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Abstract

Exploring structural and functional interactions among various brain regions enables better 

understanding of pathological underpinnings of neurological disorders. Brain connectivity 

network, as a simplified representation of those structural and functional interactions, has been 

widely used for diagnosis and classification of neurodegenerative diseases, especially for 

Alzheimer’s disease (AD) and its early stage - mild cognitive impairment (MCI). However, the 

conventional functional connectivity network is usually constructed based on the pairwise 

correlation among different brain regions and thus ignores their higher-order relationships. Such 

loss of high-order information could be important for disease diagnosis, since neurologically a 

brain region predominantly interacts with more than one other brain regions. Accordingly, in this 

paper, we propose a novel framework for estimating the hyper-connectivity network of brain 

functions and then use this hyper-network for brain disease diagnosis. Here, the functional 

connectivity hyper-network denotes a network where each of its edges representing the 

interactions among multiple brain regions (i.e., an edge can connect with more than two brain 

regions), which can be naturally represented by a hyper-graph. Specifically, we first construct 

connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse 

representation. Then, we extract three sets of brain-region specific features from the connectivity 

hyper-networks, and further exploit a manifold regularized multi-task feature selection method to 

jointly select the most discriminative features. Finally, we use multi-kernel support vector machine 

(SVM) for classification. The experimental results on both MCI dataset and attention deficit 

hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional 

connectivity network-based methods, the proposed method can not only improve the classification 

performance, but also help discover disease-related biomarkers important for disease diagnosis.
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1. Introduction

As a neurodegenerative disorder, Alzheimer’s disease (AD) is the most common form of 

dementia in people over 65 years old, which currently has no cure for AD. AD causes 

substantial, progressive neuron damage that is irreversible and eventually leads to death. The 

number of affected people is expected to double in the next 20 years, and 1 in every 85 

people will be affected by 2050 (Brookmeyer et al., 2007). Mild cognitive impairment 

(MCI) as a prodromal stage of AD has gained a great deal of attention recently due to its 

high progression rate to AD. Existing studies have shown that MCI subjects progress to 

clinical AD with an annual rate of approximately 10% to 15%, while normal controls (NC) 

develop dementia with an annual rate of 1% to 2% (Petersen et al., 2001). A further study 

also showed that the cognitive impairment has a significant impact on life expectancy, 

similar to chronic conditions such as diabetes or chronic heart failure (Sachs et al., 2011). 

Thus, accurate diagnosis of MCI is important for possible early treatment and delay of the 

progression of AD.

Evidence from both anatomical and physiological studies suggests that cognitive processes 

depend on interactions among distributed brain regions (Sporns, 2014). In the past years, 

modern imaging techniques have provided efficient ways to explore the functional and 

structural interactions of the human brain regions, thus enabling better understanding of the 

pathological underpinnings of neurological disorders. These interaction patterns, which can 

be characterized via connectivity networks, have been applied recently to disease diagnosis 

and classification (Pievani et al., 2011; Stam et al., 2009; Wang et al., 2013). For example, 

based on the blood oxygen level-dependent (BOLD) signals (that can reflect the endogenous 

or spontaneous brain activity with both high spatial and temporal resolutions) can be 

extracted from resting -state functional magnetic resonance imaging (R-fMRI) images. 

Then, the inter-regional interactions of brain activities at rest can be characterized via 

functional connectivity networks derived from BOLD signals and used for classification of 

AD and MCI (Chen et al., 2011; Jie et al., 2014b; Richiardi et al., 2012; Wee et al., 2013a).

In the literature, many functional connectivity modeling methods have been proposed, 

including correlation-based methods, graphical models, partial-correlation-based methods, 

and sparse representation-based methods (Smith et al., 2011; Wee et al., 2014). Among 

them, most existing studies are based on the correlation-based methods (Bullmore and 

Sporns, 2009; Kaiser, 2011; Smith et al., 2013; Sporns, 2011; Xie and He, 2011). It was 

reported that the correlation-based methods can obtain relatively high sensitivity for 

detecting network connections, compared with other methods (Smith et al., 2011). Recently, 

correlation-based connectivity networks have been successfully used for classifying patients 

with AD/MCI from normal controls (Seeley et al., 2009; Shen et al., 2010; Wee et al., 2012). 

However, correlation-based methods can only capture pairwise information and thus cannot 

fully reflect the interactions among multiple brain regions (Huang et al., 2010; Wee et al., 
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2014). In addition, correlation-based networks suffer from too many spurious connections 

due to arbitrarily thresholding of the correlation networks (Wee et al., 2014).

On the other hand, graphical models have been used to study brain connectivity, such as 

structural equation models (Bullmore et al., 2000; McIntosh et al., 1994) and dynamic causal 

models (Friston et al., 2003). However, most of these methods are confirmative, rather than 

exploratory, which makes them inadequate for studying AD/MCI brain connectivity since 

little prior knowledge (such as which brain regions should be involved and how they are 

connected) is available but is often required in those methods (Huang et al., 2010).

In addition, partial correlations, which correspond to the off-diagonal entries of inverse 

covariance matrix of the data, have been used for measuring the correlation between two 

brain regions by factoring out the influence of other brain regions. Estimation of partial 

correlation is normally achieved by using maximum-likelihood estimation (MLE) of the 

inverse covariance matrix. To reliably estimate the inverse covariance matrix with limited 

sample size, Huang et al. (2010) imposed the sparsity constraint via ll-norm regularization 

on MLE, namely the sparse inverse covariance matrix (SICE), for learning brain 

connectivity of AD, MCI and NC from PET data. Although this method is effective for 

learning a sparse connectivity network, it is not suitable for estimating the magnitude of 

connectivity due to the shrinking effect, and also it has been reported that the SICE method 

is very sensitive to the regularization parameters (Smith et al., 2011).

Recent works (Supekar et al., 2008; Zanin et al., 2012) showed that the use of certain 

sparsity connectivity modeling can elucidate robust connections from a set of noisy 

connections and thus improves final performance for disease classification. In particular, 

sparse representation has been proposed for constructing functional connectivity network. 

For example, Lee et al. (2011) adopted a least absolute shrinkage and selection operator 

(LASSO) with a l1 regularizer to construct the functional connectivity network from PET 

images for analysis of autism. Wee et al. (2014) adopted the Group LASSO with a l2,1 

regularizer to model the functional connectivity for classifying patients with MCI from NC. 

In the sparse representation based methods, a sparse linear regression model was adopted to 

enable the representation of a brain region by a linear combination of signals of other brain 

regions while, in the meantime, filtering out insignificant or spurious connections. This 

provides a new way on modeling how a brain region is interacted with the rest of the brain 

regions. However, in (Lee et al., 2011), it was performed independently across different 

subjects of same group (i.e., autism patients), thus not suitable for classification. On the 

other hand, in (Wee et al., 2014), sparse representation was applied across all subjects, 

including both patients and NC, to estimate the connectivity networks with identical 

topology but different connectivity strengths, ignoring the group-specific network 

topological patterns.

Functional connectivity networks constructed by measuring pairwise correlations can only 

reflect the second-order relationship among brain regions, ignoring high-order relationship 

among them (i.e., the interaction among more than two brain regions). Such loss of high-

order information could be crucial for understanding the pathological underpinnings of the 

disease since neurological findings have demonstrated that a brain region predominantly 
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interacts directly with a few of other brain regions in neurological processes (Huang et al., 

2010). Furthermore, recent studies in neuroscience have also identified significant high-

order interactions in neuronal spiking, local field potentials, and cortical activities (Ganmor 

et al., 2011; Montani et al., 2009; Ohiorhenuan et al., 2010; Yu et al., 2011).

To address the above issues, in this paper, we proposed a novel functional connectivity 

network modeling method for the purpose of identifying patients with MCI from NC. 

Specifically, a hyper-network is constructed based on R-fMRI time series with each node on 

the network representing a brain region and each edge containing more than two nodes to 

denote interactions among multiple brain regions simultaneously, which can be naturally 

represented by using a hyper-graph. To the best of our knowledge, our work is among the 

first to use the hyper-graph in neuroimaging studies. Specifically, we first construct the 

connectivity hyper-networks using sparse representation (SR) approach (Wright et al., 

2009). We then extract three types of brain-region specific features (i.e., clustering 

coefficients) from the constructed connectivity hyper-networks. Furthermore, we exploit a 

manifold regularized multi-task feature selection (M2TFS) method proposed in (Jie et al., 

2014a) to jointly select the most discriminative features from those three sets of clustering 

coefficients. Finally, we use a multi-kernel support vector machine (SVM) technique (Zhang 

et al., 2011; Wee et al., 2012; Wee et al., 2013b) to fuse the selected clustering coefficients 

for classification.

The proposed method is first evaluated on a MCI dataset with promising results, compared 

to the conventional connectivity network-based methods. We also seek to explore the 

biological meaning of the hyper-network for the brain regions involved in classification. 

Moreover, we investigate the robustness of the proposed method with respect to parameters 

and further analyze the effects of various techniques (e.g., feature selection - M2TFS) for 

classification performance. To further evaluate the classification performance of our 

proposed method, we also apply it on a larger attention deficit hyperactivity disorder 

(ADHD) dataset. The obtained results further demonstrate the effectiveness of our proposed 

method.

