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ABSTRACT

While the recent success of adeno-associated virus (AAV)-mediated gene therapy in clinical trials is promising, challenges still
face the widespread applicability of recombinant AAV(rAAV). A major goal is to enhance the transduction efficiency of vectors
in order to achieve therapeutic levels of gene expression at a vector dose that is below the immunological response threshold. In
an attempt to identify novel compounds that enhance rAAV transduction, we performed two high-throughput screens compris-
ing 2,396 compounds. We identified 13 compounds that were capable of enhancing transduction, of which 12 demonstrated vec-
tor-specific effects and 1 could also enhance vector-independent transgene expression. Many of these compounds had similar
properties and could be categorized into five groups: epipodophyllotoxins (group 1), inducers of DNA damage (group 2), effec-
tors of epigenetic modification (group 3), anthracyclines (group 4), and proteasome inhibitors (group 5). We optimized dosing
for the identified compounds in several immortalized human cell lines as well as normal diploid cells. We found that the group 1
epipodophyllotoxins (teniposide and etoposide) consistently produced the greatest transduction enhancement. We also ex-
plored transduction enhancement among single-stranded, self-complementary, and fragment vectors and found that the com-
pounds could impact fragmented rAAV2 transduction to an even greater extent than single-stranded vectors. In vivo analysis of
rAAV2 and all of the clinically relevant compounds revealed that, consistent with our in vitro results, teniposide exhibited the
greatest level of transduction enhancement. Finally, we explored the capability of teniposide to enhance transduction of frag-
ment vectors in vivo using an AAV8 capsid that is known to exhibit robust liver tropism. Consistent with our in vitro results,
teniposide coadministration greatly enhanced fragmented rAAV8 transduction at 48 h and 8 days. This study provides a founda-
tion based on the rAAV small-molecule screen methodology, which is ideally used for more-diverse libraries of compounds that
can be tested for potentiating rAAV transduction.

IMPORTANCE

This study seeks to enhance the capability of adeno-associated viral vectors for therapeutic gene delivery applicable to the treat-
ment of diverse diseases. To do this, a comprehensive panel of FDA-approved drugs were tested in human cells and in animal
models to determine if they increased adeno-associated virus gene delivery. The results demonstrate that particular groups of
drugs enhance adeno-associated virus gene delivery by unknown mechanisms. In particular, the enhancement of gene delivery
was approximately 50 to 100 times better with than without teniposide, a compound that is also used as chemotherapy for can-
cer. Collectively, these results highlight the potential for FDA-approved drug enhancement of adeno-associated virus gene ther-
apy, which could result in safe and effective treatments for diverse acquired or genetic diseases.

Adeno-associated viral (AAV) vectors have emerged to be one
of the most promising types of vectors for gene therapy. In-

deed, recent and ongoing clinical trials have reported improve-
ments in patients with hemophilia B (1), Parkinson’s disease (2,
3), Leber congenital amaurosis (4–7), and Canavan disease (8).
Such clinical successes have led to the approval of recombinant
AAV (rAAV)-mediated gene therapy in the European Union for
the treatment of lipoprotein lipase deficiency (LPLD) (9). Enthu-
siasm for using rAAV vectors stems from the unique properties of
the virus itself. As naturally occurring AAV requires a helper virus
such as adenovirus or herpes simplex virus in order to carry out a
productive infection, AAV on its own is not known to cause dis-
ease in humans. AAV vectors are comprised of transgenic DNA
(�5 kb) with the only viral sequence being the 145-nucleotide
inverted terminal repeats (ITRs). Furthermore, naturally occur-
ring serotypes and engineered capsids have been shown to display
diverse tissue tropism, as well as the ability to infect both dividing

and nondividing cells (for a review, see reference 10). From a
vector perspective, the use of AAV for gene therapy applications is
limited only by the size of the vector, which consists of a transgene
of approximately 4.7 kb (11). However, even the size limitations of
rAAV vectors are being challenged with the development of trans-
splicing and fragment vector (fAAV) technology; that is, transgene
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cassettes that rely on cellular recombination pathways to restore a
full-length, large genome upon delivery by multiple rAAV vectors
(12–19).

