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Abstract

An outcome-dependent sampling (ODS) design is a retrospective sampling scheme where one 

observes the primary exposure variables with a probability that depends on the observed value of 

the outcome variable. When the outcome of interest is failure time, the observed data are often 

censored. By allowing the selection of the supplemental samples depends on whether the event of 

interest happens or not and oversampling subjects from the most informative regions, ODS design 

for the time-to-event data can reduce the cost of the study and improve the efficiency. We review 

recent progresses and advances in research on ODS designs with failure time data. This includes 

researches on ODS related designs like case–cohort design, generalized case–cohort design, 

stratified case–cohort design, general failure-time ODS design, length-biased sampling design and 

interval sampling design.
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1 Introduction of original ODS design

Epidemiologic and biomedical observational studies that relate outcome of interest to 

individual exposure and other characteristics play a key role in understanding the 

determinants of diseases in humans. In many such studies, the major budget and cost 

typically arise from the assembling of primary exposure variables. Large cohort studies with 

simple random sampling are often too expensive to conduct for investigators with a limited 

budget. To reduce the cost and to achieve a prespecified power level, alternative cost-

effective designs and procedures are thus desirable for studies with a limited budget.
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An outcome-dependent sampling (ODS) design is a general term that describes a 

retrospective sampling scheme where one observes the primary exposure variables with a 

probability that depends on the observed value of the outcome variable. It is a useful, and 

more importantly, a cost-effective alternative to the more standard random sampling design. 

Under an ODS design, information on the primary exposure variables is assembled only for 

a sample that is selected from the underlying cohort population in a manner other than 

simple random sampling. The principal idea of an ODS design is to concentrate resources 

where there is the greatest amount of information. By allowing the selection probability of 

each individual in the ODS sample to depend on the outcome, the investigators attempt to 

enhance the efficiency and reduce the cost of a study. The well-known example is the case–

control study in epidemiology, which is an ODS scheme for a binary outcome variable 

(Cornfield 1951).

Although in some applications the outcome event is intrinsically binary/categorical, there are 

many situations in which the outcome variable is actually measured continuously (e.g. 

failure time). One commonly used approach in epidemiologic studies is to dichotomize the 

continuous outcome and use the available methods for binary outcome (White 1982; 

Breslow and Cain 1988; Scott and Wild 1991; Weinberg and Wacholder 1993; Schill et al. 

1993; Breslow and Holubkov 1997; Breslow et al. 2003). Another commonly used approach 

in these situations is to stratify the range of the continuous outcome variable and then 

sampling observations according to stratum-specific selection probabilities (Imbens and 

Lancaster 1996; Lawless et al. 1999).

Recent work has focused on a more general ODS design for continuous outcomes. Such an 

ODS design usually includes a simple random sample from the underlying population and 

some additional supplemental samples which are determined by the scales of outcome. The 

advantage of such an ODS design is that, while providing overall information about the 

population, it allows the investigators to target sample certain regions of the population that 

are believed to be more informative. There are very active researches on such sampling 

schemes. Weaver (2001) and Zhou et al. (2002) developed a semiparametric empirical 

likelihood inference procedures. Weaver and Zhou (2005) proposed a maximum estimated 

likelihood estimation approach. Chatterjee et al. (2003), Song et al. (2009), and Zhou et al. 

(2011b) developed inferential methodologies for the two-stage ODS design, which make 

efficient use of any additional outcome data that may be available for the entire study 

population. Qin and Zhou (2011) and Zhou et al. (2011a, d) studied the inference procedures 

for ODS design under the partial linear models. Schildcrout and Heagerty (2008), 

Schildcrout and Rathouz (2010), and Schildcrout et al. (2012) discussed ODS design and 

proposed analysis approaches for longitudinal data. Ding et al. (2012) developed a 

regression analysis under an ODS design for a missing data problem. A useful extension of 

ODS design is developed by allowing the selection probability to depend on not only the 

outcome but also an auxiliary variable, which is referred as outcome and auxiliary-

dependent subsampling (OADS). Wang and Zhou (2006, 2010) and Zhou et al. (2011c) 

considered and proposed inference procedures for data from the OADS sampling scheme.
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In this paper, we review recent progresses for ODS design with failure time data. In the rest 

of the paper, Sect. 2 reviews the research work in univariate failure time data case. Section 3 

reviews the work in multivariate failure time case.

2 ODS designs with a univariate failure time

In the above literature, studies were based on that data on outcome variables are completely 

observed. When the outcome of interest is failure time, the observed data are often censored. 

In this section, we introduce some biased-sampling schemes for failure time data and review 

the developments of the inferential methodologies for these biased-sampling studies.

2.1 Case–cohort design and its variations

For the time-to-event data, the case–cohort design (Prentice 1986) is one of the most widely 

used biased-sampling scheme for censored failure-time data. The key idea of this study 

design is to obtain the measurements of primary exposure variables only on a subset of the 

entire cohort (subcohort) and all the subjects who experience the event of interest (cases) in 

the cohort. Thus, the case–cohort study designs are particularly useful for large-scale cohort 

studies with a low disease rate or for cohort studies with exposure expensive to measure.

The requirement of sampling all the cases in the original case–cohort design will limit the 

application of case–cohort study designs since some diseases might not be rare. In such 

cases, a generalized case–cohort design have been proposed where, in addition to a 

subcohort, the information on exposure is assembled only for a subset of the failures instead 

of all the failures to reduce the cost. In many applications, certain exposure variables, which 

are relatively easy and cheap to be measured, are observed on all of the subjects in the 

cohort. Such data are referred to as the first-phase covariate data. Complete measurements of 

primary exposure which are expensive to assemble are only collected for the subcohort and 

all cases. These data are referred to as the second-phase covariate data. To improve the 

efficiency of the original case–cohort design, a stratified case–cohort design suggests to 

select a subcohort by a stratified sampling scheme which depends on the available first-

phase covariate data. Besides the generalized case–cohort design and the stratified case–

cohort design, many variations of the sampling schemes based on the original case–cohort 

design have been developed, and we refer to such biased-sampling schemes as modified 

case–cohort designs.

