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Abstract

Molecular dynamics simulations of a coarse-grained bead–spring model have been used to study 

the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush 

polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well 

as the lengths of the bottle-brush backbones Nbb (50 ≤ Nbb ≤ 200) and side chains Nsc (50 ≤ Nsc ≤ 

200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give 

rise to bond tension amplification along the backbone, especially near the substrate. From these 

simulations, we have identified three separate regimes of tension. For low Σ, the tension is due 

solely to intramolecular interactions and is dominated by the side chain repulsion that governs the 

lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers 

induce compression of the side chains, transmitting increasing tension to the backbone. For large 

Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in 

the direction normal to the surface and transmitting considerable tension to the backbone.
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1. INTRODUCTION

Bottle-brush polymers are a special case of comb-like polymers, which consist of two 

principal components: a central linear polymer backbone and linear side chains grafted to 

the backbone. In bottle-brush polymers, the chemical composition of each component can be 

controlled independently. The immense number of possible combinations of chemistry, 

physical properties, and variations of architecture within these polymers thus creates a 

highly versatile framework for a number of applications. Such versatility is readily apparent 

in nature, ranging from versicans acting on cell proliferation and adhesion1,2 to aggrecans, 

which form a major component of articular cartilage surfaces,3–5 to the bottle-brush-like 

trans-membrane mucins of the periciliary layer of human lungs, which facilitate airway 

clearance by acting as an osmotic barrier to mucus and contaminants.6 Among these, 

aggrecans have perhaps been studied most extensively in recent years, both experimentally 

and theoretically,7–13 in the hopes of applying an understanding of the properties that lead to 

the low coefficient of friction and high strength of synovial joints to replicating these 

properties synthetically.

The primary factor separating bottle-brush polymers from comb polymers is the grafting 

density of side chains along the backbone. In comb polymers, this grafting density is low 

enough that backbone flexibility is largely unaffected by the presence of side chains. As side 

chain density increases, the number of monomers in the spacer between adjacent side chains 

along the backbone becomes smaller than the square root of the degree of polymerization of 

the side chains, and steric repulsion between side chains begins to overwhelm the 

conformational entropy of the backbone. This forces the backbone to straighten at 

intermediate length scales and the side chains to stretch away from the backbone.14,15 The 

amount of stretching depends on the molecular weight of the side chains, the degree of 

polymerization of the spacers between side chains, and interactions with the backbone. 

These characteristics of bottle-brush polymers have generated special interest because they 

give rise to properties not often seen in linear polymers.16,17

Studies of bottle-brush polymers have largely focused on structural properties and 

conformations in specific environments. The main goal being to manipulate the interactions 

between specific components in layered or bulk systems in order to tailor self-assembly to 

desired applications. Grubbs and co-workers were able to precisely control the lamellar 
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width of microphase-separated regions in bulk systems of bottle-brushes with two types of 

side chains by controlling side chain arrangement and degree of polymerization.18,19 More 

recent work has incorporated theoretical predictions of bottle-brush block copolymers with 

state-of-the-art synthesis to better understand the self-assembly and morphology of bottle-

brush materials.20,21 Such work has been extended to the fabrication of large-feature 

nanopatterns on untreated substrates.22 Others have used similar synthetic methods to create 

multicomponent nanocapsules,23 core–shell cylindrical brushes,24,25 nano-wires,26 and 

wire-shaped nanoparticle assemblies.27 Further, multicomponent brushes have been studied 

as potential routes to Janus particles and Janus-type polymers, resulting in an increasing 

number of studies of bottle-brush polymers.14,28–34

Bottle-brush polymers are also important in the design of biological devices, such as those 

involving surfaces that resist fouling by certain classes of molecules or biomolecules. Dense 

tethered layers of poly(oligoethylene glycol) bottle-brushes have been shown to exhibit 

remarkable resistance to protein adsorption35–38 and can be altered, by manipulating 

grafting density and component dimensions, to create porous surfaces capable of 

transporting or trapping nonprotein molecules via size exclusion.39 Other functionalized 

surfaces with this type of chemistry have been used in applications from support for protein 

arrays40,41 to surfaces that improve the acceptance of biometallic implants42 to wastewater 

remediation via brush-functionalized magnetic nanoparticles.43

Recently, it was demonstrated that the steric repulsion between side chains that restricts 

backbone conformations also transmits significant tension from the side chains to the 

backbone.44–48 This tension can be amplified by enhancing the crowding of side chains, 

which can be accomplished by tethering the backbone to a substrate or by allowing adhesion 

of the side chains to an attractive surface.44–48

The accumulation of tension in linear polymer brushes has been an area of interest for years. 