Despite its remarkable safety profile, gene therapy using AAV
vectors has had limited success in applications requiring systemic
delivery, namely, to nonimmunoprivileged sites (as opposed to
direct injection into various tissues or to immunoprivileged re-
gions). Results from clinical trials utilizing either rAAV2 or
rAAV8 to deliver human factor IX to hemophilia B patients have
suggested that capsid-specific cytotoxic T lymphocytes (CTLs)
might have eliminated the majority of transduced cells, thus im-
peding successful gene expression (1, 20). In these dose escalation
trials, therapeutic protein levels were achieved at the highest vec-
tor doses administered; however, these levels were transient and
their decline corresponded with a rise in liver transaminases, sug-
gestive of transduced cell death. There was no rise in liver enzymes
detected at the lower doses tested, suggesting that gene transfer to
achieve protein levels that would be deemed therapeutic is limited
by the amount of capsid that can be delivered to the host (21). It
has thus been postulated that if transduction efficiency could be
improved (including both gene transfer and expression), fewer
vectors would be required to achieve a given level of gene expres-
sion, and thus a clinically relevant therapeutic protein level could
be obtained without eliciting a host immune response (22).

Several strategies have been employed in order to enhance
transduction efficiency. Both rational mutagenesis and library-
based approaches have been designed to create capsids that have
increased transduction efficiency for particular tissue types as well
as decreased tropism for nontarget organs such as the liver (23–
28). Barriers within the intracellular trafficking pathway have also
been circumvented based on rationally engineered capsids (29,
30). Improvements to transgene design, including self-comple-
mentary rAAV and tissue-specific promoters, ensure faster and
more-robust onset of gene expression in target tissues (31–34).
Finally, enhancing transduction efficiency through the use of
pharmacological agents has been explored. Previous work has
shown that topoisomerase inhibitors and anthracyclines can en-
hance transduction both in vitro and in vivo (35–42). Proteasome
inhibitors, particularly the FDA-approved bortezomib (Velcade),
have been shown to enhance transduction in vitro as well as in
both small- and large-animal models (39, 40, 43). Collectively,
these strategies have been important in reaching the level of trans-
duction required for therapeutic benefit without eliciting a host
immune response; however, efficient transduction in a wide vari-
ety of clinical applications is still a major goal that is actively being
pursued.

In this study, we performed a high-throughput, small-mole-
cule screen with the purpose of identifying additional compounds
that enhance rAAV2 transduction. Validation of this approach
was confirmed by the transduction augmentation of the previ-
ously identified topoisomerase II inhibitors, anthracyclines, and
proteasome inhibitors in our small-molecule screen. Addition-
ally, we identified several novel compounds and further char-
acterized those with reported functions based on existing liter-
ature. Collectively, these transduction-enhancing compounds
could be grouped into 5 categories: epipodophyllotoxin topo-
isomerase II inhibitors (group 1), DNA damage inducers (group
2), effectors of epigenetic modification (group 3), anthracyclines
(group 4), and proteasome inhibitors (group 5). We also identi-
fied a single agent that enhanced rAAV2 transduction through an

unrelated mechanism. The ability of these compounds to enhance
transduction was confirmed in vitro using several human cell
lines, including a normal diploid cell line, NHF-1. Some of these
compounds were shown to be effective in enhancing self-comple-
mentary rAAV2 (scAAV2) but to a lesser extent than single-
stranded rAAV2. Interestingly, the compounds exerted the great-
est degree of enhancement on fAAV2, restoring transduction to
levels equivalent to or surpassing that of single-stranded rAAV2.
We further examined the activity of compounds identified in our
screen that are currently approved for clinical use in vivo and
found that, consistent with our in vitro results, one such com-
pound—teniposide— exhibited the greatest level of transduction
enhancement. Given the impact of teniposide on fAAV2, we ex-
plored its capability to enhance transduction of fragment vectors
in vivo using an AAV8 capsid that is known to exhibit robust liver
tropism. Consistent with our in vitro results using fAAV2, tenipo-
side coadministration enhanced fragmented rAAV8 transduction
both at 48 h and through the duration of the experiment (8 days).
Our results demonstrate a simple, effective method of discovering
compounds that enhance rAAV2 transduction. We anticipate that
this approach can be applied to vectors derived from other sero-
types and in other cell lines. Furthermore, our design provides a
foundation to investigate the plethora of commercially available
compound libraries that span the small-molecule and FDA-ap-
proved drug milieu.