The motivation, importance, and broad potential applications of case–cohort designs are 

widely discussed in the literature. Parametric models for case–cohort designs have been 

studied (Kalbfleisch and Lawless 1988; Nan et al. 2006). Statistical methods for fitting case–

cohort data with semiparametric survival models have also been developed for the 

proportional hazards model (Prentice 1986; Self and Prentice 1988; Lin and Ying 1993; 

Barlow 1994; Chen and Lo 1999; Borgan et al. 2000; Chen 2001c; Cai and Zeng 2004, 

2007; Kulich and Lin 2004; Qi et al. 2005; Breslow and Wellner 2007), the additive hazards 

model (Kulich and Lin 2000; Sun et al. 2004), the proportional odds model (Chen 2001a), 

the accelerated failure time model (Kong and Cai 2009), the semiparametric transformation 

models (Chen 2001b; Kong et al. 2004; Lu and Tsiatis 2006), among others. Various 

estimating procedures have been proposed for data from case–cohort studies. These have 
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proceeded mainly along two lines, likelihood-based approaches and estimating-equation-

based approaches.

Throughout this section, we suppose that there exists a study population of N independent 

individuals. Let T̃
i denote the potential failure time and Ci denote the censoring time for 

subject i (i = 1, . . . , N). The observed time is Ti = min(T̃
i, Ci). Let Δi = I(T̃

i ≤ Ci) denote the 

failure indicator for subject i, Yi(t) = I(Ti ≥ t) denote the at-risk process and Ni(t) = Δi I(Ti ≤ 

t) denote the counting process, where I(·) is an indicator function. Let Zi(t) be a p-

dimensional exposure variable for subject i at time t. Let β be a p-dimensional regression 

parameter of interest. Let τ denote the study end time.

2.1.1 Original case–cohort designs—In the landmark article of Prentice (1986), the 

case–cohort design was first formally proposed, in which a subcohort is selected randomly 

from the full cohort, and the complete information of exposure are only observed for the 

subcohort subjects and additional cases outside the subcohort. Under the proposed case–

cohort design, Prentice (1986) considered a relative risk regression model:

where λ0(t) is the baseline hazard function and r(·) is a known function with r(0) = 1, for 

example, r(x) = ex for the proportional hazards model. Prentice (1986) proposed a pseudo-

likelihood approach for estimation of the parameter β by maximizing the following objective 

function:

(1)

where R̃(t) = {i : Ni(t) ≠ Ni(t–)}∪S0, and S0 denotes the index set of the subcohort. Note that 

the objective function (1) is a modification of the partial-likelihood function (Cox 1975) that 

weights the contributions of the cases and subcohort differently. Since the expression in (1) 

does not generally possess a partial-likelihood interpretation, it was termed as pseudo-

likelihood. After the publish of Prentice (1986), the case–cohort design and related statistical 

methodologies have been extensively studied.

Self and Prentice (1988) further elaborated such pseudo-likelihood estimators by slightly 

modifying the risk set R̃(t) used in (1) to S0. Estimators obtained from the modified pseudo-

likelihood function was proved to be asymptotically equivalent to the pseudo-likelihood 

estimators defined in Prentice (1986). Asymptotic distribution theory for such pseudo-

likelihood estimators and corresponding cumulative failure rate estimators were presented. 

Lin and Ying (1993) and Barlow (1994) further discussed the pseudo-likelihood methods 

and provided different ways to obtain easily computed variances for the estimators.
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Chen and Lo (1999) improved the pseudo-likelihood estimators (Prentice 1986) by utilizing 

the information of all cases in constructing the risk set to derive estimating equations. Under 

the proportional hazards model,

(2)

the pseudo-likelihood (1) of Prentice (1986) yields the score function:

(3)

Chen and Lo (1999) modified the risk set R̃(t) used in the above score function by including 

more information of cases. Let N1 (n1) and N0 (n0) be the numbers of cases and controls in 

the cohort (subcohort), respectively. Let R1 (R̃
1) and R0 (R̃

0) be the index sets of all cases 

and all controls in the cohort (subcohort), respectively. Denote R1(t) = {i : Ti ≥ t, i ∈ R1} and 

R̃0(t) = {i : Ti ≥ t, i ∈ R̃
0}, i.e., the risk sets defined on R1 and R̃

0, respectively. The 

following estimating equation was proposed by Chen and Lo (1999),

(4)

where p̂ is an estimator of the population case probability p = P(Δ = 1). They derived a class 

of estimating equations by using different estimators of p. Let p̂ = n1/n, then (4) becomes

Substitute p̂ = N1/N into (4), giving

Including more information of cases in constructing the estimating equations, the estimators 

proposed by Chen and Lo (1999) improve the pseudo-likelihood estimators of Prentice 

(1986) by achieving better efficiency.

Kulich and Lin (2000) proposed an inverse probability weighted estimating approach for the 

regression parameters of the additive hazards model, which has the form
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(5)

Under the case–cohort design, let ξi be the subcohort indicator, having the value 1 if the ith 

subject being selected into the subcohort and 0 otherwise. Denote πi = P(ξi = 1) to be the 

selection probability of the ith subject. Applying the inverse probability weighted approach, 

Kulich and Lin (2000) defined the weights as

and derived the weighted estimating equation as

(6)

where . The resulting estimator has a closed form:

where a⊗2 = aa′. Kulich and Lin (2000) studied how to fit the case–cohort data to the 

addictive hazards model, which is an important alternative to the proportional hazards model 

when researchers are interested in risk differences rather than risk ratios. Including the 

information of primary exposure from all the cases in Z̄(t) regardless of whether or not they 

belong to the subcohort, the proposed estimating procedure makes fuller use of the exposure 

information from both the cases and controls. Furthermore, the proposed method can also be 

applied to the situations that the subcohort is selected by Bernoulli sampling with arbitrary 

selection probabilities or possibly stratified simple random sampling.