Early scaling theories of linear polymer brushes49–51 set the stage for the study of 

conformational change in the linear chains of dense polymer brushes. The loss of 

conformational entropy associated with increased grafting density is the main source of 

tension in linear brush chains. However, this tension is limited in magnitude, even at high 

coverages.52 For additional analysis of theoretical concepts regarding the properties of 

polymer brushes grafted to flat and curved surfaces, the reader is referred to a review by 

Binder and Milchev53 in which the concepts behind the expected conformations, sizes, and 

shapes of polymer brushes are discussed.

Panyukov et al. examined the connections between backbone tension amplification and 

polymer conformations for branched polymers such as stars, pom-poms,54 and bottle-

brushes in solution and adsorbed on surfaces55 and star and bottle-brush polymers tethered 

to surfaces.52 The two latter cases provide the starting point of the current investigation. In 

those works, the authors demonstrated the importance of the two primary length scales in 

individual bottle-brushes: D, the cross-section diameter of the brush as determined by the 

equilibrium conformations of the side chains, and L, the contour length of the bottle-brush, 

which is dependent on intramolecular steric repulsion. In general, bottle-brushes can be 

divided into two key classes based on the values of D and L: “hairy” bottle-brushes (D ≫ L), 
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which are comparable to star polymers tethered or strongly adsorbed on surfaces56 and 

exhibit progressively increasing backbone tension as a function of distance from the 

backbone free end, and “crew-cut” bottle-brushes (D ≪ L), cylindrical molecules that have 

more in common with linear polymer brushes but exhibit backbone tension generation 

beyond that of linear brushes due to side chains in the region near the free end of the 

backbone.

Tethering bottle-brush polymers to a substrate introduces a third important length scale: the 

distance between nearest-neighbor tethering sites, d. This gives a measure of grafting density 

equivalent to the molecular coverage (Σ), defined by the number of bottle-brush molecules 

per unit of surface area. The grafting of bottle-brushes to the substrate can then be divided 

into three regimes52 based on the comparison between d, the bottle-brush diameter D, and 

the radius Rf of the “footprint”—the projection of the bottle-brush backbone and side chains 

onto the grafting plane. The mushroom regime corresponds to grafting densities Σ below the 

overlap of footprints Σ* ≈ 1/Rf
2 with the inter-brush spacing d greater than Rf. The 

individual bottle-brushes in the mushroom regime do not interact with each other and the 

backbone tension is purely intramolecular in nature. In the so-called “loosely-grafted” 

regime at intermediate grafting densities Σ* < Σ < Σ**, where Σ** ≈ 1/D2, the fluctuations 

of bottle-brush backbones away from the normal to the substrate are suppressed, but no 

significant additional backbone tension is predicted.52 In the “densely-grafted” regime at 

high grafting densities Σ > Σ** the separation between bottle-brushes is smaller than their 

thickness (d < D) and significant additional backbone tension is expected. In the current 

study, we use coarse-grained molecular dynamics simulations to investigate how changes in 

side chain conformations at different molecular coverages are reflected in the amplification 

and accumulation of tension in the bottle-brush backbone.

Previous computational simulations of bottle-brush polymer systems can be broadly divided 

into two categories: simulations of bottle-brush polymers with limited side chain lengths 

(Nsc ≤ 50)10–13,28,30,32,48,57,58 and limited numbers of bottle-brush molecules and 

simulations of single bottle-brush polymers modeled using periodic boundary conditions 

along a fixed backbone to represent an effectively infinite-length, perfectly rigid backbone to 

study the dependence of the radial density and side chain conformations on number of 

backbone monomers between side chains.28,29,31,33 The current work seeks to study 

multiple bottle-brushes with a significant density of moderately long side chains (50–200 

units) grafted to backbones with lengths from 50 to 200 monomeric units in order to 

examine a broader class of bottle-brush polymers. To the best of our knowledge, this 

represents the first simulation study directed toward refining and complementing the existing 

theory regarding tension accumulation in dense bottle-brush tethered layers while offering 

more detailed information regarding the changes in chain conformations that give rise to 

backbone tension accumulation and amplification.