2. Materials and methods

Fig. 1 illustrates a flowchart of the proposed classification framework, consisting of several 

major steps, i.e., image preprocessing, construction of connectivity hyper-network, feature 

extraction and selection, and classification. In this section, we will give the detailed 

descriptions for each of these steps.

2.1. Subjects

In this study, 12 amnestic MCI patients (6 males and 6 females) and 25 normal controls (9 

males and 16 females) were recruited. Demographic information of the participants is shown 

in Table 1. All the recruited subjects were diagnosed by expert consensus panels. Data 

acquisition was performed using a 3.0-Tesla GE Signa EXCITE scanner. R-fMRI images of 

each participant were acquired with the following parameters: flip angle = 77°, TR/TE = 

2000/32 ms, imaging matrix = 64 ×64, FOV = 256 ×256 mm2, 34 slices, 150 volumes, and 
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voxel thickness = 4 mm. During the scanning, all subjects were instructed to keep their eyes 

open and stare at a fixation cross in the middle of the screen, which lasted for 5 min.

2.2. Data pre-processing

Data preprocessing is performed using Statistical Parametric Mapping software package 

(SPM8) (http://www.fil.ion.ucl.ac.uk/spm/software/SPM8/). Specifically, the first 10 

acquired fMRI images of each subject are discarded to ensure magnetization equilibrium. 

The remaining 140 images are first corrected for the acquisition time delay among different 

slices before realigning them to the first volume of the remaining images for head motion 

correction. To further reduce the contributions of ventricles and WM regions as well as head 

motion, regression of nuisance signals including ventricle and WM signals as well as six 

head-motion profiles are performed. The first scan of remaining fMRI time series is co-

registered to the T1-weighted MR image of the same subject. The estimated transformation 

is then applied to other fMRI scans of the same subject. The brain space of fMRI scans for 

each subject is further parcellated into 116 regions of interesting (ROIs) by warping the 

Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) template to the 

subject space using the deformation fields estimated via a deformable registration method 

called HAMMER (Shen and Davatzikos, 2002). For each subject, the mean time series of 

each individual ROI is computed by averaging the nuisance signals-regressed fMRI time 

series over all voxels in each particular ROI. In current study, the GM-masked mean time 

series of each region is band-pass filtered within frequency interval [0.025 ≤ f ≤ 0.100 Hz], 

since the fMRI dynamics of neuronal activities is the most salient within this frequency 

interval. Given the controversy of removing the global signal in the preprocessing of R-

fMRI data (Fox et al., 2009; Murphy et al., 2009), we do not regress the global signal out 

(Achard et al., 2006; Lynall et al., 2010; Supekar et al., 2008). Notably, the head-motion 

profiles are matched between the MCI and NC groups (p > 0.218 in any direction).

2.3. Hyper-graph

It is well known that graph is a powerful tool for representing relationships among the 

objects of interest, where each node in the graph denotes one object and each edge links 

nodes with certain kind of relationship. In neuroimaging field, graph theory has been widely 

applied to the analysis of brain connectivity (Fornito et al., 2013; Kaiser, 2011; Sporns, 

2012). In the conventional graph (i.e., simple graph), an edge connects only two related 

nodes. That is, the conventional graph only characterizes the pairwise relationships between 

paired nodes. Indeed, in addition to pairwise relationships, in many applications (e.g., 

functional interaction among brain regions), there may exist high-order relationships, which 

cannot be represented by the conventional graph. To overcome this limitation, hyper-graph 

has been proposed in this paper to characterize the high-order relationship among nodes. In 

general, a hyper-graph is an extended graph where an edge (called hyper-edge) can connect 

more than two nodes (Zhou et al., 2006).

By denoting a hyper-graph  = ( , ℰ) with a node (vertex) set  and a hyper-edge set ℰ, we 

can then represent  using a | | × |ℰ| incidence matrix H with the following elements:
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(1)

where v ∈  is a node and e ∈ ℰ is a hyper-edge of .

Base on H, the node degree of each vertex v ∈  is

(2)

and the edge degree of hyper-edge e ∈ ℰ is

(3)

Let Dv and De denote the diagonal matrices of node degrees d(v) and hyper-edge degrees 

δ(e), respectively. Then, the adjacency matrix A of hyper-graph  is defined as

(4)

where HT is the transpose of H. Its entries A(i,j) denote the number of hyper-edges that 

contain both nodes vi and vj.

It is worth noting that the conventional graph is a special kind of hyper-graph with each 

hyper-edge containing only two nodes. Fig. 2 illustrates an example of hyper-graph. In the 

literature, hyper-graph has been successfully applied to a variety of applications, such as 

image classification (Yu et al., 2012) and protein function prediction (Gallagher and 

Goldberg, 2013).

2.4. Construction of connectivity hyper-network

Inspired by recent works (Lee et al., 2011; Wee et al., 2014), in our study, we construct the 

connectivity hyper-networks from R-fMRI time series using sparse representation (Wright et 

al., 2009). Specifically, denote X = [x1,…,xm,…,xM]T ∈ RM×d as a training subject with a 

total of M ROIs, where xm represents the regional-mean time series of the m-th ROI, and d 
is the length of time series. Then, the regional mean time series of each ROI (i.e., xm) can be 

regarded as a response vector, and can be estimated by using a linear combination of times 

series of other M − 1 ROIs as follows:

(5)
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where Am = [x1,…,xm−1,0,xm+1,…xM] denotes a data matrix including all time series except 

the m-th ROI (where we put a vector of all zeros in its location), αm denotes the weight 

vector that quantifies the degree of influence of other ROIs to the m-th ROI, and τm ∈ Rd 

denotes a noise term. Note that a zero element in the weight vector implies that the 

corresponding ROIs are insignificant in estimating the time series.

A sparse learning is used to optimize the following objective function

(6)

This is a well-known NP problem due to the l0-norm term and often been approximated by 

solving a standard l1-norm regularized optimization problem with the following objective 

function (Chen et al., 1998):

(7)

where λ > 0 is a regularization parameter controlling the sparsity of the model. Different λ 
value corresponds to different sparsity solution, and a larger λ value indicates a sparser 

model, i.e., more elements in αm are zero. Many sparse learning algorithms can be 

implemented to solve l1-norm, such as least angle regress (LARS) (Efron et al., 2004). By 

using this sparse representation, we can obtain the interaction of one region with a few of 

other regions while simultaneously forcing the insignificant or spurious interactions to zero. 

That is, the regions with the corresponding zero elements in the weight vector αm are 

considered redundant in estimating the time series of one region. This provides a way on 

modeling how a brain region is interacted with the rest of brain regions by filtering out the 

redundant interactions.

In our study, to characterize the interactions among different brain regions, for each subject, 

a hyper-network is constructed by performing sparse representation for each brain ROI used 

as a node, and a hyper-edge em includes a centroid ROI (i.e., m-th ROI) and other ROIs with 

the corresponding non-zero elements in the weight vector αm computed in Eq. (7). To reflect 

multi-level interactions of information among brain regions, for each ROI (or node), we 

generate a group of hyper-edges, instead of generating a single hyper-edge, via varying the 

value of λ in a specified range. Here, multi-level means that different λ values determine 

different levels of interaction relationships among brain regions. In other words, in Eq. (7), 

the objective function with larger λ value yields a sparser solution and thus the hyper-edge 

contains fewer nodes. Specifically, in our experiment, for simplicity, we vary λ value from 

0.1 to 0.9 with an incremental step of 0.1. It is worth noting that since ROIs with the same 

time series have the same values in the weight vector of Eq. (7), so all of them will be either 
included in the corresponding hyper-edge, or excluded jointly. In the experiment, we adopt 

the SLEP package (Liu et al., 2009) to resolve the optimization problem in Eq. (7).
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2.5. Feature extraction

Feature extraction and feature selection are the two special forms of dimensionality 

reduction in machine learning and image processing fields. Their goal is to prevent the curse 

of dimensionality problem (Guyon and Elisseeff, 2003) and also identify the most relevant 

features that can lead to a better generalization performance of the learning models. In the 

current study, we adopt both approaches to the connectivity hyper-networks for improving 

the disease diagnosis performance and also identifying biomarkers that are relevant to 

disease pathology.

In the conventional connectivity network, the clustering coefficient is widely used to 

quantify the degree to which nodes in a network tend to cluster together (Rubinov and 

Sporns, 2010). Numerous studies have shown that the local clustering property of functional 

connectivity network has been disrupted in the AD and MCI patients at a group comparison 

level (Bai et al., 2009; Liu et al., 2012; Wang et al., 2012). Recently, the concept of 

clustering coefficient has been extended to the hyper-network domain. In this study, three 

different types of clustering coefficients defined in (Gallagher and Goldberg, 2013) are used 

to extract features from connectivity hyper-networks.

Given a connectivity hyper-network  = ( , ℰ), let S(v) = {ei ∈ ℰ : v ∈ ei} represent a set of 

hyper-edges adjacent to the node v. Let N(v) = {u ∈  : ∃e ∈ ℰ, u, v ∈ e} be the nodes that 

are neighbors of the node v. Then, three different types of clustering coefficients on the node 

v can be defined, respectively, as follows:

(8)

(9)

(10)

where I(u, t, ¬v) = 1 if there exists ei ∈ ℰ such that u, t ∈ ei but v∉ei, and 0 otherwise. I′(u, 

t, v) = 1 if there exists ei ∈ ℰ such that u, t, v ∈ ei, and 0 otherwise.