Chen (2001a) proposed a weighted semiparametric likelihood method for case–cohort 

studies under the proportional odds model, in which,

where Λ0(t) is the baseline cumulative hazard function. Let S0 be the index set of the 

subcohort and S1 be the index set of the cases outside the subcohort. Denote S̃
0 = {i ∈ S0, Δi 

= 0} and S1̃ = {i ∈ S0 ∪ S1, Δi = 1}. Let nS̃0 and nS̃1 denote the sample sizes of S̃
0 and S̃

1, 

respectively. Chen (2001a) derived the estimation of regression parameter β by maximizing 

the objective function:
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(7)

where Λ0(t) is restricted to the class of monotonically increasing functions of the form 

, that is, with jumps at the observed failure times only. The 

proposed objective function (7) is a geometrically weighted version of the so-called 

complete-case likelihood function, hence it was called simply the weighted semiparametric 

likelihood. Chen (2001a) studies the case–cohort design under the proportional odds model, 

which is a potentially useful alternative in some applications when the proportional hazards 

model does not fit the data well. The proposed estimating procedure is applicable to the 

semiparametric transformation model. Particularly, the estimators of Chen and Lo (1999) 

can be generated by the approach of Chen (2001a) under appropriate weighting scheme 

under the proportional hazards model.

Kong et al. (2004) considered the following semiparametric transformation models:

(8)

where H is an unspecified strictly increasing function and ε is a random error with a known 

distribution function F. The main idea of Kong et al. (2004) is to regard case–cohort design 

as a special case of general missing data problems. The exposure variables are missing by 

design in case–cohort studies, so the missing mechanism is clearly known. Following the 

inference of model (8) for complete data, Kong et al. (2004) introduced an extra parameter γ 
= H(t0), where t0 is a prespecified constant such that P(min(T̃, C) > t0) > 0, and then 

obtained the parameter vector θ = (β′, γ)′. Suppose a subcohort of size n is selected 

randomly from the cohort. Let = ξi denote the indicator for the ith subject being selected into 

the subcohort. Assume P(ξi = 1) = π = n/N, which means each subject has the same 

probability of being selected into the subcohort.

Motivated by the idea of weighting the incomplete data by the inverse selection 

probabilities, Kong et al. (2004) defined a weight wi j to reflect the contribution of a pair of 

subjects i and j to the estimating function as

where

For estimation of the parameter vector θ, the weighted estimating equation was proposed
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(9)

where ρi j(θ) is a positive weight function, 

, and Ĝn(·) is the 

Kaplan–Meier estimator of the survival function for censoring time based on the subcohort 

data. Two types of weight were used in the estimating function (9), in which, the weight wi j 

was applied to take into account the sampling design effect, and ρi j(θ) was introduced to 

improve the efficiency of the estimating equations. In some applications, the proportional 

hazards model may not fit the data well, or researchers may be interested in modelling the 

association from different aspects. The semiparametric transformation models, incorporating 

a variety of nonproportional hazards models, can be a more flexible choice in such 

situations. Kong et al. (2004) established statistical methods for the case–cohort data under 

the semiparametric transformation models.

Lu and Tsiatis (2006) developed a way of weighted estimating equations for parameters of 

the semiparametric transformation models in (8) under the case–cohort design. Inspired by 

the methods of semiparametric transformation models for the complete data, Lu and Tsiatis 

(2006) considered a martingale process defined as

where Λ(t) denotes the cumulative hazard function for ε in (8). Suppose a subcohort of size 

n is selected randomly from the cohort. Let ξi denote the indicator for the ith subject being 

selected into the subcohort. Assume each subject has the same probability P(ξi = 1) = π = 

n/N of being selected into the subcohort. Lu and Tsiatis (2006) adopted weights as

and proposed to use the following estimating equations

to estimate functions for H and β. As we mentioned before, Kong et al. (2004) studied the 

case–cohort design under semiparemetric transformation models by regarding the case–
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cohort data as a special missing data problem. In the model of Kong et al. (2004), the 

censoring time was assumed to be independent of exposure variables. Lu and Tsiatis (2006) 

developed a different way of estimating parameters. The proposed procedure makes use of a 

martingale integral representation and an inverse probability weighted approach in 

constructing the estimating equations. The proposed method of Lu and Tsiatis (2006) allows 

the censoring time to depend on exposure variables. Breslow and Wellner (2007) further 

studied a theory of inverse probability weighted methods under the semiparametric model 

with two-phase stratified samples.

Qi et al. (2005) considered weighted estimators for the proportional hazards model (2) with 

missing exposure variables. Suppose that some elements of the exposure variable Z are 

missing. Define , where  denotes the exposure variables for the ith subject 

that are always observed and  denotes the exposure variables that are sometimes missing. 

Let ξi denote the selection indicator, which equals 1 if  is available and 0 if  is 

missing for the ith subject. The missing-data mechanism is determined by the distribution of 

ξi given (Ti, Δi, ), which is Bernoulli with probability . When the 

selection probability π = (π1, . . . , πN)′ is known, under the proportional hazards model, Qi 

et al. (2005) first proposed a weighted estimating function as

(10)

where

The estimator obtained by the above estimating equation may not be efficient. In an attempt 

to improve efficiency, an estimator of π was used in the above estimating function (10). Qi 

et al. (2005) applied nonparametric kernel smoothing techniques to estimate π based on 

observed data, including complete and incomplete observations. Let W denote the variables 

on which an estimator of π is allowed to depend. The rth-order kernel function K is a 

piecewise smooth function, which satisfies , , for m = 1, . . . , 

(r – 1), , and . Define Kh(·) = K(·/h), where h is the 

bandwidth. The following estimator

was proposed to estimate π. Replacing π in the weighted estimating function (10) with , Qi 

et al. (2005) derived a new estimating equation:
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where

Under the proportional hazards model with missing exposure variables, Qi et al. (2005) 

presented both simple weighted and kernel-assisted fully augmented weighted estimators, 

and the latter one is more efficient than the former one. The proposed methods require 

neither a model for the missing-data mechanism nor specification of the conditional 

distribution of the missing exposure variable. The proposed methods allow the missing-data 

mechanism to depend on outcome variables and observed exposure variables, which makes 

the proposed estimating procedure applicable to various cohort sampling designs, including 

the case–cohort design.