2. SIMULATION MODEL

Many bottle-brush simulations focusing on properties arising from molecular architecture 

have been performed at a coarse-grained level using Monte Carlo (MC) methods28–30,59–61 

and molecular dynamics (MD).10–13,31–33,57,62 Here we use the bead–spring model of 
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Kremer and Grest,63,64 in which the interactions between pairs of beads are represented by a 

truncated and shifted Lennard-Jones 12–6 potential:

where r is the interparticle distance and εLJ and σLJ represent the pairwise interaction energy 

and bead diameter, respectively. In the current simulations, all nonbonded interactions are 

identical, implying the backbone and side chains are composed of the same chemical 

species; thus, we have set εαβ = ε and σαβ = σ. The Lennard-Jones potential is truncated at a 

distance rc = 21/6σ, the potential minimum, which makes interactions purely repulsive, 

describing an essentially athermal model (i.e., very good solvent). The constant C in the 

Lennard-Jones potential is a standard shift to ensure continuity of the potential at the cutoff.

Polymer connectivity is achieved via the inclusion of an additional finitely extensible 

nonlinear elastic (FENE) potential between adjacent beads in the backbones and side chains:

where k is the FENE force constant and R0 is the maximum extension of the bond. The 

standard choice for the parameters (k = 30 ε/σ2 and R0 = 1.5σ) was used in this study.63,64 

With this set of parameters, competition between the repulsive Lennard-Jones potential and 

the FENE spring potential gives an equilibrium bond length of ≈ 0.97σ.

One of the factors affecting the accumulation and amplification of tension in bottle-brushes 

is the effect of end-tethering the backbones of the bottle-brush polymers to a substrate. As 

shown below, this creates a tension profile that is highest near the surface and decreases 

monotonically further from the surface. In our simulations, the substrate is modeled as a flat, 

structureless solid wall which interacts with the bottle-brushes via a Lennard-Jones 9–3 

potential:

where z represents the distance normal to the wall surface. This potential models a wall 

located at z = 0, with the zero of the potential located at  and the zero of the 

force(potential minimum) located at  The potential was truncated at zc in order to 

provide a short-range repulsive wall that prohibits bottle-brush adsorption. Tethers were 

implemented by connecting the bottle-brushes to noninteracting monomers at the wall 

surface which are allowed to move laterally within the surface plane but not out of it. Lateral 
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mobility in the tethering sites (“mobile” tethers) was included to allow bottle-brushes, 

especially in high-coverage environments, to develop their preferred packing arrangement.

Our investigation centers on three main parameters: bottle-brush backbone length in terms of 

the number of coarse-grained backbone beads Nbb, side chain length in terms of the number 

of coarse-grained side chain beads Nsc, and the density of bottle-brush polymers grafted to 

the surface, referred to as the coverage Σ, given in terms of the number of backbone chains 

per unit surface area (σ−2). Four different backbone lengths were chosen Nbb = 50, 100, 150, 

and 200 beads with one additional bead to serve as the site of attachment to the substrate. 

Three different side chain lengths Nsc = 50, 100, and 200 beads were studied for each of the 

backbone lengths, leading to a set of 12 bottle-brush molecules. The grafting density of side 

chains was set at one side chain per backbone unit (not counting tethering site) in order to 

mirror the type of bottle-brushes created through macromonomer-based approaches seen in a 

number of recent studies.18,19,22,24,25 Thus, the total number of side chains for each 

molecule is equal to Nbb. Throughout the rest of this article, the molecules will be referred to 

by their side chain and backbone lengths as Nsc:Nbb, e.g., “50:150” referring to the bottle-

brush with Nsc = 50 and Nbb = 150.

Each simulation system was composed of 40 bottle-brushes in a simulation box with 

periodic boundary conditions in the lateral directions. The simulation box was given a 

square base with side length (40/Σ)1/2 and vertical dimension larger than the length of a fully 

stretched bottle-brush. For each combination of Nsc and Nbb, a series of simulations were 

performed for bottle-brush areal densities Σ on the order of 10−5–10−2 bottle-brushes/σ2, 

although the specific range of Σ) for each Nsc:Nbb varies.

All simulations were performed using the LAMMPS65 simulation package with velocity-

Verlet integrator. A time step of δt = 0.005τ was used in all simulations, where τ = (mσ2/

ε)1/2 Simulations were performed at constant surface area. Temperature T = 1.0ε/kB was 

maintained by coupling to a Langevin thermostat; damping constants of Γ = 0.5τ−1 and Γ = 

2.0τ−1 were used to test performance, with no observable difference in final structures. 

Simulations were performed for a period of up to 1.5 × 105τ, depending on the coverage and 

backbone/side chain degree of polymerization, with the longest runs for high coverages and 

Nbb, = 200. For comparison, the longest relaxation time of the backbone end-to-end distance 

autocorrelation function for Nbb = 200 is ≈ 4.0 × 104τ.