These three types of clustering coefficients reflect local clustering properties of hyper-

network from different views. The HCC1 computes the number of adjacent nodes that have 

connections not facilitated by node v, under the hypothesis that these connections are more 

robust because “independent” evidence is provided. Conversely, the HCC2 calculates the 

number of adjacent nodes that have connections facilitated by node v, considering that those 
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nodes may share a function with each other and node v. The HCC3 calculates the amount of 

overlap among adjacent hyper-edges of node v.

Finally, for each of these three definitions of clustering coefficients in Eqs. (8)–(10), we 

extract a set of clustering coefficients from the connectivity hyper-networks as features, thus 

producing three sets of features for each subject.

2.6. Feature selection

Features extracted from connectivity hyper-networks potentially include irrelevant or 

redundant features for subsequent MCI classification. On the other hand, three types of 

clustering coefficient features reflect the local clustering properties of the connectivity 

hyper-network in three different views. In order to select the intrinsic common subset of 

features (i.e., from the same brain regions) that are relevant to MCI pathology, we exploit the 

manifold regularized multi-task feature selection (M2TFS) method proposed in our previous 

work (Jie et al., 2014a) to jointly select the most discriminative features, where each task 

focuses on classification using one type of clustering coefficient features. Compared with the 

conventional single-task feature selection methods, multi-task feature selection can utilize 

related auxiliary information among tasks and hence often leads to better learning model 

(Argyriou et al., 2008; Obozinski et al., 2010).

Let  represent three sets of features obtained from totally 

N training subjects, each with M ROIs. Here,  represents the 

vector of clustering coefficients from the n-th training subject according to the above 

definition of HCCc. Let Y = [y1,…,yn,…,yN]T ∈ RN be the response vector for those N 
training subjects, where yn is the corresponding class label (i.e., MCI patient or normal 

control) for the n-th training subject. Then, the M2TFS method optimizes the following 

objective function (Jie et al., 2014a):

(11)

where Lc = Dc − Sc represents a combinatorial Laplacian matrix on the c-th task. Sc denotes 

a similarity matrix that defines the similarity on task c across different training subjects, 

which can be defined as: Sc(i,j) = 1 if  and  have the same class label and 0 otherwise. Dc 

is the diagonal matrix defined as . In Eq. (11), W = [w1,w2,…,wC] ∈ 
RM×C is the weight matrix, where C is the number of tasks (i.e., C = 3), and 

 is the group sparsity regularizer encouraging features to be selected 

jointly. Here, wj is the j-th row vector of W. The parameters β and γ are the corresponding 

regularization coefficients, which balance the contributions of three items in Eq. (11). The 

values of β and γ can be determined via inner cross-validation on training data.
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In the M2TFS method, the group-sparsity regularizer (Ng and Abugharbieh, 2011; Yuan and 

Lin, 2006) ensures only a small number of ROI-specific features to be jointly selected across 

different tasks. The Laplacian regularization item preserves the discriminative information 

of the data from each type of clustering coefficient features by incorporating the label 

information of both classes, and thus can induce more discriminative features for 

classification.

2.7. Classification

Previous study (Zhang et al., 2011) demonstrated that multi-kernel SVM can effectively 

integrate features from different tasks or modalities, compared to single-kernel SVM. Here, 

we also adopt the multi-kernel SVM to fuse three types of clustering coefficient features for 

classification. Specifically, for each set of clustering coefficient features of training subjects, 

a linear kernel is first computed based on features selected by the M2TFS method, i.e., { , 

i = 1,2,…,N}, c = 1,…,C, where  denotes the selected c-th type of features from the 

original features  of the i-th subject. Then, we adopt the following multi-kernel technique 

to combine three types of selected clustering coefficient features:

(12)

where  denotes the kernel function (i.e., linear kernel used in our experiments) over 

the c-th type of selected clustering coefficient features between the i-th and j-th subjects, and 

μc is a no-negative weight parameter with .

Following (Zhang et al., 2011), we use a coarse-grid search through cross-validation on the 

training subjects to find the optimal μc. Once obtaining the optimal μc, the standard SVM 

can be implemented for classification.

2.8. Implementation details

In our experiments, leave-one-out (LOO) cross-validation is used to evaluate the 

performance of the proposed method. Specifically, one subject is first left out for testing, and 

the remaining ones are used for training. The entire process is repeated for each subject. The 

linear SVM classifier is implemented using LIBSVM toolbox (Chang and Lin, 2001) with a 

default parameter value. The weights in the multi-kernel classification method are 

determined based on the training subjects through a grid search with the range from 0 to 1 at 

a step size of 0.1, via another LOO cross-validation. Also, for each type of clustering 

coefficient, a total of 116 features are extracted from the constructed connectivity hyper-

network. For each extracted feature, we normalized it with its mean and standard deviation 

computed from all training subjects. These values of the mean and standard deviation will be 

also used to normalize the corresponding feature of each testing subject in the application 

stage. It is worth noting that the nested LOO cross-validation strategy is used to enhance the 

generalization power of the classifier. Specifically, the inner cross-validation loop on the 
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training data is used for determining certain parameters, while the outer cross-validation 

loop is performed to evaluate the generalizability of learning models for the unseen subjects.

3. Experiments and results

3.1. Classification performance

We evaluated the classification performance of a method by measuring the classification 

accuracy (i.e., the proportion of subjects that are correctly identified), sensitivity (i.e., the 

proportion of patients that are correctly identified), specificity (i.e., the proportion of NC 

that are correctly identified), and area under receiver operating characteristic (ROC) curve 

(AUC). Besides, to avoid inflated performance on imbalanced datasets, we also compute the 

balanced accuracy of classification (Velez et al., 2007), which can be defined as the 

arithmetic mean of sensitivity and specificity.

The proposed method was compared with the conventional (i.e., pairwise Pearson-

correlation-based) connectivity network based classification method (denoted as CN-CC), 

where all negative correlation coefficients in the network were set to zero and also the 

weighted clustering coefficients (Rubinov and Sporns, 2010) were extracted as features. For 

extensive comparison, we also compare the results obtained using single type of clustering 

coefficients extracted from the connectivity hyper-networks (denoted as HN_HCC1, 

HN_HCC2 and HN_HCC3, respectively). Note that, in those comparison methods (i.e., CN-

CC, HN_HCC1, HN_HCC2 and HN_HCC3), LASSO-based method is used to perform 

feature selection and a linear SVM classifier is used for classification. In addition, for better 

comparison, we also concatenate all clustering coefficients extracted from our connectivity 

hyper-networks into a longer feature vector and perform feature selection with M2TFS for 

the case of using only one task (i.e., C = 1), followed by a linear SVM for classification. 

Classification results of all compared methods are summarized in Table 2. Fig. 3 provides 

the ROC curves of the methods.

As shown in both Table 2 and Fig. 3, the proposed method significantly outperforms the 

competing methods. Specifically, the proposed method yields a classification accuracy of 

94.6% and a balanced accuracy of 93.9%, while the best accuracy is only 91.9% and the best 

balanced accuracy is 91.8% by other methods. A cross-validation estimation of the 

generalization performance shows an AUC of 0.96, indicating excellent diagnostic power of 

the proposed method. Also, hyper-network based methods, i.e., HN_HCC1, HN_HCC2, 

HN_HCC3, and CONCAT with CN_CC, consistently outperform the conventional 

(correlation-based) network based method, implying the advantages of the hyper-network 

with high-order information over the conventional network, i.e., with the second-order 

information in characterizing brain functional connectivity. Moreover, the proposed method 

and CONCAT method, which use three types of clustering coefficient features, consistently 

outperform methods using only a single type of clustering coefficients, which implies that 

different clustering properties of the connectivity hyper-network convey the complementary 

information and should be integrated to further improve the classification performance.

To evaluate possible data overfitting by LOO cross-validation, we perform an additional 

experiment using 10-fold cross-validation. Specifically, the whole set of subjects is first 
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partitioned into 10 subsets (each with a roughly equal size). Then, a subset is selected as the 

testing data, and the remaining 9 subsets are combined as the training data. This process is 

repeated 10 times, where each time a different subset is used as the testing data. The 

proposed method achieves a classification accuracy of 93.8% and an AUC of 0.93, 

indicating robustness of the proposed method.

On the other hand, in Table 3, we also compare our proposed method with several other 

state-of-the-art methods for connectivity-network based MCI classification, as briefly 

decribed below. For example, (Wang et al., 2013) derived the brain network from wavelet-

based correlations of both high- and low-resolution parcellation units and adopted graph-

theory approaches to investigate topological organization of functional connectivity of 37 

patients with MCI and 47 NC subjects; (Chen et al., 2011) extracted the time series of 116 

ROIs from R-fMRI images and used the Pearson product moment correlation coefficients of 

pairwise ROIs for classification of AD and MCI. (Wee et al., 2013a) proposed a sparse 

multivariate autoregressive (MAR) modeling to infer effective connectivity networks and 

applied to MCI classification. Also, (Wee et al., 2014) adopted the Group LASSO, based on 

l2,1-norm, to incorporate sparsity into connectivity modeling and applied for classifying 

patients with MCI from NC. Finally, (Jie et al., 2014) constructed pairwise Pearson-

correlation-based connectivity networks and integrated multiple properties of brain network 

for MCI classification. As we can see from Table 3, our proposed method achieves the best 

classification accuracy and AUC value, which again validates the efficacy of our proposed 

method.