MATERIALS AND METHODS
Cell culture. HeLa cells, U87 cells, and normal human fibroblasts
(NHF1s) were grown in Dulbecco’s modified Eagle medium that was
supplemented with 10% heat-inactivated fetal calf serum, 100 U/ml pen-
icillin, and 100 g/ml streptomycin (complete DMEM). HepG2 cells were
grown in RPMI 1640 medium, supplemented as described above. All cell
lines were maintained at 37°C and 5% CO2.

Virus production. Virus was produced in HEK-293 cells as previously
described (44). Briefly, using polyethylenimine (PEI) Max (Polysciences),
cells were triple transfected with a Rep and Cap plasmid (pXR2 or pXR8),
an inverted terminal repeat-flanked transgene plasmid (single-stranded
pTR-CBA-Luciferase, self-complementary pTR-CMV-gaussia-Lucifer-
ase, or oversized pTR-CBA-Luciferase, where CBA is chicken-beta actin
and CMV is cytomegalovirus), and the pXX6-80 helper plasmid. Between
48 and 72 h posttransfection, cells were harvested and virus was purified
by cesium chloride gradient density centrifugation overnight at 55,000
rpm. Fractions that contained peak virus titers were dialyzed in dialysis
buffer (1� phosphate-buffered saline [PBS], 0.5% sorbitol, 0.5 mM cal-
cium chloride, and 1 mM magnesium chloride). Titers were calculated by
quantitative PCR (qPCR) according to established procedures (16) by
using a LightCycler 480 instrument with Sybr green PCR master mix.
Conditions used for the reaction were as follows: 1 cycle at 95°C for 10
min; 45 cycles at 95°C for 10 s, 62°C for 10 s, and 72°C for 10 s; and 1 cycle
at 95°C for 30 s, 65°C for 1 min, and 99°C for acquisition.

Compound screen, 384-well format. HeLa cells were plated at least 18
h prior to compound treatment and infection at a density of 8 � 103

cells/well. Compounds were prepared in complete DMEM so that delivery
would yield a final concentration of 1 �M. Compounds were added di-
rectly to wells. Two hours posttreatment, rAAV2-CBA-Luciferase was ad-
ministered at a dose of 1,000 vector genomes (vg)/cell. Cells were har-
vested 24 h postransduction by medium removal followed by incubation
with passive lysis buffer (Promega) for 15 min. Luciferase activity was
measured in accordance with the manufacturer’s instructions (Promega).
Luciferase activity was measured either a PerkinElmer 1450 MicroBeta
TriLux LSC and luminescence counter or a PerkinElmer 2450 MicroBeta2

microplate counter. Compounds that enhanced transduction �2-fold
over dimethyl sulfoxide (DMSO) treatment were considered hits for fur-
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ther study. Cell viability was measured using the CellTiterGlo luminescent
cell viability assay (Promega).

Secondary screen, 96-well format. HeLa cells were plated at least 18 h
prior to compound treatment and infection at a density of 2 � 104 cells/
well. Compounds were prepared in complete DMEM at a concentration
of 10 �M. Medium was replaced with medium containing each com-
pound. Two hours posttreatment, rAAV2-CBA-Luciferase was adminis-
tered at a dose of 500 vg/cell. Cells were harvested 24 h postinfection via
incubation with passive lysis buffer (Promega) for 15 min. Luciferase
activity was measured in accordance with the manufacturer’s instructions
(Promega). Luciferase activity was measured with a Wallac 1420 Victor3
plate reader. Compounds that enhanced transduction �5-fold over
DMSO treatment were considered hits for further study.