Nan et al. (2006) studied how to fit case–cohort data to a linear regression model, which 

models the relationship of the failure time and the primary exposure variable directly as the 

form:

(11)

where, given (Zi, Ci), the εi's are independent and identically distributed with an unknown 

distribution. For the case–cohort study, the estimating equation was proposed

(12)

where S0 denotes the index set of the subcohort. Nan et al. (2006) developed the statistical 

methods for the case–cohort design under a linear regression model, which is an important 

alternative way of analyzing failure time data. The proposed weighted estimating equations 

are derived by modifying the linear ranks tests and estimating equations which arise from 

full-cohort data, using similar methods to those applied by Self and Prentice (1988) for the 

proportional hazards model.

Kong and Cai (2009) considered the accelerated failure time model:

(13)
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where εi's are independent and identically distributed random errors with an unspecified 

distribution. Define , , and Yi(β; t) = I(ei(β) 

≥ t), for i = 1, . . . , N. For the case–cohort design, suppose a subcohort size n is selected 

randomly from the cohort. Let ξi denote the indicator for the ith subject being selected into 

the subcohort. Assume each subject has the same probability π = n/N of being selected into 

the subcohort. Kong and Cai (2009) adopted the weights as

and developed a rank-based estimating equation approach by solving the score function

(14)

where , and ϕ is a possibly data-dependent weight function. The 

choices of ϕ(β; t) = 1 and  correspond to the log-rank and Gehan 

statistics, respectively. By linearly relating the natural logarithm of the failure time to the 

exposure, the accelerated failure time model may be attractive to model failure time data in 

some applications. Kong and Cai (2009) developed a rank-based estimating approach for 

analyzing the case–cohort data under the accelerated failure time model. Furthermore, the 

proposed method is also valid for the usual linear model. Compared with the estimating 

function (12) used by Nan et al. (2006), the proposed estimating approach includes failures 

outside the subcohort in constructing Z̃(β; t) in Eq. (14). Therefore, the estimators of Kong 

and Cai (2009) may be more efficient.

2.1.2 Generalized case–cohort designs—The case–cohort design is used primarily to 

reduce the cost involved in the assembly of the exposure information. The censoring times 

of the subjects who are not included in the subcohort may be much less costly to obtain. 

Chen (2001b) studied the case–cohort design modified by considering the information of the 

censoring times of subjects not included in the subcohort to parameter estimation. They 

considered a more general specification of semiparametric transformation regression 

models, which assumes

(15)

where ϕ is assumed known. Model (15) reduces to the usual semiparametric models by 

choosing certain specified form of ϕ. Let φ be the derivative of −ϕ with respect to the third 

argument. Denote , where Q is the marginal distribution of the 

exposure variable Z, and Ḡ(t) = 1 – G(t). Let ν(β, Q, G(t)) denote the inverse 

transformation.
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Chen (2001b) proposed a maximum conditional-profile-likelihood method to fit the above 

model (15) to data from the modified case–cohort design. Let S0 be the index set of the 

subcohort, S1 be the index set of the cases that are not selected in the subcohort, and S2 be 

the index set of the remaining subjects. With the observation (Ti, Δi, Zi), for i ∈ S0 ∪ S1, and 

(Ti, Δi), for i ∈ S2, they proposed the conditional likelihood as:

Since neither G nor Q is known, G was replaced by the Kaplan–Meier estimator and Q was 

replaced by the empirical estimator based on the random subcohort S0 to obtain a 

conditional profile likelihood function. Then an estimator of β can be derived by 

maximizing the resulting profile likelihood. Chen (2001b) considered the problem of fitting 

a more flexible semiparametric transformation regression models to data from a modified 

case–cohort design, in which the efficiency gain may arise because the censoring times of all 

the censored subjects in the cohort are included.

Chen (2001c) defined a generalized case–cohort design, which consists of a number of 

sampling steps. Each step takes a random sample from a certain subset of the cohort, and the 

design of the sample size and subset at each step and of the total numbers of steps is 

independent of the observed exposure. Such generalized case–cohort design covers case–

control design, nested case–control design and original case–cohort design. Under the 

proportional hazards model (2) for data from the proposed generalized case–cohort design, 

Chen (2001c) developed a weighted estimating equation approach, in which the weights 

were obtained from an idea of estimating each missing exposure variable by a local average. 

Let ξi denote the indicator, equaling 1 if the ith subject is sampled and 0 otherwise. Let 0 = 

t0 ≤ t1 ≤ ··· ≤ taN = τ and 0 = s0 ≤ s1 ≤ ··· ≤ snN = τ be two partitions of [0, τ). The partitions 

may be data dependent but should only depend on (Ti, Δi, ξi), i = 1, . . . , N. Let rN (t, d) be a 

step function defined on [0, τ) × {0, 1} such that

for 1 ≤ i ≤ aN and 1 ≤ j ≤ bN. Defining the weights as
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Chen (2001c) proposed the weighted estimating equation as

where h is an exposure-related process.

The sample reuse approach via local averaging proposed by Chen (2001c) is more efficient 

than the typical approach via inclusion probabilities. By choosing h(x) = x, Chen (2001c) 

improved the pseudo-likelihood estimators of Prentice (1986). Despite more complexity and 

difficulty, a semiparametric efficient estimator can be obtained by choosing h to be the 

exposure variable transformed by the inverse of an estimated linear integral operator. 