3.2. Brain regions involved in classification

In this subsection, we investigate the important features (corresponding to ROIs) selected by 

our method for MCI classification. Since the selected features are different for each LOO 

cross-validation fold, we choose features that are always selected in all folds as the most 

important features. For each selected important feature, the standard t-test is performed on 

all subjects to evaluate its discriminative power between MC and NC. For comparison, we 

also perform the same test on the features (i.e., clustering coefficients) from the conventional 

connectivity network (denoted as CC). Table 4 lists those important brain regions, and Fig. 4 

shows those brain regions in the template space. These brain regions include frontal gyrus, 
rectus gyrus, cingulate, parahippocampal gyrus, occipital gyrus, temporal gyrus, inferior 
temporal and temporal pole, which are consistent with previous studies using group 

comparison. On the other hand, most of the selected features have p-values smaller than 

0.05, indicating good discriminative power between patients and NC. It is worth noting that 

most of the selected features in the proposed method are more discriminative than the 

features computed from the conventional connectivity network. This partly explains why our 

method can achieve better performance when compared with the conventional connectivity-

network based method.

3.3. Connectivity analysis

To analyze the interaction of selected brain regions and to graphically show differences on 

connectivity hyper-network between MCI patients and NC, we compute the average hyper-

edges based on the selected ROIs in Table 4 for each group (i.e., MCI and NC). Specifically, 
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for each ROI listed in Table 4, we repeat the following steps to construct hyper-edges of 

each group. First, for each subject in each group, we first construct a hyper-edge using the 

Eq. (7) with a fixed λ value, and then calculate the number of occurrence for each ROI in 

the hyper-network. Next, we compute the average of degrees of the hyper-edges for all 

subjects, denoted as d. Finally, for each group, we select top d ROIs with the highest 

occurrence number to construct the corresponding average hyper-edge. Here, d denotes 

rounding d to the nearest integer greater than, or equal to, d. Fig. 5 graphically shows the 

average hyper-edges constructed on 8 selected ROIs with λ = 0.3. Here, each sub-figure in 

Fig. 5 denotes a hyper-edge, with the red node (i.e., the centroid node linked by other nodes) 

in each sub-figure representing the selected ROI, and the green nodes representing the 

selected regions from cerebellum that is placed between left cerebrum and right cerebrum.

As can be seen from Fig. 5, nearly all the hyper-edges of MCI group are obviously different 

from those in NC group. For example, as shown in Fig. 5(a), for the hyper-edge constructed 

based on left middle frontal gyrus (L.MFG), it is interacted with right middle frontal gyrus 

(R.MFG), right angular gyrus (R.ANG), and left crus I of cerebellar hemisphere (L.CICH) 

for MCI group, while it is interacted with left angular gyrus (L.ANG), left inferior frontal 

gyrus (opercular) (L.IFGoperc), and left orbitofrontal cortex (medial) (L.ORBmed) for NC 

group. Especially, a region from cerebellum (i.e., L.CICH) is also involved in the interaction 

for MCI group. Similarly, for the hyper-edge constructed based on left inferior temporal 

(L.IT), the interaction pattern of MCI patients is completely different from that of NC as 

shown in Fig. 5(h).

To graphically show the differences of connectivity hyper-network between patient and 

healthy groups, we induce another connectivity graph from the hyper-network with ROIs as 

nodes and the element of adjacency matrix of hyper-network (defined in Eq. (4)) as 

connectivity weight between nodes. It is worth noting that larger connectivity weight 

between a pair of nodes indicates more involvement of this pair of nodes in hyper-edges 

(i.e., interactions). For distinguishing this new connectivity graph from the above 

connectivity graph, we call it as connection network. Specifically, for each subject, we 

construct a connection network by the adjacency matrix of the connectivity hyper-network. 

Then, we evaluate the discriminative power of each connection between patients and NC 

using the standard t-test, and then select those connections with p-value less than 0.05 as the 

best discriminative connections. Besides, we choose the top 15 ROIs with the highest 

occurrence frequency in those selected connections as important brain regions. Fig. 6 

graphically shows the obtained p-value on each connection, where Fig. 6(a) shows the p-

values on all connections. Fig. 6(b) shows the thresholded p-value (i.e., p-value more than 

0.05 is set to 1), while Fig. 6(c) shows only the threshoded p-values for the connections 

between selected 15 ROIs. Colors in Fig. 5 denote the corresponding p-value.

As we can see from Figs. 6(a) and(b), significant connections mainly exist between some 

specific brain regions (i.e., selected 15 ROIs), including parahippocampus, amygdala, 
temporal pole, inferior temporal and orbitofrontal cortex, which were found to be associated 

with MCI pathology. From Fig. 6(c), we can see that the connections between those selected 

ROIs are significantly different between MCI patients and NC (i.e., the corresponding p-
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value is very small). It is worth noting that these regions are highly overlapped with the 

ROIs selected based on classification.

Moreover, for both groups (i.e., MCI patients and NC), we respectively compute the average 

connectivity weight among the selected 15 ROIs. Each element in the average connection 

sub-network represents the average weight of the corresponding edges across subjects within 

the same group. Figs. 7(a) and (b) respectively show the average connectivity weights for 

MCI and NC groups, while Fig. 7(c) shows the between-group difference of connectivity 

weights. As can be seen from Fig. 7, the connectivity weights of MCI are larger than those 

of NC, suggesting that the MCI patients may require more interactions among brain regions 

than NC for brain compensation of cognitive impairment.

To analyze the relationship between the topology of the proposed hyper-network and that of 

the traditional Pearson-correlation-based connectivity network, we define an coefficient R as 

follows:

(13)

where

and

Here, the highly correlated node pair means the corresponding edge in the traditional 

connectivity network with larger correlation coefficients. In our experiment, we set the 

corresponding values larger than 0.6 according to the previous studies (Luders et al., 2009). 

According to this definition, P represents the average number of hyper-edges passing all 

highly-correlated node pairs, and Q represents the average number of hyper-edges passing 

all node pairs. The larger R (i.e., R > 1) means that the number of hyper-edges passed 

highly-correlated node pairs is larger that of hyper-edges passing other node pairs. We 

compute and provide R values for every subject of our dataset in Fig. 8. The R values are 

consistently larger than 1 for all subjects, suggesting that the highly-correlated nodes are 

more likely to be included in the corresponding hyper-edges, compared with other nodes.

3.4. Results on attention deficit hyperactivity disorder (ADHD) classification

To further investigate the efficacy of our proposed method, we apply it on a larger dataset 

from New York University (NYU) site of ADHD-200 database (http://

fcon_1000.projects.nitrc.org/indi/adhd200/), which includes 98 NC and 118 children with 
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attention deficit hyperactivity disorder (ADHD). For constructing the hyper-network, we 

used the time series from the Athena preprocessed data. The corresponding filtered time 

series files, ADHD200_AAL_TCs_filtfix.tar.gz, can be downloaded from the website with 

ADHD-200 preprocessed data. A detailed description of data acquisition and postprocessing 

can be found on the Athena website (http://www.nitrc.org/plugins/mwiki/index.php/

neurobureau:AthenaPipeline). In short, the data preprocessing pipeline is as follows: 

removing the first four echo-planar image (EPI) volumes; slice timing correction; deoblique 

of data; realignment for head motion correction; masking the volumes to exclude voxels at 

non-brain regions; averaging EPI volumes to obtain a mean image; co-registering the mean 

image into template space (4 ×4 × 4 mm3); extracting the fMRI time series from WM and 

CSF regions using masks obtained from segmenting the structural T1-weighted images; 

removing effects of WM, CSF, head motion and a low-order polynomial (detrending); 

temporal band-pass filtering (0.009 < f < 0.08 Hz); spatial smoothing the filtered data using 

a 6-mm full width at half maximum(FWHM) Gaussian filter. Here, the AAL (Tzourio-

Mazoyer et al., 2002) template is used to parcellate the brain space into 116 ROIs, from 

which the regional mean time series are extracted.

In this experiment, we adopt the same setting as for the MCI experiment. Table 5 

summarizes the classification performance, and Fig. 9 shows the ROC curves of all 

comparison methods. The proposed method consistently achieves better classification 

performance than the competing methods, which once again demonstrates the advantage of 

the connectivity hyper-network over the conventional network in characterizing brain 

functional connectivity.

4. Discussion

In this paper, we propose a new connectivity hyper-network based disease classification 

method. Different from the conventional connectivity-network based methods, which only 

measure pairwise relationship between paired brain regions, our proposed method can 

characterize high-order interaction information among different brain regions, which may 

contain useful information for identifying patients with MCI from normal controls.

