized solution (Suk et al., 2013; Yuan and Lin, 

2006; Zhang and Shen, 2012), which can be mathematically simplified as follows:

(2)

where ℛ(W) denotes a set of regularization terms.

From a machine learning point of view, a well-defined regularization term can produce a 

generalized solution to the objective function, and thus result in a better performance for the 

final goal. In this paper, we devise novel regularization terms that effectively utilize various 

pieces of information inherent in the observations.

Note that since, in this work, we extract features from ROIs, which are structurally or 

functionally related to each other, it is natural to expect that there exist relations among 

features. Meanwhile, if two features are highly related to each other, then it is reasonable to 

have the respective weight coefficients also related. However, to the best of our knowledge, 

none of the previous representation (or regression) methods in the literature considered and 

guaranteed this characteristic in their solutions. To this end, we devise a regularization term 

with the assumption that, if some features, e.g., xi and xj in the blue dash rectangles of Fig. 

2, are involved in regressing the response variables and are also related to each other, their 

corresponding weight coefficients (i.e., wi and wj) should have the same or similar relation 

since the i-feature xi in X corresponds to the i-th row wi in W in our regression framework. 

We call this relation as the ‘feature-feature’ relation in this work. To utilize the ‘feature-
feature’ relation, we penalize the loss function with the similarity between xi and xj (i.e., mij) 

on . Specifically, we impose the relation between columns in X to be reflected in 

the relation between the respective rows in W by defining the following embedding 

function:

(3)
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where mij denotes an element in the feature similarity matrix M = [mij] ∈ ℝd×d which 

encodes the relation between features in the samples. With respect to the similarity measure 

between vectors of a and b, throughout this paper, we first use a radial basis function kernel 

as defined as follows:

(4)

where σ denotes a kernel width. As for the similarity matrix M, we first construct a data 

adjacency graph by regarding each sample as a node and using k nearest neighbors along 

with a heat kernel function defined in Eq. (4) to compute the edge weights, i.e., similarities. 

For example, if a sample xj is selected as one of the k nearest neighbors of a sample xi, then 

the similarity mij between these two samples or nodes is set to the value of f(xi, xj); 

otherwise, their similarity is set to zero, i.e., mij = 0.

In the meantime, given a feature vector xi, in our joint regression and classification 

framework, we use a different set of weight coefficients to regress the elements in the 

response vector yi. In other words, the elements of each column in W are linked to the 

elements of each column in Y via feature vectors. By taking this mathematical property into 

account, we further impose the relation between column vectors in W to be similar to the 

relation between the respective target response variables (i.e., respective column vectors) in 

Y, which is called as ‘response-response’ relation as defined below:

(5)

where gij denotes an element in the matrix G = [gij] ∈ ℝc×c which represents the similarity 

between every pair of target response variables (i.e., every pair of column vectors).

We also utilize the relational information between samples, called as ‘sample-sample’ 

relation. That is, if samples are similar to each other, then their respective response values 

should be also similar to each other. To this end, we define a regularization term as follows:

(6)

where sij is an element in the matrix S = [sij] ∈ ℝn×n which measures the similarity between 

every pair of samples. We should note that this kind of sample-sample relation has been 

successfully used in many manifold learning methods (Belkin et al., 2006; Zhu et al., 

2013b,c). The elements of the matrices G and S can be computed similarly as in the 

computation of M as described above.
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We argue that the simultaneous consideration of these newly devised regularization terms, 

i.e., feature-feature relation, sample-sample relation, and response-response relation, can 

effectively reflect the relational information inherent in observations in finding an optimal 

solution. Fig. 2 illustrates these relational regularizations in a matrix form. Regarding feature 

selection, we believe that due to the underlying brain mechanisms that influence both the 

clinical scores and a clinical label, i.e., response variables, if one feature plays a role in 

predicting one response variable, then it also devotes to the prediction of the other response 

variables. To this end, we further impose to use the same features across the tasks of clinical 

scores and clinical label prediction. Mathematically, this can be implemented by an ℓ2,1-norm 

regularization term on W, i.e., ‖W‖2,1 = Σi‖wi‖2. Concretely, ‖wi‖2, the ℓ2-norm of the i-th 

row vector in W, is equally imposed on the i-th feature across different tasks, which thus 

forces the coefficients that weight the i-th feature for different tasks to be grouped together. 