3. RESULTS AND DISCUSSION

3.1. Bottle-Brush Structure and Characterization

In the previous work, bottle-brushes were classified as “hairy” or “crew-cut”.52,55 “Hairy” 

bottle-brushes are those for which the side chain length is large enough that the diameter is 

much larger than the contour length of the equilibrium bottle-brush (D ≫ L). Hairy bottle-

brushes have a structure and physical properties in common with tethered, densely grafted 

star polymers.52 The main difference between tethered stars and tethered hairy bottle-

brushes is the distribution of side chains along the bottle-brush backbone compared to the 

emanation of side chains from a central group in the tethered star. Conversely, “crew-cut” 

bottle-brushes have a contour length much larger than the diameter of the brush (L ≫ D). 
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While “crew-cut” bottle-brushes are most similar to linear polymer chains, they differ from 

linear chains in that the presence of side chains limits the maximum surface grafting density 

and transmits additional tension to the backbone.

Our first consideration is the comparison of the effective brush width, D, and the effective 

length of the bottle-brush along the central axis in our tethered bottle-brush systems. We 

calculated the average brush diameter, D (defined as twice the maximum radial component 

of the side chain end-to-end distance), and RMS backbone end-to-end distance (Ree = 

〈Ree,bb
2〉1/2) as an estimate of the central-axis contour length. The ratio D/Ree is a good 

metric to indicate the extent to which the bottle-brush systems approach the asymptotically 

“hairy” or “crew-cut” regimes. Results for D and Ree are shown in Table 1 and Figure 2.

It is clear from the data in Table 1 and Figure 2 that the bottle-brushes constructed for this 

investigation are outside of the asymptotic scaling regimes. Half of the bottle-brushes have 

D/Ree > 0.5, but only the 200:50 bottle-brush has D/Ree > 2, and none has D/Ree < 0.2. In 

order to reach asymptotic scaling regimes, one would have to increase the length of the 

backbones or side chains, respectively, while leaving the lengths of the other components 

fixed to create more crew-cut or hairy brushes, but such an increase comes with the penalty 

of making the simulations increasingly intractable. Conversely, greatly decreasing Nbb or 

Nsc while leaving the other fixed would create more hairy or crew-cut brushes, respectively, 

at the cost of limiting the intrinsic flexibility of the shorter component. The systems 

investigated herein thus represent the wide array of available brushes in the “transition” or 

“crossover” regimes between asymptotic limits. By analyzing the results of these 

simulations in light of the predictions of the asymptotic regimes, we may be able to ascertain 

which factors in brush composition are most important to the widest array of real systems.

3.2. Analysis of Backbone Tension

One of the main differences between the two classes of bottle-brushes is the way backbone 

tension develops in a single bottle-brash, unperturbed by neighboring bottle-brushes. In both 

cases, tension at any point along the backbone is due to the tensile forces exerted on the 

backbone by side chains between that point and the free end. Thus, backbone tension 

amplification is greatest for bonds near the tethering surface and decreases monotonically 

toward the free end, where backbone tension is due solely to bond fluctuations.

The accumulation of tension in the regions near the free end saturates at distances from the 

free end on the order of the lateral size of the brush, D. For distances less than D from the 

free end, the bottle-brush behaves similarly to a tethered star polymer, in which tension is 

the result of the individual tensile forces from all of the side chains attached to the core. This 

is the focusing region of the brush described by Panyukov et al.52,55 In the case of hairy 

bottle-brushes, the tension accumulates over the whole backbone from the free end to the 

substrate. The focusing region of tethered crew-cut bottle-brushes is within distance D of the 

free end of its backbone, within which tension generation is expected. At distances from the 

free end on the order of and greater than D, however, the side chains orient orthogonal to the 

brush backbone, and individual tensile forces from the side chains cancel one another. 

Tension generated within the focusing region is carried along the backbone, but no 
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additional tension is generated by the side chains within this so-called transmission region 

beyond D from the backbone free end.

To understand how changes in side chain size and conformation affect the accumulation of 

backbone tension, we calculated the backbone tension as a function of the bond index, 

defined as the number of bonds separating a given backbone monomer from the tether, 

measured along the backbone. Tension is defined as the force due to the stretching of the 

bonds. A plot for the representative case (100:100) is shown in Figure 3a for a range of Σ. At 

low coverages, the tension increases most rapidly with decreasing bond index from the free 

end toward the surface, as in the focusing region predicted by theory (see inset in Figure 3a). 