Samuelsen et al. (2007) further discussed Chen's approach and pointed out how it is related 

to stratified case–cohort analysis. They studied an extension of Chen's generalized case–

cohort design to allow for surrogate-dependent sampling and showed how such data may be 

analyzed with the post-stratification method.

Cai and Zeng (2007) developed the case–cohort design to a generalized case–cohort design, 

where only a fraction of cases instead of all cases are sampled. The main difference of such 

generalized case–cohort design from the original case–cohort design is that not all the 

remaining cases are selected for assembling the exposure measurements. Cai and Zeng 

(2007) proposed a general log-rank test statistic, which was constructed by approximating 

the risk set and the event process of the complete data using the sampled data. Kang and Cai 

(2009) and Kang et al. (2013) further developed the statistical inference for generalized 

case–cohort studies with multiple disease outcomes. The methods can be easily reduced to 

the situation with univariate outcome. We will discuss in details later.

2.1.3 Stratified case–cohort designs—In order to improve the efficiency of the case–

cohort study by making better use of the first-phase covariate data, several literature 

discussed stratified case–cohort designs.

Kulich and Lin (2004) developed a general class of weighted estimators under a stratified 

case–cohort designs. Consider a cohort of N subjects who can be divided into K mutually 

exclusive strata based on a discrete random variable V, which represents the first-phase 

covariate information. Let ξ denote the selection indicator of a subject into the subcohort. 

For each k = 1, . . . , K, let P(ξ = 1|V = k) = πk. Let Nk denote the number of subjects in the 

kth stratum. Under the stratified case–cohort design, complete observations (Tki, Δki, Zki(t), 
0 ≤ t ≤ τ, Vki, ξki = 1) are available for all subcohort subjects, and at least (T, Δki = 1, 

Zki(Tki)) are observed for the cases, where the subscript {ki} denotes the ith subject in the 

kth stratum. Under the proportional hazards model in (2), Kulich and Lin (2004) proposed a 
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weighted estimating approach for estimating the regression parameter β by solving the score 

function

(16)

Various proposals for the potentially time-varying weight wki(t) yield different case–cohort 

estimators.

Kulich and Lin (2004) further extended the above method to a doubly weighted estimation 

method by incorporating arbitrary stochastic processes as time-varying weights into the 

empirical sampling probabilities. Let Aki(t) be a diagonal matrix with m potentially different 

random processes on the diagonal. Consider the following estimators of the subcohort 

sampling probabilities:

which yields m estimators of πk on the diagonal of . Each estimator can be interpreted 

as an empirical sampling proportion based on the control, with the contribution of each 

control weighted by a component of Aki(t). The weight matrix was defined as

where Im is an m × m identity matrix. Kulich and Lin (2004) considered the estimating 

equation in (16) as

where

The estimators proposed by Borgan et al. (2000) can be regarded as the special cases for the 

above doubly weighted estimators. To reduce the efficiency loss caused by misspecification 

of model, Kulich and Lin (2004) combined the doubly weighted estimator with the estimator 

of Borgan et al. (2000) to obtain a combined doubly weighted estimator. The proposed 

estimators Kulich and Lin (2004) may be more efficient than the estimators of Chen and Lo 

(1999), Borgan et al. (2000) and Chen (2001c) by choosing appropriate weight functions.
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Nan et al. (2006) also developed weighted estimating equation methods for a stratified case–

cohort designs under the linear regression model (11). If a variable Z* that is highly 

correlated with the primary exposure variable Z is available for all the subjects in the cohort, 

selecting the subcohort using a stratified sampling scheme based on Z* can improve 

efficiency. An independent Bernoulli sampling method, in which

was considered to select the subcohort. Nan et al. (2006) proposed the following estimating 

equation for such stratified case–cohort design as

(17)

where

and S0 denotes the index set of the subcohort. Nan et al. (2006) extended their works on the 

original case–cohort design (see 12) to the stratified case–cohort design. By selecting the 

subcohort using a stratified sampling scheme, which makes better use of the first-phase 

covariate information, the estimator obtained from (17) can improve efficiency.

Kong and Cai (2009) also extended the proposed estimating procedure under the accelerated 

failure time model (13) for the original case–cohort design (see 14) to the stratified case–

cohort design. For the stratified case–cohort design, the full cohort is supposed to consist of 

K strata of sizes N1, . . . , NK. Let nk denote the size of samples selected from the kth 

stratum into the subcohort. Let πk = nk/Nk be the sampling proportion of the subcohort in 

the kth stratum. Kong and Cai (2009) proposed the following rank-based estimating equation

(18)

where , and

Since the stratified sampling design further improves the efficiency when the stratification 

variable is a good surrogate of the primary exposure, the proposed method of Kong and Cai 

(2009) can further enhance the efficiency. The proposed methods are also valid for the usual 

semiparametric linear model.
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2.2 General failure-time ODS design

While case–cohort is an efficient design, especially when failure is rare, i.e., in the high 

censoring situations, this design may not be practically feasible to implement if the failure is 

not rare. In case–cohort design and generalized case–cohort design, the selection of the 

supplemental samples depends on whether the event of interest happens or not. As ODS 

design with continuous outcome, if an exposure variable is related to the outcome, then the 

subjects, whose observed failure time are very long or short, should be of more information 

about the exposure-response relationship.

To take advantage of the ODS scheme for right-censored data to yield more powerful and 

efficient inferences, Ding et al. (2014) proposed a general failure-time ODS sampling 
design. In such a general failure-time ODS design, a random sample (SRS) from the full 

cohort is selected. In addition, the range of observed failure time of all the cases is 

partitioned into mutually exclusive and exhaustive strata, and a supplemental sample from 

each stratum is selected. The measurements of primary exposure variables are only 

assembled for these two components. Like case–cohort designs, the general failure-time 

ODS design enriches the observed sample by selectively including certain failure subjects. 