Earlier, Zhang and Shen (2012) considered the same regularization term in their multi-task 

learning and validated its efficacy in AD/MCI diagnosis.

Finally, our objective function is formulated as follows:

(7)

where α1, α2, α3, and λ denote control parameters of the respective regularization terms, 

respectively. It is noteworthy that unlike the previous regularization methods such as local 

linear embedding (Roweis and Saul, 2000), locality preserving projection (He et al., 2005; 

Zhu et al., 2013a, 2014c), and high-order graph matching (Liu et al., 2013) that focused on 

the sample similarities by imposing nearby samples to be still nearby in the transformed 

space, the proposed method utilizes richer information obtained from the observations for 

finding the optimal weight coefficients W. The matrices X and Y are used to obtain the 

similarities, where X and Y are composed of MRI/PET features and target values, 

respectively. According to the previous work in (Zhu et al., 2014a), theoretically the loss 

function in Eq. (1) can be designed to expect that the predictions of the model should be 

correlated for the similar subjects. But, in practice, it is not guaranteed due to unexpected 

noises in features. In this regard, we explicitly impose such correlational characteristic (e.g., 
the proposed three kinds of relations) in the final objective function. Thus, it is expected that 

the proposed method can find a generalizable solution robust to noise or outlier.

3.3. Optimization

With respect to the optimization of parameters W, due to the use of the similarity weights of 

mij in Eq. (3), gij in Eq. (5), and sij in Eq. (6), it is beneficiary to transform the respective 

regularization terms to the trace forms using Laplacian matrices (Belkin et al., 2006; Zhu et 

al., 2012, 2015a). Let HM, HG, and HS, respectively, be diagonal matrices with their 

diagonal elements being the column-wise or row-wise sum of the similarity weight matrices 

of M, G, and S, i.e., , , and . The regularization 

terms can be rewritten as follows:
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(8)

(9)

(10)

where LM = HM − M, LG = HG − G, and LS = HS − S, which are called Laplacian matrices. 

Then our objective function in Eq. (7) can be rewritten as follows:

(11)

Note that Eq. (11) is a convex but non-smooth function. By setting the derivative of the 

objective function in Eq. (11) with respect to W to zero, we can obtain the form of

(12)

where A = (XTX + α1LM + α3XTLSX + λQ), B = α2LG, Z = XTY and Q ∈ ℝd×d is a 

diagonal matrix with the i-th diagonal element set to

(13)

Here, we should note that due to the possibility of being zero for wi in Eq. (13), we add a 

small constant to the denominator in implementation, by following Nie et al. ’s work (Nie et 

al., 2010).

In solving Eq. (12), it is not trivial to find the optimum solution due to the inter-dependence 

in computing matrices of W and Q. To this end, in this work, we apply an iterative approach 

by alternatively computing Q and W. That is, at the t-th iteration, we first update the matrix 

W(t) with the matrix Q(t − 1), and then update the matrix Q(t) with the updated matrix W(t). 
Refer to Algorithm 1 and Appendix A, respectively, for implementation details and the proof 

of convergence of our algorithm.