At first glance, these low coverages seem to reflect a crew-cut brush, with no increase in 

tension outside of the focusing region at the free end apart from a slight increase near the 

tether site. Closer inspection (Figure 3a, inset) shows that there is a small, nearly linear 

increase in backbone tension for these cases, reflecting the nonasymptotic nature of these 

brushes.

At high coverages, the brushes become more crowded, and steric repulsion between 

interacting side chains on neighboring bottle-brushes increases the bond tension in their 

backbones. The net effect of increasing crowding is akin to an enlargement of the focusing 

region; the portion of the backbone in which tension is strictly increasing progresses toward 

the tethering surface as crowding causes more side chains on neighboring bottle-brushes to 

interact. There is still a region of saturation near the tethering surface, where the tension 

increase is not as rapid. In Figure 3b, the effect of increasing Nsc is similar to the effect of 

increased coverage because of the increase in lateral area of unperturbed bottle-brushes with 

increasing side chain length.

To examine the changes in tension within the brushes not only as a function of changing 

coverage but also as a function of side chain and backbone lengths, it is useful to define a 

representative segment or point that can be used for all cases. The tension in the first bond 

adhering the brush to the surface (the linker tension) is a reasonable choice, as theory52 

shows this to be the point of maximum tension accumulation in both hairy and crew-cut 

bottle-brushes (the former by virtue of accumulation of all tension at the linker site, the latter 

by virtue of tension not changing outside the focusing region). The linker tension (Figure 4) 

can be divided into two regions as a function of coverage. At low coverages, the linker 

tension is nearly constant, indicative of the mushroom and loosely-grafted regimes of 

intramolecular tension generation. For higher coverages, however, the linker tension exhibits 

a strong increase with increasing Σ. This change represents the shift from tension generated 

primarily by intramolecular steric repulsion between side chains to intermolecular repulsion. 

The surface coverage dependence of the linker tension can be approximated by the 

expression

(1)
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Equation 1 represents a simple empirical crossover form that connects low- and high-

coverage behavior seen in Figure 4, where Σ** represents the estimated crossover coverage 
between the loosely-grafted and densely-grafted regimes. For Σ ≪ Σ**, the expression for 

the linker tension reduces to fd, the linker tension for a mushroom-regime bottle-brush chain. 

The parameter β represents the scaling exponent relating tension to surface coverage for 

densely-grafted brushes. The values of each of these parameters for the 12 brushes are 

presented in Table 2 (plots of the data, with best-fit curves, are reported in the Supporting 

Information, Figure S1).

The crossover coverage Σ** is independent of Nbb for Nbb > 50 (see Table 2). For crew-cut 

bottle-brushes, Panyukov et al.55 predicted that tension amplification occurs in the focusing 

zone near the free end and remains constant throughout the transmission zone between the 

focusing zone and the substrate. For Nbb > 50, the brushes exhibit linker tension that places 

them closer to the crew-cut regime of bottle-brushes, as the linker site resides in the part of 

the brush where tension is not affected by Nbb. For Nbb = 50, only the 50:50 case shows 

similarity with the longer backbones, suggesting that this is the only case close enough to 

the others to show crew-cut behavior. Increasing the side chain length (Nsc ≥ 100) for Nbb = 

50 results in different behavior, as D/Ree > 1. While not necessarily indicative of hairy 

bottle-brushes, this places them out of the range of crew-cut brushes.

In both cases, however, we see a general trend of decreasing Σ** with increasing Nsc. This is 

to be expected when viewing Σ** as the boundary between loosely-grafted and densely-

grafted regimes. Under the assumption that tension Amplification in the intermolecular 

regime occurs for Σ such that the area of the surface available for each bottle-brush (Σ−1) is 

of the same order as the cross-sectional area D2 of a single bottle-brush, we would expect to 

see Σ** scale as 1/D2. As shown in Figure 5, there is a very nice agreement between Σ** 

and 1/R2, the inverse square of the cross-section radius, suggesting a strong correlation 

between the extracted crossover coverage and the radial dimensions of the unperturbed 

brush.

Panyukov et al.52,55 found that the backbone tension in crew-cut bottle-brushes is dependent 

on the degree of polymerization of the side chains (i.e., Nsc), with tension in asymptotically 

crew-cut brushes increasing as Nsc
0.375. Figure 6 shows increasing linker tension fd with 

increasing Nsc that would indicate crew-cut or crew-cut-like bottle-brushes; however, the 

exponent obtained from fitting the data in Figure 6 to the functional form expected showed 

all cases with exponents less than the expected 0.375. Our results indicate that apparent 

exponent increases from 0.13–0.16 for shorter backbones (Nbb = 50–100) to 0.21–0.3 for 

longer backbones (Nbb = 150–200), suggesting a possibility of reaching the theoretically 

predicted value of the scaling exponent (0.375) with increasing side chain length in the 

crew-cut regime or for very long backbones.