Transduction assays. Cells were plated at least 18 h prior to infection
in 96-well plates at a density of 2 � 104 cells/well. Compound treatment
was performed 2 h prior to infection. Compounds were either provided by
the Drug Testing Program or were commercially available (teniposide
from Sigma; nanaomycin from Apex Bio; daunorubicin and vorinostat
from LC Laboratories). Cells were infected with purified rAAV2-
CBA_Luc at 500 vector genomes/cell. Cells were harvested 24 h postinfec-
tion, and luciferase activity was determined as described above. For
scAAV, cells were treated as described above. At 24 h postinfection, 20 �l
of medium was transferred to a black 96-well plate. The luciferase assay
was performed using coelenterazine (Nanolight) as the reagent. Briefly,
the coelenterazine was resuspended to 10 mg/ml in methanol. To make
the working solution, the concentrated stock was dissolved in Tris-EDTA
(TE) buffer containing NaCl (0.6 M) at a 1:200 dilution. The working
solution was added to the wells at a 1:1 ratio of medium to coelenterazine,
and luciferase activity was recorded.

Transfection assays. Two million HeLa cells were plated at least 18 h
prior to transfection in a 10-cm plate. Cells were transfected with 1 �g
pTR-CBA-Luc using PEI Max. Twenty-four hours posttransfection, cells
were plated in a 96-well plate at a density of 2 � 104 cells/well. At 48 h
posttransfection, cells were treated with the indicated drugs. At 72 h post-
transfection, cells were harvested and luciferase activity was measured.

Animal studies. Housing and handling of BALB/c mice used in the
study were carried out in compliance with National Institutes of Health
guidelines and approved by the IACUC at the University of North Caro-
lina Chapel Hill. All drugs and rAAV-Luc were coadministered through
the intravenous route (tail vein) in a total volume of 200 �l (normalized

with l� PBS). For toxicity analysis, 24 h postadministration blood was
collected and serum was assessed for blood urea nitrogen (BUN), aspar-
tate aminotransferase (AST), alanine aminotransferase (ALT), and crea-
tine kinase (CK). Bioluminescence of Luc expression was visualized by
using a Xenogen IVIS Lumina imaging system (PerkinElmer) following
intraperitoneal injection of luciferin substrate (120 �l; Nanolight). Image
acquisition and analysis were carried out by using Living Image software.

RESULTS
Primary and secondary screens. The overall goal of our study was
to identify and characterize small molecules that enhanced rAAV
transduction in vitro and, if the small molecule was FDA approved
at the time, in vivo. Two screens were performed to identify such
compounds. The first was a stringent screen using a 1 �M final
compound concentration to identify compounds capable of po-
tentiating rAAV2 transduction at low concentrations. In each
plate, column 1, row 1 contained no virus and no compounds,
column 2, row 2 contained rAAV2 but no compounds. Column
24, row 4 contained 1 �M MG132 as a positive control. Column
23, row 3 contained rAAV2 with only DMSO (vehicle control). All
compounds were administered in duplicate. Finally, each plate
contained two sets of the given controls and compounds, whereby
rows 1 to 8 (top, gray) were assayed for transduction activity and
rows 9 to 16 (bottom, white) were assayed for viability using the
CellTiterGlo system. As the vast majority of AAV biology has been
discovered using AAV2 or rAAV2 in HeLa cells, our primary and
secondary screens were performed using these parameters. Owing
to its wide range in output and linear relationship to vector dose,
the CBA-luciferase transgene, and thus luciferase activity, was
chosen as the reporter for transduction efficiency. A secondary
screen utilized a high (10 �M) final compound concentration in
tandem with employing rAAV2 to HeLa cells at 500 vg/cell. The
format of this screen utilized DMSO added to all wells in column
1, row 1 as a vehicle control, while two wells in column 12, row 2
contained MG132 as a positive control. Cell viability was not as-
sessed at this stage. A combined list of the compounds that were
pursued further is provided in Table 1.