4.1. Significance of results

In the network-based analysis, the construction of network is a very important step. In the 

literature, researchers have proposed many (functional) network models, as summarized in 

(Smith et al., 2011). But most existing network models are based on simple graph, which 

only reflects the interaction relationship between paired brain regions. In this paper we 

proposed to use hyper-graph to construct a connectivity hyper-network model for 

characterizing high-order interactions among multiple brain regions. Hyper-graph is an 

extension of conventional simple graph, which has been successfully applied to many 

problems (Huang et al., 2011; Yu et al., 2012). Inspired by recent works (Lee et al., 2011; 

Wee et al., 2014), we constructed the hyper-network using the sparse representation to 

characterize the high-order interactions among multiple brain regions. To the best of our 

knowledge, our work is among the first to use the hyper-graph in neuroimaging studies.
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Connectivity-network based methods have been used for diagnosis and classification of 

neurodegenerative diseases, such as AD and MCI. However, high-order interaction 

relationship among different brain regions, which may contain useful information for 

identifying patients from NC, has often been ignored in the existing connectivity based 

methods. Our study demonstrated that, by exploring the high-order relationship information 

among brain regions, the proposed method can achieve the significantly improved 

performance in classification of MCI, when compared to the state-of-the-art connectivity-

network based methods.

Besides the performance improvement in classification, we also found that the brain regions 

detected by our proposed method are relevant to MCI pathology. These detected brain 

regions include frontal gyrus (Bell-McGinty et al., 2005; Buckner et al., 2009; Wang et al., 

2007), rectus gyrus (Fleisher et al., 2009), cingulate (Grady et al., 2003; Greicius et al., 

2004; Han et al., 2011), parahippocampal gyrus (Grady et al., 2001; Van Hoesen et al., 

2000), occipital gyrus (Nobili et al., 2010; Supekar et al., 2008), temporal gyrus (Fleisher et 

al., 2009; Smith et al., 2011; Wang et al., 2007), inferior temporal (De Santi et al., 2001; 

Hamalainen et al., 2007) and temporal pole (Davatzikos et al., 2011; Nobili et al., 2008; 

Wang et al., 2007). Moreover, two regions from the cerebellum were also selected. Recent 

study (Baldacara et al., 2011) suggested that, although the cerebellum might not be directly 

associated with the origin of AD, it may provide useful information for AD prognosis.

On the other hand, we analyzed the interaction of selected brain regions involved in our 

method, and found that the interaction patterns of MCI group among these regions are 

obviously different from those of NC group. Further analysis on the connectivity hyper-

network shows that those significantly affected connectivities are mainly observed among 

specific brain regions which have been found associated with MCI pathology. For example, 

the abnormalities in connectivity within the temporal lobe, especially between the 

hippocampus and parahippocampus, have been reported in AD and MCI patients (Greicius 

et al., 2009). Also, the alteration of functional connectivity of amygdala in AD and MCI has 

been reported in a recent work (Yao et al., 2013). Moreover, we found that the connectivity 

weights in MCI group are usually larger than those in NC group in the selected important 

regions, suggesting that MCI may require more inter-region interactions compared to NC for 

compensating the loss of network efficiency, in line with existing studies. For instance, 

Wang et al. (2013) had reported an increase of characteristic path length and impaired 

functional connectivity between different functional modules in MCI patients. Some studies 

have also reported a loss in small-world characteristics (i.e., shorter path length and higher 

degree of clustering) in subjects with MCI and AD (Liu et al., 2012; Sanz-Arigita et al., 

2010; Yao et al., 2010). These changes in interaction patterns indicate that some brain 

regions have been affected by the disease, consistent with the evidences of early functional 

abnormality in MCI patients (Dickerson and Sperling, 2008; Feng et al., 2012; Liu et al., 

2014; Stam et al., 2007).

4.2. Effect of regularization parameter λ

In our method, the hyper-networks are constructed using sparse representation. In this 

method, λ > 0 (in Eq. (2)) is a regularization parameter that controls the sparsity of 
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representation. Instead of generating a single hyper-edge for each ROI (node), we generate a 

group of hyper-edges by varying the λ value in a specified range. To investigate the effect of 

different number of λ values on classification performance of proposed method, we tested 9 

groups of λ values, i.e., {0. 1}, {0.1, 0.2}, {0.1, 0.2, 0.3}, …, {0.1, 0.2, …, 0.9}. Fig. 10 

gives the classification result, which indicates that the classification accuracy can be 

improved with the increase of the number of λ values.

Furthermore, to evaluate the difference of network topology with different groups of λ 
values, we also perform the significant test on the clustering coefficients from network. 

Specifically, the standard t-test is performed on each kind of clustering coefficients (i.e., 

HCC1, HCC2 and HCC3) from our constructed hyper-network with λ= 0.1 and other groups 

of λ values. Fig. 11 gives the obtained results. The results show that the topology of network 

with λ= 0.1 is significantly different from the topology of networks constructed by most of 

other groups of λ values (i.e., with the corresponding p-value < 0.05). Moreover, from Fig. 

11, we can see that the p-values decreased dynamically with the increase of the number of λ 
values, indicating significant difference of network topology when using large λ values.

4.3. Effect of feature extraction and feature selection

To evaluate the effect of feature extraction and feature selection, we perform three additional 

experiments: 1) without feature selection step (Exp1), 2) with a different feature selection 

method (Exp2), and 3) extracting another set of different features (Exp3). Table 6 

summaries all experimental results.

• Specifically, in Exp1 we perform our proposed classification framework without 

feature selection, i.e., we directly perform multi-kernel SVM technique on those 

extracted three types of clustering coefficient features. For comparison, we also 

perform the conventional connectivity network based method without feature 

selection (denoted as CN).

• In Exp2, we perform our proposed classification framework using t-test based 

feature selection, instead of using the M2TFS method. For comparison, we also 

perform the conventional connectivity network based method with the t-test 

based feature selection (still denoted as CN), instead of using its original 

LASSO-based feature selection.

• In Exp3, we extract the degree of each node (defined in Eq. 2) from the 

connectivity hyper-network, instead of three types of clustering coefficients, as 

features for our proposed method. For comparison, we also extract the degree of 

each node from the conventional connectivity network as feature for the 

conventional connectivity network based method (still denoted as CN), where 

LASSO-based feature selection and linear SVM based classification are still 

used.

As can be seen from Table 6, our proposed method still achieves better classification 

performance in all three experiments than the conventional connectivity network based 

method, which again shows the advantage of using connectivity hyper-network over the 

conventional network in characterizing brain interactions. Furthermore, from both Table 2 
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and Table 6, we can see that the classification performances of methods with feature 

selection are significantly better than methods without feature selection, indicating the 

importance of feature selection. Also, we can see that M2TFS achieves better performance 

than t-test method, indicating that M2TFS method can better characterize the 

complementary information of three types of clustering coefficient features and thus obtain 

more discriminative features for classification.

4.4. Effect of regularization parameters β and γ

Feature selection method (M2TFS) in our proposed classification framework includes two 

regularization items, i.e., a manifold regularization term and a group-sparsity regularizer. 

Two parameters β and γ balance the relative contributions of these two regularization terms. 

To investigate the effects of regularization parameters β and γ on classification performance 

of our proposed method, we test different values of β, i.e., β =[5, 10, 15, 20, 25, 30, 35, 40, 

45, 50], and also test different values of γ, i.e., γ =[0, 2, 4, 6, 8, 10]. It is worth noting that, 

when γ = 0, no feature selection step is performed, i.e., all features extracted from 

connectivity hyper-network are used for classification. Fig. 12 shows the classification 

accuracies with respect to different combinations of β and γ values.

As we can see from Fig. 12 and Table 2, the classification accuracy of our proposed method 

with respect to the use of different combinations of β and γ values is consistently better than 

that of the conventional connectivity network based method, validating again the efficacy of 

our proposed method. On the other hand, Fig. 9 indicates that, with fixed γ, the 

classification accuracy changes smoothly with varied β, implying the robustness of our 

proposed method with respect to the parameter β. Also, Fig. 12 shows that, with fixed β, the 

classification performance is largely affected by the γ value, suggesting the importance of 

selecting the optimal γ value for final classification. Actually, this is reasonable since 

parameter γ controls the sparsity of M2TFS and hence determines the scale of optimal 

feature subset. Finally, Fig. 12 shows that the classification accuracy with feature selection 

(i.e., γ >0) is better than methods without feature selection (i.e., γ = 0), demonstrating again 

the importance of feature selection.

4.5. Comparison on different combination schemes

To investigate the contribution of each weight, i.e., μHCC1, μHCC2 and μHCC3, on the 

classification performance of the proposed method, we test all their possible values, ranging 

from 0 to 1 at a step size of 0.1, with the constraint of μHCC1 + μHCC2 + μHCC3 = 1. Fig. 13 

provides the classification performance, including classification accuracy, sensitivity, 

specificity and AUC value, with respect to different combination of coefficient weights. It is 

worth noting that, in each subplot, only the squares in the upper triangular shows valid 

values due to the constraint μHCC1 + μHCC2 + μHCC3 = 1. For each plot, the three vertices of 

the figure, i.e., the top left, top right and bottom left, denote results obtained when using 

only a single type of clustering-coefficients, i.e., HCC3(μHCC3 = 1), HCC2(μHCC2 = 1), or 

HCC1(μHCC1 = 1).