Although there exists a general solver with this iterative approach7, its computational 

complexity is known to be cubic. In this paper, we propose a simple but computationally 

more efficient algorithm. In Eq. (12), since both A and B are positive semi-definite, we can 
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decompose them into two triangular matrices by Cholesky factorization (Golub and Van 

Loan, 1996):

By applying a Singular Value Decomposition (SVD) on each of the triangular matrices, P 
and R, we can further decompose them as follows:

where Σ1 and Σ2 are diagonal matrices whose elements correspond to eigenvalues, and U1, 

U2, V1, and V2 are unitary matrices, i.e., , , 

, and . Then, we can rewrite Eq. (12) as 

follows:

(14)

By multiplying  and U2 to both sides of Eq. (14), we can obtain

(15)

Let , , , and , then we obtain the 

form of

(16)

Note that both  and  are diagonal matrices. Therefore, it 

is straightforward to obtain  as follows:

(17)

where eij denotes the (i, j)-th element in E. From the matrix , we can obtain W by

7For example, a built-in function ‘lyap’ in MATLAB.
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(18)

It is noteworthy that, thanks to the decomposed diagonal matrices obtained by Cholesky 

factorization and SVD, we can greatly reduce the computational cost in solving the 

optimization problem.

3.4. Feature Selection and Model Training

Because of using the ℓ2,1-norm regularization term in our objective function, after finding the 

optimal solution with Algorithm 1, we have some zero or close to zero row vectors in W. In 

terms of least square regression, the corresponding features are not necessary in regressing 

the response variables. Meanwhile, from the prediction perspective, the lower the ℓ2-norm 

value of a row vector, the less informative the respective feature in our observation. To this 

end, we first sort rows in W in a descending order based on the ℓ2-norm value of each row, 

i.e., ‖wj‖2, j ∈ {1,…, d}, and then select the features that correspond to the K top-ranked 

rows8.

With the selected features, we then train support vector machines, which have been 

successfully used in many fields (Suk and Lee, 2013; Zhang and Shen, 2012). Note that the 

selected features are jointly used to predict two clinical scores and one clinical label. 

Specifically, we build two Support Vector Regression (SVR) (Smola and Schölkopf, 2004) 

models to predict ADAS-Cog and MMSE scores, respectively, and one Support Vector 

Classification (Burges, 1998) model to identify a clinical label, via the public LIBSVM 

toolbox9.

4. Experimental Results

4.1. Experimental Setting

We considered three binary classification problems: AD vs. NC, MCI vs. NC, and MCI-C 

vs. MCI-NC. For MCI vs. NC, both MCI-C and MCI-NC were labeled as MCI. For each set 

of experiments, we used 93 MRI features or 93 PET features as regressors, and 2 clinical 

scores along with 1 class label for responses in the least square regression model.

8In this work, the proposed optimization method (i.e., Algorithm 1) outputs many zero-rows, which determine the value of K.
9Available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/’.
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Due to the limited small number of samples, we used a 10-fold cross-validation technique to 

measure the performances. Specifically, we partitioned the data of each class into 10 

disjoints sets, i.e., 10 folds. Then we selected two sets, one from each class, for testing while 

using the remaining 18 sets (e.g., 9 sets from AD and 9 sets from NC in the case of AD vs. 

NC classification) for training in the binary classification task. We repeated the process 10 

times to avoid the possible bias occurring in dataset partitioning. The final results were 

computed by averaging the repeated experiments. For model selection, i.e., tuning 

parameters in Eq. (11) and SVR/SVC parameters10, we further split the training samples 

into 5 subsets for 5-fold inner cross-validation. In our experiments, we conducted exhaustive 

grid search on the parameters with the spaces of αi ∈ {10−6, …, 102}, i ∈ {1, 2, 3}, and λ ∈ 
{102, …, 108}. We empirically set k = 3 and σ = 1 to calculate three kinds of similarity, such 

as mij in Eq. (3), gij in Eq. (5), and sij in Eq. (6). The parameters that resulted in the best 

performance in the inner cross-validation were finally used in testing.

To evaluate the performance of all competing methods, we employed the metrics of 

Correlation Coefficient (CC) and Root Mean Squared Error (RMSE) between the target 

clinical scores and the predicted ones in regression, and also the metrics of classification 

ACCuracy (ACC), SENsitivity (SEN), SPEcificity (SPE), Area Under Curve (AUC), and 

Receiver Operating Characteristic (ROC) curves in classification.