The development of such a general ODS design for failure time data is interesting and 

significant in building a cost-effective sampling design in survival analysis related studies. 

Several authors studied the statistical inference methodologies for data from the general 

failure-time ODS design.

To further highlight the general ODS design with failure time data, suppose that there exists 

a study population of N independent individuals. Assume that the range of observed failure 

time of all the cases is partitioned into K mutually exclusive and exhaustive strata: Ak = 

(ak–1, ak], k = 1, . . . , K, by some known constants {ai, i = 1, . . . , K} which satisfy 0 = a0 < 

a1 < ··· < ak–1 < ak = τ. The general failure-time ODS design: First, a random sample of size 

n0 from the full cohort, denoted by the SRS sample, is selected. In addition, a supplemental 

sample of size nk is selected from each of the above kth stratum of cases. The samples from 

these two components constitute the ODS sample. Suppose that nk is fixed by design for k = 

1, . . . , K. Denote  to be the total size of the ODS sample. Let V, S0 and Sk be 

the index set of the total ODS sample, the SRS sample and the supplemental sample from 

the kth stratum, respectively. Hence, the observed data for the failure-time ODS design can 

be summarized as: (Ti, Δi, Zi) when i ∈ S0, and (Ti, Δi, Zi| Δi = 1, Ti ∈ Ak) when i ∈ Sk, k = 

1, . . . , K.

Ding et al. (2014) developed such a general failure-time ODS scheme and established 

estimation procedures under the proportional hazards model in (2). The likelihood function 

based on the observed data from the general failure-time ODS design is proportional to
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(19)

where fβ,Λ0 (t|Z) and F̄β,Λ0 (t|Z) are the conditional density function and survival function of 

T̃ given Z with the baseline cumulative hazard function Λ0(t), respectively, QZ (·) and qZ (·) 

denote the cumulative distribution and density function of Z, respectively, and SC(t) are the 

survival function of the censoring time C. Because the nonparametric portion (QZ, Λ0, SC) 

cannot be separated from the above likelihood function (19) that combines both the 

conditional parametric likelihood and the marginal semiparametric likelihood, Ding et al. 

(2014) developed an estimated maximum semiparametric empirical likelihood approach for 

estimation of the regression parameter.

By replacing Λ0 with the Breslow-Aalen estimator  and SC with the Nelson-Aalen 

estimator ŜC based on the SRS data in the above joint likelihood, an estimated likelihood 

function was obtained as

(20)

where , and for k = 1, . . . , K,

which are the stratum-specific estimated probabilities of the failure time across all cases. 

Maximizing the estimated likelihood (20) with respect to (β, QZ) by a semiparametric 

empirical approach without specifying QZ, the resulting profile likelihood function was 

obtained
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(21)

where π′ = (π1, . . . , πK). The proposed estimator is the β that maximizes (21).

Yu et al. (2015) developed a weighted pseudo-score estimator for the regression parameters 

of the additive hazards model (5) for data from the general failure-time ODS design. Let ξi 

indicate, by the values 1 or 0, whether or not the ith subject is selected into SRS portion. Let 

ηik denote whether or not the ith subject from the stratum Ak is selected into the 

supplemental sample. For estimating the regression parameter β, the following weighted 

pseudo-score equation was proposed by applying the inverse probability weighted approach,

where , and the weights wi were defined as

where , , , and  and ζik = I(Ti ∈ Ak).

The general failure-time ODS design proposed by Ding et al. (2014) is an improvement over 

the case–cohort design and the generalized case–cohort design, because the general failure-

time ODS design allows the sample selection of cases to depend on the timing of disease 

endpoints, i.e., by oversampling subjects from the most informative regions. To reap in the 

benefit of such a general failure-time ODS design, Ding et al. (2014) developed a new 

inferential method and provided an estimated maximum semiparametric empirical likelihood 

estimator for the parameters of primary interest under the proportional hazards model. For 

the additive hazards model, which focuses on risk differences rather than risk ratios, Yu et al. 

(2015) studied a weighted pseudo-score estimating procedure for estimation of regression 

parameter. The proposed estimators have a closed form and are easy to compute. Some 

suggestions for using the proposed method by evaluating the relative efficiency of the 

proposed method against simple random sampling design and the optimal allocation of the 

subsamples for the proposed design were derived. The above researches suggest that the 

general failure-time ODS design is a biased-sampling design which can enhance study 

efficiency and reduce study cost. Such a general failure-time ODS design can be an 

important alternative to the case–cohort design and the generalized case–cohort design in 
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survival-data related studies. Further developments on the general failure-time ODS design 

are desirable.

2.3 Other biased-sampling designs with failure time data

Other important biased-sampling designs with failure time data include length-biased 

sampling and interval sampling. When survival data arise from prevalent cases ascertained 

through a cross-sectional study, it is well known that the survivor function corresponding to 

these data is length biased. Length-biased sampling is frequently a convenient and 

economical sampling scheme for analyzing failure time data. The phenomenon of length 

bias has been first noticed in the context of anatomy by Wicksell (1925). Later 

systematically studied by Vardi (1982, 1989), Wang (1991), Correa and Wolfson (1999), 

Asgharian et al. (2002), and Asgharian and Wolfson (2005), among others. When analyzing 

prevalent cohort survival data with exposure variables, failure times are not a random sample 

from the study population. Thus, the corresponding exposure variables are also biased 

because they are associated with the long-term survivors. Related sampling issues have been 

discussed, e.g. Patil and Rao (1978), Patil et al. (1988), and Bergeron et al. (2008).