As we can see from Fig. 13, most inner squares in the upper triangle show larger values (i.e., 

better classification performance) than the three vertices, indicating the effectiveness of 
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combining three clustering coefficients for classification. Moreover, for most plots, there are 

a larger set of squares with higher classification accuracy, indicating both the robustness and 

consistency of our proposed method with combined weights.

4.6. Reliability and repeatability on the use of different brain atlases

It was reported that brain networks derived from different parcellation schemes or using 

different spatial scales may exhibit distinct topological architectures (Fornito et al., 2010; 

Hayasaka and Laurienti, 2010; Zalesky et al., 2010). To evaluate the reliability and 

repeatability of our results, we repeated the same experiments using the functional atlases 

proposed by Dosenbach (Dosenbach et al., 2010) and Craddock (Craddock et al., 2012), 

which partitions the human brain into 160 and 200 ROIs, respectively. The preprocessing 

steps prior to functional connectivity computation are the same as for AAL atlas. It is noting 

worth that each ROI in the Dosenbach atlas is defined as a 10 mm diameter square 

surrounding a selected seed point, and also the distance between all ROI centers is at least 

10 mm with no spatial overlap, indicating that some brain areas are not covered by the set of 

these ROIs. Hence, we computed the regional mean time series based only on the regions 

covered by these ROIs. Table 7 shows the classification performance of all competing 

methods based on the functional atlases.

As we can see from Table 7, the proposed method consistently performed bettern than the 

competing methods, indicating both the reliability and robustness of our proposed method 

when using different parcellation schemes with varied spatial scales and numbers of ROIs.

Furthermore, we also evaluate the compulational cost of our proposed method using atlases 

with varied numbers of ROIs. Specifically, for each atlas, we calculate the average 

computational time of our proposed method for each step (i.e., hyper-network construction, 

learning model training, and prediction) separately. The experiments are carried out using an 

Intel (R) Core (TM) 2 Quad 2.83 GHZ processor and 4.00 G RAM. Fig. 14 shows the 

obtained results, indicating that only the computational time for hyper-network construction 

is increased dramatically with the number of ROIs. This is reasonable since hyper-edges are 

constructed for every ROI.

4.7. Reliability of features

To investigate the test-retest reliability of network topological features extracted from our 

constructed hyper-network, we calculate the mean intra-class correlation coefficient (ICC) of 

each type of clustering coefficients (i.e., HCC1, HCC2 and HCC3) when using the first and 

second half of the time series. The experimental results show that all three types of 

clustering coefficients can yield large ICC values (i.e., ICC = 0.67 ± 0.09, ICC = 0.68 

± 0.10, and ICC = 0.74 ± 0.04, respectively), indicating the reliability of these three types of 

features. Also, we compute the ICC values of these clustering coefficients from 9 hyper-

networks built with 9 groups of λ values, i.e., {0.1}, {0.1, 0.2}, {0.1, 0.2, 0.3}, …, {0.1, 0.2, 

…, 0.9}, respectively, as shown in Fig. 15. The results in Fig. 15 show that 1) ICC values of 

three types of clustering coefficients increase with the increased number of λ values, and 2) 

these clustering coefficients become stable with the use of enough number of λ values.
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4.8. Effect of feature normalization

Normalization is important to adjust features of different scales to a notionally common 

scale, thus enabling a more appropriate comparison among features during classification. To 

evaluate the effect of normalization on classification performance of our proposed method, 

we perform an additional experiment without feature normalization. The experiment results 

show that our proposed method without feature normalization can achieve a classification 

accuracy of 91.9% of and an AUC of 0.82, which again demonstrates the effectiveness of 

our proposed method. Meanwhile, these results are worse than the result obtained by the 

proposed method with feature normalization, indicating the importance of using a common 

scale for all features for improving the classification performance.

4.9. Limitation

In the current study, there are two major limitations. First, constructing the stable hyper-edge 

is a very important task for sparse-based hyper-network construction method. In the future 

work, we will explore some advanced techniques, such as robust LASSO (Xu et al., 2010) 

and group LASSO (Yuan and Lin, 2006), to address this limitation. Another limitation is the 

size of dataset, although we used a relatively large dataset for ADHD study. In the future 

work, we will evaluate the proposed method on dataset with larger sample sizes.

5. Conclusion

In summary, we have proposed a new (functional) connectivity hyper-network based 

classification method by utilizing high-order relationships among brain regions to facilitate 

disease classification. This method is completely different from conventional methods which 

often use only the pairwise relationships measured via Pearson correlation. Experimental 

results on both MCI and ADHD classifications indicate that our proposed method can not 

only improve brain disease classification, but also facilitate detection of disease-relevant 

structures.

Acknowledgments

The author acknowledges support from National Natural Science Foundation of China (Nos. 61573023, 61422204, 
61473149, 61473190), Natural Science Foundation of Anhui Province (No. 1508085MF125), the Jiangsu Natural 
Science Foundation for Distinguished Young Scholar (No. BK20130034), the Open Projects Program of National 
Laboratory of Pattern Recognition (No. 201407361), the Specialized Research Fund for the Doctoral Program of 
Higher Education (No. 20123218110009), the NUAA Fundamental Research Funds (No. NE2013105), and NIH 
grants (EB006733, EB008374, EB009634, MH100217, AG041721, AG049371, and AG042599).

References

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world 
human brain functional network with highly connected association cortical hubs. J Neurosci. 2006; 
26:63–72. [PubMed: 16399673] 

Argyriou A, Evgeniou T, Pontil M. Convex multi-task feature learning. Mach Learn. 2008; 73:243–
272.

Bai F, Zhang Z, Watson DR, Yu H, Shi Y, Yuan Y, et al. Abnormal functional connectivity of 
hippocampus during episodic memory retrieval processing network in amnestic mild cognitive 
impairment. Biol Psychiatry. 2009; 65:951–958. [PubMed: 19028382] 

Jie et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2017 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Baldacara L, Borgio JG, Moraes WA, Lacerda AL, Montano MB, Tufik S, et al. Cerebellar volume in 
patients with dementia. Rev Bras Psiquiatr. 2011; 33:122–129. [PubMed: 21829904] 

Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, et al. Differential 
cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol. 2005; 62:1393–1397. 
[PubMed: 16157746] 

Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of 
Alzheimer’s disease. Alzheimers Dement. 2007; 3:186–191. [PubMed: 19595937] 

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu HS, Hedden T, et al. Cortical hubs revealed by 
intrinsic functional connectivity: mapping, assessment of stability, and relation to alzheimer’s 
disease. J Neurosci. 2009; 29:1860–1873. [PubMed: 19211893] 

Bullmore E, Horwitz B, Honey G, Brammer M, Williams S, Sharma T. How good is good enough in 
path analysis of fMRI data? Neuroimage. 2000; 11:289–301. [PubMed: 10725185] 

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional 
systems. Nat Rev Neurosci. 2009; 10:186–198. [PubMed: 19190637] 

Chang CC, Lin CJ. LIBSVM: a library for support vector machines. Acm Transactions on Intelligent 
Systems and Technology. 2011; 2:389–396.

Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, et al. Classification of Alzheimer disease, mild 
cognitive impairment, and normal cognitive status with large-scale network analysis based on 
resting-state functional MR imaging. Radiology. 2011; 259:213–221. [PubMed: 21248238] 

Chen SSB, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. Siam J Sci Comput. 
1998; 20:33–61.

Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. A whole brain fMRI atlas generated 
via spatially constrained spectral clustering. Hum Brain Mapp. 2012; :33.doi: 10.1002/hbm.21333

Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD 
conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. 2011; 
32:e2319–e2327. 2322. 

De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, et al. Hippocampal formation 
glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001; 22:529–539. 
[PubMed: 11445252] 

Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in 
mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. 
Neuropsychologia. 2008; 46:1624–1635. [PubMed: 18206188] 

Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual 
brain maturity using fMRI. Science. 2010; 329:1358–1361. [PubMed: 20829489] 

Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat. 2004; 32:407–451.

Feng Y, Bai L, Ren Y, Chen S, Wang H, Zhang W, et al. FMRI connectivity analysis of acupuncture 
effects on the whole brain network in mild cognitive impairment patients. Magn Reson Imaging. 
2012; 30:672–682. [PubMed: 22459434] 

Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB. Resting-state BOLD networks 
versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. 
Neuroimage. 2009; 47:1678–1690. [PubMed: 19539034] 

Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and 
pitfalls. Neuroimage. 2013; 80:426–444. [PubMed: 23643999] 

Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human 
resting-state fMRI data. Front Syst Neurosci. 2010; 4:22. [PubMed: 20592949] 

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting 
state brain networks. J Neurophysiol. 2009; 101:3270–3283. [PubMed: 19339462] 

Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003; 19:1273–1302. 
[PubMed: 12948688] 

Gallagher, SR., Goldberg, DS. Clustering coefficients in protein interaction hyper-networks. In: Gao, 
J., editor. ACM Conference on Bioinformatics, Computational Biology and Biomedical 
Informatics (ACM BCB). 2013. p. 552-560.