4.2. Competing Methods

To validate the effectiveness of the proposed method, we performed extensive experiments 

comparing with the state-of-the-art methods. Specifically, we considered rigorous 

experimental conditions: (1) In order to show the validity of the feature selection strategy, 

we performed the tasks of regression and classification without precedent feature selection, 

and considered them as a baseline method. Hereafter, we use the suffix “N” to indicate that 

no feature selection was involved in. For example, by MRI-N, we mean that either the 

classification or regression was performed using the full MRI features. (2) One of the main 

arguments in our work is to select features that can be jointly used for both regression and 

classification. To this end, we compare the multi-task based method with a single-task based 

method, in which the feature selection was carried out for regression and classification 

independently. In the following, the suffix “S” manifests a single-task based method. For 

example, MRI-S represents single-task based feature selection on MRI features. (3) We 

compare with two state-of-the-art methods: High-Order Graph Matching (HOGM) (Liu et 

al., 2013) and Multi-Modal Multi-Task (M3T) (Zhang and Shen, 2012). The former used a 

sample-sample relation along with an ℓ1-norm regularization term in an optimization of 

single-task learning. The latter used multi-task learning with an ℓ2,1-norm regularization term 

only to select a common set of features for all tasks of regression and classification. Note 

that M3T is a special case of the proposed method by setting α1 = α2 = α3 = 0.

4.3. Classification Results

Table 2 shows the classification performances of the competing methods. We also compare 

the ROC curves of the competing methods on three classification problems in Fig. 3. From 

10C ∈ {2−5, …, 25} in our experiments.
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these results, we can draw three conclusions. First, it is important to conduct feature 

selection on the high-dimensional features before training a classifier. The baseline methods 

with no feature selection, i.e., MRI-N, and PET-N, reported the worst performances. The 

simple feature selection method, i.e., MRI-S and PET-S, still helped increase the 

classification accuracy by 1.7% (AD vs. NC), 8.4% (MCI vs. NC), and 4.2% (MCI-C vs. 

MCI-NC) compared to MRI-N, and by 1.7% (AD vs. NC), 4.8% (MCI vs. NC), and 3.9% 

(MCI-C vs. MCI-NC) compared to PET-N, respectively. The other more sophisticated 

methods further improved the accuracies. Note that the proposed method maximally 

enhanced the classification accuracies by 4.8% (AD vs. NC), 11.4% (MCI vs. NC), and 

11.5% (MCI-C vs. MCI-NC) with MRI, and by 5.6% (AD vs. NC), 10.2% (MCI vs. NC), 

and 9.0% (MCI-C vs. MCI-NC) with PET, respectively, compared to the baseline method.

Second, it is beneficial to use joint regression and classification framework, i.e., multi-task 

learning, for feature selection. As shown in Table 2, M3T and our method, which utilized the 

multi-task learning, achieved better classification performances than the single-task based 

method. Specifically, the proposed method showed the superiority to the single-task based 

method, i.e., MRI-S and PET-S, improving the accuracies by 2.5% (AD vs. NC), 3.0% (MCI 

vs. NC), and 7.3% (MCI-C vs. MCI-NC) with MRI, and by 3.9% (AD vs. NC), 10.2% (MCI 

vs. NC), and 9.0% (MCI-C vs. MCI-NC) with PET, respectively.

Lastly, based on the fact that the best performances over the three binary classifications were 

all obtained by our method, we can say that the proposed regularization terms were effective 

to find class-discriminative features. It is worth noting that compared to the state-of-the-art 

methods, the accuracy enhancements by our method were 5% (vs. HOGM) and 4.7% (vs. 

M3T) with MRI, and 4.6% (vs. HOGM) and 4.2% (vs. M3T) with PET for MCI-C vs. MCI-

NC classification, which is the most important for early diagnosis and treatment.