Wang (1996) first adopted the proportional hazards model to fit length-biased failure time 

data. The proposed estimation procedures used a bias-adjusted risk set sampling for the 

construction of the pseudo-likelihood. Ghosh (2008) proposed an estimating equation 

approach, which allows the length-biased data are subject to right censoring. Tsai (2009) 

obtained a pseudo-partial likelihood for proportional hazards models with biased-sampling 

data by embedding the biased-sampling data into left-truncated data. Shen et al. (2009) 

studied how to model exposure effects for length-biased data under transformation and 

accelerated failure time model. Qin and Shen (2010) proposed inverse weighted equation 

methods for estimating the regression parameter of the proportional hazards model. Qin et 

al. (2011) proposed new EM algorithms for the maximum likelihood estimators of the 

nonparametric and semiparametric proportional hazards models for right-censored length-

biased data.

Often in practice, instead of right censored, the event time is interval censored, that is, the 

event time for a subject falls into some random time interval. Under the proportional hazards 

model, Li et al. (2008) considered case–cohort data with interval censoring, where the 

inspection time intervals were assumed to be fixed. Current status data are a special type of 

interval censored data in which the inspection time interval are random. Li and Nan (2011) 

considered a family of semiparametric regression models for the current status data in two-

phase sampling designs, which include case–cohort designs as special cases. A weighted 

likelihood method was proposed by regarding two-phase sampling designs as a special 

missing data problem.

In many applications, interests often lie on the occurrence of two or more consecutive failure 

events and the relationship between event times. In such situations, data are often collected 

conditional on the first failure event which occurs within a specific time interval, and this 

fact induces bias. This type of sampling is referred to as interval sampling, where the first 

event is retrospectively identified and the subsequent failure events are observed during 

follow-up. Interval sampling occurs because only subjects with disease within a specific 
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time interval can be included, and the data represent a nonrandomly sampled subset of the 

population.

Recent researches include that, among others, Zhu and Wang (2012) developed the statistical 

features and bias of observed data in relation to interval sampling. Semiparametric methods 

were proposed under semi-stationarity and stationarity. Zhu and Wang (2014) proposed 

nonparametric estimation of the association between bivariate failure times based on 

Kendall's tau for interval sampling data. A nonparametric estimator was derived, where the 

contribution of each comparable and order able pair was weighted by the inverse of the 

associated selection probability. Zhu and Wang (2015) obtained bias-corrected estimators of 

marginal survival functions and estimated association parameter of copula model by a two-

stage procedure. Inference of association measure in copula model was developed, where 

exposure variables were incorporated into the survival distribution via the proportional 

hazards model.

3 ODS designs for multivariate failure time

An advantage of the case–cohort study design is that the subcohort can be used for multiple 

disease outcomes. Taking this advantage, in many studies, multiple case–cohort studies are 

conducted for different diseases using the same subcohort. A commonly used method for 

dealing with multiple disease outcomes is to analyze each disease separately. However, this 

approach does not allow comparison of the effects of risk factors for different diseases, 

because it does not account for the repeated use of the subcohort as well as the correlation 

between outcomes. Recently, several methodologies have been developed to analyze case–

cohort and generalized case–cohort data with multiple disease outcomes.

Suppose that there are N independent subjects in a cohort study and there are K diseases 

outcomes of interest. Consider independent failure time response vectors T̃
i = (T̃

i1, . . . , T̃
iK)

′ for i = 1, . . . , N. Let Cik denote the potential censoring time for outcome k of subject i. 
The observed time is Tik = min(T̃

ik, Cik). Let Δik = I(T̃
ik ≤ Cik) denote the right censoring 

indicator for outcome k of subject i, Yik(t) = I(Tik ≥ t) denote the at-risk process and Nik(t) = 

Δik I (Tik ≤ t) denote the counting process. Let Zik(t) be a p-dimensional exposure variable 

corresponding to the kth disease outcome for subject i at time t. Let β be a p-dimensional 

parameter of interest. Let τ denote the study end time.

Kang and Cai (2009) proposed to fit data from the case–cohort design with multiple disease 

outcomes with a marginal intensity process model:

(22)

where λ0k(t) is an unspecified baseline hazard function for disease outcome k. A subject 

may experience all, only some, or even none of the K diseases. Model (22) can incorporate 

failure-type-specific effects and includes the model
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as a special case. By defining  and 

, disease-specific effects can be obtained by model 

(22).

Under the case–cohort design, suppose a subcohort of size n is selected from the cohort by 

simple random sampling. Let ξi denote the indicator for the ith subject being selected into 

the subcohort and P(ξi = 1) = π = n/N denote the selection probability of the ith subject. The 

observed data structure for the kth disease outcome of the ith subject is (Tik, Δik, ξi, Zik(t), 0 

≤ t ≤ Tik) when ξi = 1 or Δik = 1 and (Tik, Δik, ξi) when ξi = 0 and Δik = 0. Kang and Cai 

(2009) developed the following pseudo-partial-likelihood score equation for the estimation 

of β,

(23)

where wik(t) is a time-varying weight function which has the form:

where

This weight function equals to 1 for the cases regardless of wether they belong to the 

subcohort or not, and  for the sampled censored subjects, where  is the estimator 

of the true sampling probability π.  denotes the number of sampled censored subjects 

divided by the number of censored subjects remaining in the risk set at time t, which means 

 is constructed using only censored subjects. This type of time-varying weight 

function, as it was discussed under the univariate failure time context, may enhance the 

efficiency.

Kim et al. (2013) further improved efficiency for the case–cohort studies with multiple 

disease outcomes under the marginal proportional hazards regression model (22). The new 

weights
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where

were used to replace wik(t) in the score function (23) to obtain the proposed pseudo-

likelihood estimator. The weight function wĩk(t) takes the failure status of the other diseases 

into consideration, and thus the proposed estimator will use the available exposure 

information for other diseases, which makes the estimators proposed by Kim et al. (2013) 

are more efficient than the estimators of Kang and Cai (2009).