Jie et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2017 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ganmor E, Segev R, Schneidman E. Sparse low-order interaction network underlies a highly correlated 
and learnable neural population code. Proc Natl Acad Sci USA. 2011; 108:9679–9684. [PubMed: 
21602497] 

Grady CL, Furey ML, Pietrini P, Horwitz B, Rapoport SI. Altered brain functional connectivity and 
impaired short-term memory in Alzheimer’s disease. Brain. 2001; 124:739–756. [PubMed: 
11287374] 

Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional 
neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003; 
23:986–993. [PubMed: 12574428] 

Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes 
Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S 
A. 2004; 101:4637–4642. [PubMed: 15070770] 

Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects 
structural connectivity in the default mode network. Cereb Cortex. 2009; 19:72–78. [PubMed: 
18403396] 

Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 
3:1157–1182.

Hamalainen A, Pihlajamaki M, Tanila H, Hanninen T, Niskanen E, Tervo S, et al. Increased fMRI 
responses during encoding in mild cognitive impairment. Neurobiol Aging. 2007; 28:1889–1903. 
[PubMed: 16997428] 

Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. Frequency-dependent changes in the amplitude 
of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. 
Neuroimage. 2011; 55:287–295. [PubMed: 21118724] 

Hayasaka S, Laurienti PJ. Comparison of characteristics between region-and voxel-based network 
analyses in resting-state fMRI data. Neuroimage. 2010; 50:499–508. [PubMed: 20026219] 

Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, et al. Learning brain connectivity of Alzheimer’s disease 
by sparse inverse covariance estimation. Neuroimage. 2010; 50:935–949. [PubMed: 20079441] 

Huang Y, Liu Q, Lv F, Gong Y, Metaxas DN. Unsupervised image categorization by hypergraph 
partition. IEEE Trans Pattern Anal Mach Intell. 2011; 33:1266–1273. [PubMed: 21282850] 

Jie B, Zhang D, Cheng B, Shen D. Manifold regularized multitask feature learning for multimodality 
disease classification. Hum Brain Mapp. 2014; doi: 10.1002/hbm.22642

Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D. Integration of network topological and 
connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng. 2014; 61:576–
589. [PubMed: 24108708] 

Kaiser M. A tutorial in connectome analysis: Topological and spatial features of brain networks. 
Neuroimage. 2011; 57:892–907. [PubMed: 21605688] 

Lee H, Lee DS, Kang H, Kim BN, Chung MK. Sparse brain network recovery under compressed 
sensing. IEEE Trans Med Imaging. 2011; 30:1154–1165. [PubMed: 21478072] 

Liu, J., Ji, S., Ye, J. SLEP: Sparse Learning with Efficient Projections. Arizona State University; 
Phoenix, Arizona: 2009. 

Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, et al. Impaired long distance functional 
connectivity and weighted network architecture in Alzheimer’s disease. Cereb Cortex. 2014; 
24:1422–1435. [PubMed: 23314940] 

Liu Z, Zhang Y, Yan H, Bai L, Dai R, Wei W, et al. Altered topological patterns of brain networks in 
mild cognitive impairment and Alzheimer’s disease: a resting-state fMRI study. Psychiatry Res. 
2012; 202:118–125. [PubMed: 22695315] 

Luders E, Narr KL, Thompson PM, Toga AW. Neuroanatomical correlates of intelligence. Intelligence. 
2009; 37:156–163. [PubMed: 20160919] 

Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional 
connectivity and brain networks in schizophrenia. J Neurosci. 2010; 30:9477–9487. [PubMed: 
20631176] 

McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B. Network analysis of 
cortical visual pathways mapped with PET. J Neurosci. 1994; 14:655–666. [PubMed: 8301356] 

Jie et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2017 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Montani F, Ince RA, Senatore R, Arabzadeh E, Diamond ME, Panzeri S. The impact of high-order 
interactions on the rate of synchronous discharge and information transmission in somatosensory 
cortex. Philos Trans A Math Phys Eng Sci. 2009; 367:3297–3310. [PubMed: 19620125] 

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal 
regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 
2009; 44:893–905. [PubMed: 18976716] 

Ng B, Abugharbieh R. Generalized sparse regularization with application to fMRI brain decoding. Inf 
Process Med Imaging. 2011; 22:612–623. [PubMed: 21761690] 

Nobili F, Mazzei D, Dessi B, Morbelli S, Brugnolo A, Barbieri P, et al. Unawareness of memory deficit 
in amnestic MCI: FDG-PET findings. J Alzheimers Dis. 2010; 22:993–1003. [PubMed: 20858977] 

Nobili F, Salmaso D, Morbelli S, Girtler N, Piccardo A, Brugnolo A, et al. Principal component 
analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging. 2008; 35:2191–2202. 
[PubMed: 18648805] 

Obozinski G, Taskar B, Jordan MI. Joint covariate selection and joint subspace selection for multiple 
classification problems. Stat Comput. 2010; 20:231–252.

Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD. Sparse coding and high-order 
correlations in fine-scale cortical networks. Nature. 2010; 466:617–621. [PubMed: 20601940] 

Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild 
cognitive impairment. Arch Neurol. 2001; 58:1985–1992. [PubMed: 11735772] 

Pievani M, Agosta F, Galluzzi S, Filippi M, Frisoni GB. Functional networks connectivity in patients 
with Alzheimer’s disease and mild cognitive impairment. J Neur. 2011; 258:170–170.

Richiardi J, Gschwind M, Simioni S, Annoni JM, Greco B, Hagmann P, et al. Classifying minimally 
disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage. 2012; 
62:2021–2033. [PubMed: 22677149] 

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. 
Neuroimage. 2010; 52:1059–1069. [PubMed: 19819337] 

Sachs GA, Carter R, Holtz LR, Smith F, Stump TE, Tu W, et al. Cognitive impairment: an independent 
predictor of excess mortality: a cohort study. Ann Intern Med. 2011; 155:300–308. [PubMed: 
21893623] 

Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SA, Maris E, Barkhof F, et al. Loss 
of ’small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional 
connectivity. Plos One. 2010; 5:e13788. [PubMed: 21072180] 

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-
scale human brain networks. Neuron. 2009; 62:42–52. [PubMed: 19376066] 

Shen D, Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. 
IEEE Trans Med Imaging. 2002; 21:1421–1439. [PubMed: 12575879] 

Shen H, Wang LB, Liu YD, Hu DW. Discriminative analysis of resting-state functional connectivity 
patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage. 2010; 
49:3110–3121. [PubMed: 19931396] 

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. Network 
modelling methods for FMRI. Neuroimage. 2011; 54:875–891. [PubMed: 20817103] 

Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional 
connectomics from resting-state fMRI. Trends Cogn Sci. 2013; 17:666–682. [PubMed: 24238796] 

Sporns O. The human connectome: a complex network. Ann N Y Acad Sci. 2011; 1224:109–125. 
[PubMed: 21251014] 

Sporns O. From simple graphs to the connectome: networks in neuroimaging. Neuroimage. 2012; 
62:881–886. [PubMed: 21964480] 

Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci. 
2014; 17:652–660. [PubMed: 24686784] 

Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, et al. 
Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s 
disease. Brain. 2009; 132:213–224. [PubMed: 18952674] 

Jie et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2017 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional 
connectivity in Alzheimer’s disease. Cereb Cortex. 2007; 17:92–99. [PubMed: 16452642] 

Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain 
connectivity in Alzheimer’s disease. PLOS Comput Biol. 2008; 4:e1000100. [PubMed: 18584043] 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated 
anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI 
MRI single-subject brain. Neuroimage. 2002; 15:273–289. [PubMed: 11771995] 

Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R. The parahippocampal gyrus 
in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci. 
2000; 911:254–274. [PubMed: 10911879] 

Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, et al. A balanced accuracy 
function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. 
Genet Epidemiol. 2007; 31:306–315. [PubMed: 17323372] 

Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, et al. Disrupted functional brain connectome in 
individuals at risk for Alzheimer’s disease. Biol Psychiatry. 2013; 73:472–481. [PubMed: 
22537793] 

Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, et al. Altered functional connectivity in early 
Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007; 28:967–978. [PubMed: 
17133390] 

Wang Z, Jia X, Liang P, Qi Z, Yang Y, Zhou W, et al. Changes in thalamus connectivity in mild 
cognitive impairment: evidence from resting state fMRI. Eur J Radiol. 2012; 81:277–285. 
[PubMed: 21273022] 

Wee CY, Li Y, Jie B, Peng ZW, Shen D. Identification of MCI using optimal sparse MAR modeled 
effective connectivity networks. Med Image Comput Comput-Assis Interv. 2013a:8150.

Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, et al. Identification of MCI 
individuals using structural and functional connectivity networks. Neuroimage. 2012; 59:2045–
2056. [PubMed: 22019883] 

Wee CY, Yap PT, Shen DG. Prediction of Alzheimer’s disease and mild cognitive impairment using 
cortical morphological patterns. Hum Brain Mapp. 2013b; 34:3411–3425. [PubMed: 22927119] 

Wee CY, Yap PT, Zhang D, Wang L, Shen D. Group-constrained sparse fMRI connectivity modeling 
for mild cognitive impairment identification. Brain Struct Funct. 2014; 219:641–656. [PubMed: 
23468090] 

Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. 
IEEE Trans Pattern Anal Mach Intell. 2009; 31:210–227. [PubMed: 19110489] 

Xie T, He Y. Mapping the Alzheimer’s brain with connectomics. Front Psychiatry. 2011; 2:77. 
[PubMed: 22291664] 

Xu HA, Caramanis C, Mannor S. Robust regression and Lasso. IEEE Trans Inf Theory. 2010; 
56:3561–3574.