4.4. Regression Results

Regarding the prediction of two clinical scores of MMSE and ADAS-Cog, we summarized 

the results in Table 3 and presented scatter plots of the predicted ADAS-Cog scores with 

MRI against the target ones in Figure 4. In Table 3, we can see that, similar to the 

classification results, the regression performance of the methods without feature selection 

(MRI-N and PET-N) was worse than any of the other methods with feature selection. 

Moreover, our method consistently outperformed the competing methods for the cases of 

different pairs of clinical labels.

In the regression with MRI for AD vs. NC, our method showed the best CCs of 0.669 for 

ADAS-Cog and 0.679 for MMSE, and the best RMSEs of 4.43 for ADAS-Cog and 1.79 for 

MMSE. The next best performances in terms of CCs were obtained by M3T, i.e., 0.649 for 

ADAS-Cog and 0.638 for MMSE, and those in terms of RMSEs were obtained by HOGM, 

i.e., 4.53 for ADAS-Cog and 1.91 for MMSE. In the regression with MRI for MCI vs. NC, 

our method also achieved the best CCs of 0.472 for ADAS-Cog and 0.50 for MMSE, and the 

best RMSEs of 4.23 for ADAS-Cog and 1.63 for MMSE. For the case of MCI-C vs. MCI-

NC with MRI, the proposed method improved the CCs by 0.092 for ADAS-Cog and 0.053 

for MMSE compared to the next best CCs of 0.497 for ADAS-Cog and 0.550 for MMSE by 

M3T. Note that the proposed method with PET also reported the best CCs and RMSEs for 
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both ADAS-Cog and MMSE over the three regression problems, i.e., AD vs. NC, MCI vs. 

NC, and MCI-C vs. MCI-NC.

4.5. Effects of the Proposed Regularization Terms

In order to see the effects of each of the proposed regularization terms, such as sample-

sample relation, feature-feature relation, and response-response relation11, we further 

compared the performances of the proposed method with those of its counterparts that 

consider one of the terms or a pair of them. We present the performances of the counterpart 

methods and the proposed method in Fig. 5. For better understanding, we also presented the 

performances of M3T as baseline that doesn’t consider any of three regularization terms. 

From the figure, we can observe the following that: (1) A method that utilizes any one of the 

three regularization terms is still better than M3T; (2) The inclusion of more than two 

regularization terms into the objective function resulted in better performances than a single 

regularization, and ultimately the full utilization of the three relational characteristics 

achieved the best performances.

4.6. Multiple Modalities Fusion

With respect to multi-modal fusion, it is known that different modalities can provide 

complementary information, and thus can enhance the diagnostic accuracy (Cui et al., 2011; 

Hinrichs et al., 2011; Kohannim et al., 2010; Perrin et al., 2009; Suk and Shen, 2013; 

Walhovd et al., 2010; Westman et al., 2012). For this reason, we also performed experiments 

using both MRI and PET (MP for short). We constructed a new feature matrix X with a 

concatenation of MRI and PET features at each row, but used the same response matrix Y as 

the above-described experiments.

Table 4 and Table 5 summarize the results of clinical label identification and clinical scores 

estimation, respectively. In line with the previous researches, the modality fusion helped 

improve performances in both classification and regression. Moreover, all the methods with 

the modality fusion selected the aforementioned brain regions with higher ‘Frequency’ than 

the corresponding methods with a single modality, such as on average 99.2%, 93.1%, and 

92.7%, respectively, for our method, HOGM and M3T, on the data with the modality fusion.

Finally, to check statistical significance, we conducted the paired t-tests (Dietterich, 1998) 

(at 95% significance level) on the classification and regression performances of our method 

and the competing methods (including the experiments in Sections 4.3, 4.4, 4.5, and 4.6). 

Tables 2 and 4 show the p-values obtained from the values of ACC, while Tables 3 and 5 

show the p-values computed from the values of CC. All these resulting p-values indicate that 

our method is statistically superior to the competing methods on the tasks of either 
predicting clinical scores (i.e., ADAS-Cog and MMSE) or identifying class label.