The exponent β in eq 1 describes the growth in linker tension due to the force that balances 

the osmotic pressure generated by the brush in the densely-grafted regime. The 

concentration dependence of osmotic pressure for free polymer chains in semi-dilute 

solutions is given by Π ∝ ϕ3ν/(3ν−1), where ν is a solvent-quality-dependent exponent (3/5 

in good solvents, 1/2 in theta solvents). This gives rise to osmotic pressures proportional to 
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the power of concentration with exponent 9/4 in good solvents and 3 in theta solvents.67 If 

we extend this concept to the case of bottle-brushes, we can relate the concentration of 

polymer to the grafting density Σ and use that to determine the force necessary to hold the 

bottle-brush chains at a given osmotic pressure. With ϕ ~ Σ, Π ∝ Σ3ν/(3ν−1), and the force 

per chain then becomes related to Π times the surface area per bottle-brush, which is 

proportional to 1/Σ. Thus, the force per brush molecule scales as Π/Σ ~ Σ1/(3ν−1), which 

gives exponent values ranging from 1.25 (semidilute regime/good solvent) to 2.0 

(concentrated regime/theta solvent). Note that the exponent β in Table 2 covers this 

predicted range.

In addition to the simulations, which focus on “mobile” tethering points, simulations with 

two types of immobile (fixed) tethering points were also performed. One set of simulations 

featured fixed tethers randomly placed in the surface plane, while the other had tethering 

points on a hexagonal lattice. Both cases showed similar characteristics of tension 

accumulation, differing primarily in how much tension was generated as a function of Σ. At 

low Σ, where tension is generated within the brush and neighboring brushes do not interact, 

the tension was nearly identical for both fixed and mobile tethers, with slightly higher 

tension in brushes with randomly generated fixed tethers. The same effect was also seen at 

high Σ, where greater tension is generated by intermolecular interactions between highly 

crowded brushes. For intermediate Σ, however, the tension was almost identical with 

increasing Σ for mobile and lattice-fixed tethers, while the tension was larger for random 

tethering points.

3.3. Conformations of Side Chains

For Σ > Σ*, side chains on neighboring brushes produce conformational changes (see Figure 

7) that result in tension transmission. To examine changes in side chain conformations with 

increasing Σ, we calculated the root-mean-square radius of gyration (〈Rg
2〉1/2) of the side 

chains in three dimensions, to take into account not only radial compression due to crowding 

but also extension orthogonal to the tethering surface. In Figure 8, we show 〈Rg
2〉1/2 as a 

function of Σ for the three different side chain lengths, for four backbone lengths.

In Figure 8, we see indications of three types of behavior for the crew-cut brushes as Σ is 

increased. In each case, there is a regime at low Σ for which side chain 〈Rg
2〉1/2 is essentially 

constant, independent of Σ; this echoes the mushroom regime. Extrapolating from the 

intersection of the plateau region and the first decreasing region (linear in semilog form), we 

can obtain a rough estimate of the coverage of this first crossover Σ* between mushroom and 

loosely-grafted brush regimes, occurring for Nsc = 50 at Σ ≈ 1.0 × 10−3σ−2 (1/2Σ**); for Nsc 

= 100 at Σ ≈ 2.0 × 10−4σ−2 (0.1Σ**); and for Nsc = 200 at Σ ≈ 7.0 × 10−5σ−2 (0.1Σ**). For 

longer side chains, this first crossover Σ* occurs at a coverage an order of magnitude lower 

than Σ**.

This first crossover Σ* between mushroom and loosely-grafted brush regimes may also be 

seen in the change in footprint radius with increasing coverage, as shown in Figure 9. The 

footprint radius is defined as , where the radii of gyration refer to the 

projections of the backbone and side chains, respectively, onto the x–y plane. The inner 
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average over  extends of all side chains of a given bottle-brush molecule, whereas the 

outer average over  runs over all bottle-brushes. The footprint radius, 

then, can be used to quantify the lateral area of the surface subsumed by the bottle-brush, 

taking into account any lateral bending and twisting of the backbone as well as radial 

extension or compression of the side chains. Especially evident for Nsc = 50 because of 

smaller persistence length but present for all three side chain lengths, is the transition from a 

plateau region at low Σ where backbones fluctuate and side chains swell in a favorable 

solvent environment and a region of monotonically decreasing footprint for increasing Σ in 

which the backbone fluctuations are suppressed and the side chains begin to compress. 