Under the generalized case–cohort design, suppose a subcohort of size n is sampled from the 

cohort by simple random sampling. After the sampling of a subcohort, subsequent samplings 

of cases outside the subcohort follow. For the kth disease, let nc,k denote the number of cases 

that are outside the subcohort. Let ηik denote the indicator for the ith subject outside the 

subcohort with the kth disease being selected into the sample. Denote by qk = P(ηik = 1|Δik = 

1, ξi = 0) = nc,k/(Nk – nk) the selection probability of subjects who have the kth disease but 

are outside the subcohort, where Nk and nk denote the number of the kth disease cases in the 

cohort and in the subcohort, respectively. The observed data structure for the kth disease 

outcome of the ith subject is (Tik, Δik, ξi, ηik, Zik(t), 0 ≤ t ≤ Tik) when ξi = 1 or ηik = 1 and 

(Tik, Δik, ξi, ηik) when ξi = 0 and ηik = 0. When qk = 1 for all k, it reduces to the original 

case–cohort design that samples all the cases outside the subcohort.

For the generalized case–cohort study with multiple disease outcomes, Kang and Cai (2009) 

also fitted data to the marginal proportional hazards model (22), and constructed the 

following weighted estimating functions for the estimation of the hazards regression 

parameter β:

where

(24)

and
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(25)

This idea is similar to their proposed method for the original case–cohort design (see 23). 

Subcohort cases are weighted by 1, and subjects censored for disease k in the subcohort are 

weighted by . The sampled non-subcohort cases are weighted by the inverse of their 

estimated sampling probabilities, , where  denotes the number of sampled non-

subcohort cases with the kth disease outcome divided by the number of non-subcohort cases 

with the kth disease outcome remaining in the risk set at time t.

Kang et al. (2013) considered fitting marginal additive hazards regression model for the 

generalized case–cohort designs with multiple disease outcomes. The model is

(26)

where λ0k(t) is an unspecified baseline hazard function for disease outcome k. Model (26) 

also incorporates disease-specific effects like model (22). Kang et al. (2013) proposed the 

weighted estimating equation:

where , and wik(t) and  have the same definitions as (24) and 

(25). The resulting estimator possesses a closed form:

Besides the multiple disease outcome data, other kinds of multivariate failure time data have 

become increasingly common in practice as a result of growing interest in studying disease 

incidence and clustering due to environmental factors and genetics. Lu and Shih (2006) 

proposed case–cohort designs adapted to clustered failure time data. The main principle of 

their proposed case–cohort designs is to determine the random subcohort from which the 

exposure data are assembled in addition to those from all cases. Lu and Shih (2006) 

considered several sampling schemes and developed the estimation procedures by fitting the 

proposed case–cohort design with clustered data under the proportional hazards model. The 

proposed approaches were derived by the principle similar to that of the pseudo-likelihood 

function of Self and Prentice (1988), but extended to accommodate the proposed subcohort 

selection procedures and to account for intracluster association.
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The above literature on ODS designs with a univariate and multivariate failure time also 

studied the asymptotic properties, e.g. consistency and asymptotic normality, of the 

proposed estimators. Feasible estimators of variance, usually the small-sample expression of 

the large-sample formula, are naturally derived from the asymptotic variance of the proposed 

estimators. Some technical challenges arise from the biased-sampling designs because the 

observations are not independent. For example, asymptotic properties have been established 

by using techniques such as empirical likelihood method, empirical process theory, 

martingale convergence theory, and U-statistics theory, etc. The key for the studies of 

theoretical results is to address the challenges introduced by the counterpart data of the 

subcohort or supplemental samples in the ODS designs with survival data.

4 Discussion

Epidemiologic studies often require a long follow-up of subjects in order to observe 

meaningful outcome results. The cost for a large cohort study and a long period of follow-up 

time could be very expensive. Efficient sampling designs and statistical methods, which can 

reduce the study cost and improve the study power under a limited budget, are always 

desirable. Several cost-effective biased-sampling designs for failure time data have been 

developed and various estimating procedures have been proposed. This paper reviewed 

recent progresses in ODS designs with failure time data.

One advantage of the general failure-time ODS design is, while providing an overall 

information, to allow the sample selection of cases to depend on the timing of disease 

endpoints. The general failure-time ODS design is an improvement of the simple random 

sampling design, the case–cohort design and the generalized case–cohort design, especially 

in the situations that the disease rate is not low or investigators have not enough budget to 

sample all cases. Despite the progresses in the development of analyzing failure time data 

from a biased-sampling design, the methodologies to address data from such a general 

failure-time ODS design have been limited.

Extensions of the constructions of weighted estimating equations or likelihood functions 

would be worthwhile to consider. One extension is to adopt time-varying weights instead of 

weights based on simple sampling probabilities. Another extension is to include information 

available from the first-phase data in estimating equations or likelihood functions. For 

example, if the observed times are available for all the subjects in the cohort, incorporating 

failure times or censoring times of those who do not belong to the ODS samples in 

constructing estimating equations or likelihood functions could enhance the efficiency. Due 

to the fact that applying a stratified sampling scheme for selecting the subcohort could 

improve the efficiency of case–cohort designs, future developments of a stratified failure-

time ODS design is justified, where the SRS portion is selected by a stratified sampling 

scheme.

In more and more applications, investigators tend to take interests in multivariate failure-

time outcomes. Future researches include incorporating information of some always 

observed auxiliary variables in the weight functions of the estimating equations to improve 

efficiency further. For example, similar idea of Kulich and Lin (2004) could be modified to 
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fit case–cohort data with multiple disease outcomes. Recent works of case–cohort design 

with multivariate failure times have focused on estimating equation approaches. Specifying 

the joint distribution of the correlated failure times from the same subject, nonparametric 

maximum likelihood estimations based on the joint likelihood function for case–cohort data 

will derive more efficient estimators. In order to make use of the advantage of an ODS 

design, which could oversample from the regions of most information, the development of a 

multivariate failure-time ODS design will be an interesting topic.
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