5. Conclusions

In this work, we proposed a novel feature selection method by devising new regularization 

terms that consider relational information inherent in the observations for joint regression 

11For example, we considered the feature-feature relation by setting α1 = 0 and α2 = 0 in Eq. (11).
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and classification in the computer-aided AD diagnosis. In our extensive experiments on the 

ADNI dataset, we validated the effectiveness of the proposed method by comparing with the 

state-of-the-art methods for both the clinical scores (ADAS-Cog and MMSE) prediction and 

the clinical label identification. The utilization of the devised three regularization terms that 

consider relational information in observation, i.e., sample-sample relation, feature-feature 

relation, and response-response relation, were helpful to improve the performances in the 

JRC problem, and outperformed the state-of-the-art methods.

It should be noted that while the proposed method was successful to enhance the 

performances for AD/MCI diagnosis, the current method considered only the linear 

relationships inherent in the observations. Therefore, it will be our forthcoming research 

issue to extend the current work to the nonlinear formulation via the kernel methods.
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Appendix A

We prove that the proposed Algorithm 1 makes the value of the objective function in Eq. 

(11) monotonically decrease. We first give a Lemma from (Nie et al., 2010) as follows, 

which will be used in our proof.

Lemma 1

For any nonzero row vectors (w(t))i ∈ ℝc and (w(t + 1))i ∈ ℝc, where i ∈ {1, ⋯, d} and t 

denotes an index of iteration, the following inequality holds:

(A.1)

Theorem 1

In each iteration, Algorithm 1 monotonically decreases the objective function value in Eq. 

(11).

Proof

In Algorithm 1, we denote part of Eq. (11), i.e., without the last term λ‖W‖2,1, in the t-th 

iteration as 

. We also denote Q(t) as the optimal value in the t-th iteration for Q. According to (Nie et al., 

2010), optimizing the non-smooth convex form ‖W‖2,1 can be transferred to iteratively 
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optimize Q and W in tr(WT QW). Therefore, according to the steps of line 6 and 7 in 

Algorithm 1, we have

(A.2)

By changing the trace form into the form of summation, we have

(A.3)

With a simple modification, we can have

(A.4)

After reorganizing terms, we finally have

(A.5)

According to Lemma 1, the third term of the left side in Eq. (A.5) is non-negative. 

Therefore, the following inequality holds

(A.6)
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Figure 1. 
Example slices of MRI (left column) and PET (right column) for subjects belonging to 

different classes.
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Figure 2. 
An illustration of the relational information that can be obtained from the observations. The 

red solid rectangles, the blue dash rectangles, and the green dotted rectangles denote, 

respectively, the ‘sample-sample’ relation, ‘feature-feature’ relation and ‘response-response’ 

relation.
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Figure 3. 
Comparison of Receiver Operating Characteristic (ROC) curves for the competing methods 

on three binary classifications. The plots in the upper and the lower rows were, respectively, 

obtained with MRI and PET.
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Figure 4. 
Scatter plots of the target ADAS-Cog scores against the predicted ones, which were obtained 

with MRI for AD vs. NC.
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Figure 5. 
Comparison of ACCuracy (ACC) (top row), Correlation Coefficient (CC) of ADAS-Cog 

(middle row), and CC of MMSE (bottom row) among the competing methods for three 

binary classifications: AD vs. NC (left column), MCI vs. NC (middle column), and MCI-C 

vs. MCI-NC (right column). ‘S’, ‘F’, and ‘R’ stand for ‘Sample’, ‘Feature’, and ‘Response’, 

respectively.
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Table 1

Demographic information of the subjects. (MCI-C: MCI Converters; MCI-NC: MCI Non-Converters)

AD NC MCI-C MCI-NC

Female/male 18/33 18/34 15/28 17/39

Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1

Education 14.7 ± 3.6 15.8 ± 3.2 16.1 ± 2.6 15.8 ± 3.2

MMSE 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4± 1.7

ADAS-Cog 18.3 ± 6.0 12.1 ± 3.8 12.9 ± 3.9 8.03± 3.8
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