Estimating the crossover coverage as the point at which the plateau region ends, the 

crossover occurs at a coverage of ≈ 1.0 × 10−3σ−2 for Nsc = 50; for Nsc = 100, it occurs at 

2.0 × 10−4σ−2; and for Nsc = 200, the crossover takes place at a coverage of 8.0 × 10−5σ−2. 

These values agree well with the estimation of the first crossover Σ* in Figure 8 and are 

significantly smaller than Σ**, confirming that Σ** represents a coverage of the second, 

loosely-grafted to densely-grafted crossover.

At coverages above the first crossover, 〈Rg
2〉1/2 exhibits a noticeable decrease from its value 

for low Σ (see Figure 8). This decrease in 〈Rg
2〉1/2 appears to be at least partially dependent 

on Nbb. Further, the decrease in 〈Rg
2〉1/2 with increasing Σ/decreasing d reaches a minimum 

at a higher coverage comparable to the crossover coverage Σ** estimated from the fit to the 

two-regime eq 1 (with d on the order of the brush radius) and is followed by an increase in 

side chain 〈Rg
2〉1/2 as molecular crowding increases.

To better understand the nature of the loosely-grafted to densely-grafted crossover Σ** in 

terms of changes in the conformations of side chains as coverage increases, we calculated 

the mean end-to-end distance for the side chains normal to the surface (i.e., vertical 

component or deflection) and parallel to the surface (i.e., radial component). In Figure 10, 

both the mean vertical component of end-to-end distance and mean radial extension of the 

side chains are plotted vs backbone monomer index of their attachment point for the 

representative 100:200 bottle-brush system at coverages representing the putative 

mushroom, loosely-grafted and densely-grafted regimes.

In Figure 10a, the lowest coverage (1.0 × 10−4σ−2) is within the mushroom regime and 

shows two zones of side chain deflection: one within the region of 25 monomers closest to 

the backbone free end and one within the first 10–15 monomers at the substrate surface. In 

the former case, the deflection of side chains near the free end of the brush is to be expected 

as part of the focusing region of the crew-cut structure; tension is generated here by the 

extension of side chains in the vertical direction away from the normal to the backbone. This 

effect can also be seen in Figure 10b, where the radial extension is nearly constant aside 

from the region near the backbone free end, suggesting that side chains in this region 

increasingly orient themselves orthogonal to the substrate and present a smaller radial 

profile.

The deflection zone near the substrate is due to repulsion of side chains from the substrate 

surface and is not reflected in the radial extension, suggesting side chains extend out and 
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normal to the surface. An increase in coverage in the loosely-grafted regime does not alter 

the vertical deflection of side chains—aside from a slight enhancement of the magnitude of 

deflection near the backbone free end. As Σ above the crossover into the densely-grafted 

regime (Σ > 0.002 bottle-brushes/σ2), the increased crowding between overlapping side 

chains causes the side chains to reorient toward the free surface and to stretch to a greater 

extent. The appearance and growth of a population of highly stretched side chains, which 

gives rise to the increase in average RMS Rg, can also be seen in Figures S2 and S3 of the 

Supporting Information. This increase in deflection carries with it the generation of tension 

further into the bottle-brush, as chain deflection and extension generate tension within an 

increasing number of side chains, transmitting increasing amounts of tension to the bonds 

along the backbone.

The radial extension, however, shows far less varied behavior. For all but the highest 

coverages simulated here, the radial component of the end-to-end distance shows minor 

variations from a constant value, decreasing only in the upper deflection zone previously 

mentioned. The radial extension in the interior of the brush decreases monotonically with 

increasing coverage, but when the transition from mushroom to loosely-grafted brush regime 

occurs, neighboring bottle-brushes cause compression almost uniformly over the majority of 

the brush length; as expected, side chains deswell rather than interpenetrate (until very high 

coverages; see Figure S4 in the Supporting Information for interpenetration data). At very 

high coverages, the region in which the radial extension decreases also begins to push into 

the main part of the brush, suggesting that at high grafting densities the chains at the free 

end compress radially and stretch vertically, which generates significant tension.