Yao H, Liu Y, Zhou B, Zhang Z, An N, Wang P, et al. Decreased functional connectivity of the 
amygdala in Alzheimer’s disease revealed by resting-state fMRI. Eur J Radiol. 2013; 82:1531–
1538. [PubMed: 23643516] 

Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T. Abnormal cortical networks in mild cognitive 
impairment and Alzheimer’s disease. Plos Comput Biol. 2010; 6:e1001006. [PubMed: 21124954] 

Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classification. IEEE 
Trans Image Process. 2012; 21:3262–3272. [PubMed: 22410334] 

Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Stat Soc: 
Series B (Stat Methodol). 2006; 68:49–67.

Yu S, Yang HD, Nakahara H, Santos GS, Nikolic D, Plenz D. Higher-order interactions characterized 
in cortical activity. J Neurosci. 2011; 31:17514–17526. [PubMed: 22131413] 

Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical 
networks: does the choice of nodes matter? Neuroimage. 2010; 50:970–983. [PubMed: 20035887] 

Zanin M, Sousa P, Papo D, Bajo R, Garcia-Prieto J, del Pozo F, et al. Optimizing functional network 
representation of multivariate time series. Sci Rep. 2012; 2:630. [PubMed: 22953051] 

Jie et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2017 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of Alzheimer’s disease and 
mild cognitive impairment. Neuroimage. 2011; 55:856–867. [PubMed: 21236349] 

Zhou, D., Huang, J., Schölkopf, B. Advances in neural information processing systems (NIPS). MIT 
Press; Vancouver, British Columbia, Canada: 2006. Learning with hypergraphs: clustering, 
classification, and embedding; p. 1601-1608.

Jie et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2017 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Flowchart of the proposed method.
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Fig. 2. 
Hyper-graph vs. graph. Left: A conventional graph in which two nodes are connected 

together by an edge. Middle: a hyper-graph in which each hyper-edge can connect more than 

two nodes. Right: The incidence matrix for the hyper-graph in the middle.
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Fig. 3. 
ROC curves of the compared methods for MCI classification.
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Fig. 4. 
The important ROIs selected by the proposed method for MCI classification.
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Fig. 5. 
The average hyper-edges for NC (left) and MCI (right) groups based on 8 ROIs listed in 

Table 4 with λ=0.3. Here, each sub-figure denotes a hyper-edge constructed based on the 

corresponding ROI, where all nodes in each sub-figure form a hyper-edge, the red node (i.e., 

centroid node linked by other nodes) in each sub-figure represents the ROI used for 

constructing the hyper-edge, and the green nodes (i.e., nodes lying between left hemisphere 

and right hemisphere) represent the corresponding ROIs coming from cerebellum.
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Fig. 6. 
Visualization on p-values on connection between ROIs. Here, color denotes the 

corresponding p-value. (L.MFG = left Middle frontal gyrus, R.MFG = right Middle frontal 

gyrus, L.ORBinf = left Orbitofrontal cortex (inferior), L.OLF = left Olfactory, R.PHG = 

right ParaHippocampal gyrus, R.AMYG = right Amygdala, R.LING = right Lingual gyrus, 

R.FFG = right Fusiform gyrus, L.PCL = left Paracentral lobule, R.PUT = right Putamen, 

L.TPOmid = left Temporal pole (middle), L.ITG = left Inferior temporal, L.CIICH = Left 

crus II of cerebellar hemisphere, R.LIVVCH = Right lobule IV, V of cerebellar hemisphere, 

LVIV = Lobule VI of vermis.).
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Fig. 7. 
Average connectivity weights for MCI and NC groups and their differences. Colors in (a) 

and (b) represent the average connectivity weight of MCI and NC groups respectively, while 

colors in (c) represent difference of connectivity weights between MCI and NC.
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Fig. 8. 
The R values for all subjects.
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Fig. 9. 
ROC curves of six different methods on ADHD classification.
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Fig. 10. 
Classification accuracy w.r.t. the use of different number of λ values.
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Fig. 11. 
The p-value on three clustering coefficients from hyper-network with λ= 0.1 and other 

groups of λ values.
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Fig. 12. 
The classification accuracy w.r.t. the selections of β and γ values.
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Fig. 13. 
Classification results of proposed method when using different combinations of coefficient 

weights.
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Fig. 14. 
The computation cost of each step of our proposed method with different numbers of 

functional atlases.
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Fig. 15. 
Changes of ICC values of three types of clustering coefficients w.r.t. the different number of 

λ values.
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Table 1

Characteristics of the participants in this study.

Group MCI Normal

No. of subjects (male/female) 6/6 9/16

Age (mean ± SD) 75.0 ± 8.0 72.9 ± 7.9

Years of education (mean ± SD) 18.0 ± 4.1 15.8 ± 2.4

MMSE (mean ± SD) 28.5 ± 1.5 29.3 ± 1.1

MMSE: mini-mental state examination

Med Image Anal. Author manuscript; available in PMC 2017 March 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jie et al. Page 42

Ta
b

le
 2

C
la

ss
if

ic
at

io
n 

pe
rf

or
m

an
ce

s 
of

 c
om

pa
re

d 
m

et
ho

ds
.

M
et

ho
d

A
cc

ur
ac

y(
%

)
B

A
C

(%
)

Se
ns

it
iv

it
y(

%
)

Sp
ec

if
ic

it
y(

%
)

A
U

C

C
N

-C
C

 (
* )

62
.2

56
.9

41
.7

72
.0

0.
54

H
N

_H
C

C
1  

(*
)

75
.7

66
.9

41
.7

92
.0

0.
75

H
N

_H
C

C
2

81
.1

79
.5

75
.0

84
.0

0.
80

H
N

_H
C

C
3

89
.2

87
.7

83
.3

92
.0

0.
93

C
O

N
C

A
T

91
.9

91
.8

91
.7

92
.0

0.
94

P
ro

po
se

d
94

.6
93

.9
91

.7
96

.0
0.

96

* in
di

ca
te

s 
si

gn
if

ic
an

t (
i.e

., 
p-

va
lu

e 
<

 0
.0

5)
 d

if
fe

re
nc

e 
in

 te
rm

s 
of

 c
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 c
om

pa
re

d 
to

 th
e 

pr
op

os
ed

 m
et

ho
d 

ba
se

d 
on

 M
cN

em
ar

’s
 te

st
.

B
A

C
: b

al
an

ce
d 

ac
cu

ra
cy

; A
U

C
: a

re
a 

un
de

r 
re

ce
iv

er
 o

pe
ra

tin
g 

ch
ar

ac
te

ri
st

ic
 (

R
O

C
) 

cu
rv

e.

Med Image Anal. Author manuscript; available in PMC 2017 March 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jie et al. Page 43

Ta
b

le
 3

C
om

pa
ri

so
n 

on
 c

la
ss

if
ic

at
io

n 
pe

rf
or

m
an

ce
 o

f 
st

at
e-

of
-t

he
-a

rt
 c

on
ne

ct
iv

ity
-n

et
w

or
k 

ba
se

d 
m

et
ho

ds
.

M
et

ho
d

Su
bj

ec
ts

 (
M

C
I/

N
C

)
A

cc
ur

ac
y 

(%
)

Se
ns

it
iv

it
y(

%
)

Sp
ec

if
ic

it
y(

%
)

A
U

C

(W
an

g 
et

 a
l.,

 2
01

3)
37

/4
7

-
86

.5
85

.1
-

(C
he

n 
et

 a
l.,

 2
01

1)
15

/2
0

-
93

90
0.

95

(W
ee

 e
t a

l.,
 2

01
3a

)
12

/2
5

91
.9

-
-

0.
90

(W
ee

 e
t a

l.,
 2

01
4)

25
/2

5
84

.0
84

.0
84

.0
0.

87

(J
ie

 e
t a

l.,
 2

01
4b

)
12

/2
5

91
.9

-
-

0.
87

P
ro

po
se

d
12

/2
5

94
.6

91
.7

96
.0

0.
96

Med Image Anal. Author manuscript; available in PMC 2017 March 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jie et al. Page 44

Table 4

The important ROIs involved in classification.

ROI p-value (HCC1) p-value (HCC2) p-value (HCC3) p-value (CC)

L. middle frontal gyrus 0.057 0.045 0.026 0.582

L. rectus gyrus 0.642 0.010 0.056 0.038

L. anterior cingulate gyrus 0.076 0.467 0.005 0.225

L. middle cingulate gyrus 0.869 0.521 0.044 0.283

R. paraHippocampal gyrus 0.018 0.078 0.014 0.380

R. middle occipital gyrus 0.025 0.001 0.010 0.454

L. caudate 0.002 0.002 0.001 0.925

L. putamen 0.128 0.055 0.017 0.409

R. superior temporal gyrus 0.056 0.037 0.439 0.645

R. temporal pole (superior) 0.022 0.011 0.002 0.909

L. inferior temporal 0.036 0.009 0.062 0.943

L. crus II of cerebellar hemisphere 0.295 0.033 0.071 0.911

R. lobule IV, V of cerebellar hemisphere 0.048 0.154 0.877 0.703

L. = left; R. = right.
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