4. CONCLUSIONS

In this work, we have used molecular dynamics simulations of a coarse-grained model to 

elucidate some of the factors affecting the appearance and nature of tension amplification in 

layers of bottle-brush polymers tethered to a surface. We showed how increases in side chain 

size R correlate directly with the value of the surface coverage Σ** ≈ 1/R2 at which tension 

in the bottle-brash backbone first begins to increase. Below this coverage, tension is almost 

constant, as the average distance between bottle-brush polymers remains larger than the 

diameter D of the bottle-brushes and side chains interact primarily with their neighbors on 

the same backbone. Beyond this crossover coverage, side chains of neighboring bottle-brush 

molecules strongly interact, and the tension generated by intramolecular interactions 

becomes augmented by intermolecular interactions with neighboring bottle-brushes. This 

data is presented primarily for bottle-brushes which were allowed to move laterally along the 

surface plane by virtue of “mobile” tethering points constrained to the surface plane.

We also examined correlations between the size of the footprint of tethered bottle-brush 

polymers and the crossover between mushroom and loosely-grafted brash regimes. As 

neighboring bottle-brushes begin to overlap, backbone fluctuations away from the normal to 

the substrate become suppressed. In addition, side chains begin to deswell, resulting in a 

reduction of 25–31% in 〈Rg
2〉 without a concomitant increase in linker tension. Increasing 

the grafting density further, however, requires additional compression and reorientation of 

the side chains in order to minimize, as much as possible, the effects of steric hindrance, and 
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it is this reorientation that generates the additional tension transmitted to the backbone that 

we see as tension amplification. This data and the proposed explanations shed some light on 

the basic physical properties of this interesting polymer architecture and engender new and 

expanded research in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bottle-brush polymers (50:200) at surface grafting density Σ = 0.0008 bottle-brushes/σ2. 

Backbones are shown in blue and side chains in red.
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Figure 2. 
Visual representation of data presented in Table 1: backbone root-mean-square end-to-end 

distance Ree vs brush diameter D for lowest-coverage cases. Nbb is shown in color/filling of 

symbols (50: black/filled; 100: blue/open; 150: red/vertical hatching; 200: green/horizontal 

hatching), and Nsc is shown by symbol type (50: circle; 100: square; 200: diamond). The 

dashed line corresponds to 〈Ree
2〉1/2 = D, indicating the hairy-to-crew-cut crossover.
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Figure 3. 
Average backbone tension vs bond index (a) for 100:100 for ten values of Σ. Inset: backbone 

tension vs bond index for coverages Σ ≤ 0.001 bottle-brushes/σ2. (b) Average backbone 

tension vs bond index for Nbb = 100 at three different values of Nsc for Σ = 0.0002 bottle-

brushes/σ2 (solid lines) and 0.002 bottle-brushes/σ2 (dotted lines).
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Figure 4. 
Average linker tension as a function of coverage Σ for (a) Nsc = 50, (b) Nsc = 100, and (c) 

Nsc = 200 for the four values of Nbb (black/circles: Nbb = 50; red/triangles: Nbb = 100; blue/

squares: Nbb = 150; green/diamonds: Nbb = 200).
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Figure 5. 
Log–log plots of Σ** vs Nsc (error bars represent 95% confidence interval from parameter 

extraction) with dashed orange line representing the relationships 1/R2 vs Nsc for 

comparison.
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Figure 6. 
Log–log plot of fd as a function of Nsc for four different values of Nbb. Error bars represent 

95% confidence interval from fitting procedure.
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Figure 7. 
Snapshots of typical bottle-brush molecules with Nbb = 100 and Nsc = 100 from systems 

with Σ = 0.0001 (left), 0.002 (center) and 0.08 bottle-brushes/σ2 (right). Squares at tethering 

site show average surface area per bottle-brush.
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Figure 8. 
Dependence of root-mean-square radius of gyration 〈Rg

2〉1/2 of side chains on coverage for 

(a) Nsc = 50, (b) Nsc = 100, and (c) Nsc = 200. Arrows indicate coverages for mushroom to 

loosely-grafted crossover from 〈Rg
2〉1/2 (cyan) and loosely-grafted to densely-grafted 

crossover from Σ** (orange).

Leuty et al. Page 24

Macromolecules. Author manuscript; available in PMC 2017 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Footprint radius of bottle-brush molecules vs coverage for (a) Nsc = 50, (b) Nsc = 100, and 

(c) Nsc = 200 for Nbb = 50 (black circles), 100 (blue squares), 150 (red diamonds), and 200 

(green triangles). Note the logarithmic scale along the horizontal axis for all three graphs.
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Figure 10. 
Mean vertical component of end-to-end distance of side chains (left) and mean radial 

component of end-to-end distance (right) as a function of the bond index of attachment point 

for (100:200) brush at several different coverages.
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