TABLE 1 Compounds characterized in this studya

Group no. Compound name NSC IDb Clinical use Group Known mechanism of action

1 Teniposide 122819 Chemotherapy Podophyllotoxin Topoisomerase II inhibition
Etoposide 141540 Chemotherapy

2 Bleomycin 125066 Chemotherapy, plantar warts Glycopeptide antibiotic DNA damage
Parthenin 85239 Sesquiterpene lactone
RH-1 697726 Phase I, solid malignancies Diaziridinylbenzoqui none

3 Vorinostat 701852 Chemotherapy HDAC inhibitor HDAC inhibition
Nanaomycin A 267461 DNMT3B inhibitor DNMT3B inhibition

4 Menogaril 269148 Anthracycline DNA intercalation, topoisomerase
II inhibition, polymerase
inhibition, free radical damage
to DNA

Pyrromycin 267229
Daunorubicin 82151 Chemotherapy

5 Bortezomib 681239 Chemotherapy Dipeptide Proteasome inhibition
Physalin B 287088 Physalin
Siomycin 285116 Thiazole antibiotic
Tetrocarcin A 333856 Microbial metabolite BCL-2 inhibitor

a Compounds that emerged as hits were selected based on known function in cells or clinical utility.
b NSC ID, National Service Center identifying number.
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In the primary screen, an initial “hit” was defined as a com-
pound that enhanced transduction at least 2-fold, while in the
secondary screen, an initial “hit” was defined as a compound that
enhanced transduction at least 4-fold. From the hits found in both
screens (a total of 72), we chose to further study compounds that
had known functions based on existing literature. However, it is
noteworthy to mention that several compounds with as-yet-un-
known function were identified as hits, some enhancing transduc-
tion 5- to 10-fold. These compounds warrant validation in further
studies, but further characterization was deferred in order to bet-
ter understand the compounds with reported mechanisms of ac-
tion. Of these hits, compounds could be further categorized into
groups based on their known cellular mechanisms of action (Ta-
ble 1). Group 1 compounds included the epipodophyllotoxins
teniposide and etoposide, which have been shown to inhibit topo-
isomerase II activity and cause DNA damage. Of these, etoposide
has been previously identified as having rAAV2 transduction-po-
tentiating activity, likely through mechanisms related to DNA
damage repair proteins induced by etoposide-mediated inhibition
of topoisomerase II (38). Group 2 compounds comprised other
small molecules that are known to cause DNA damage, although not
necessarily through topoisomerase II inhibition. These included the
glycopeptide antibiotic bleomycin, which is known to cause DNA
double-strand breaks (45), the sesquiterpene lactone parthenin,
which has been shown to induce chromatid breaks (46), and the
diaziridinylbenzoquinone RH1, a DNA cross-linker (47).

Group 3 compounds, nanaomycin A and vorinostat, are char-
acterized by their ability to facilitate epigenetic modifications of
DNA. While the quinine antibiotic nanaomycin A has been shown
to generate oxygen free radicals and cause DNA damage (48, 49),
it has also recently been identified as an inhibitor of DNA meth-
yltransferase 3B (DNMT3B) (50), thereby inhibiting epigenetic
repression of gene expression. Vorinostat (suberanilohydroxamic
acid [SAHA]) belongs to the class of histone deacetylase inhibi-
tors, which function in cells to cause an accumulation of acety-
lated histones and transcription factors, which in general increases
gene expression (51, 52). Group 4 compounds consisted of an-
thracyclines, which are compounds that have been shown to exert
a variety of effects, including inhibition of topoisomerase and
proteasomal activity. These compounds included menogaril, pyr-
romycin, and the chemotherapeutic daunorubicin. A related an-
thracycline, doxorubicin, has been characterized for its enhance-
ment of rAAV transduction (39, 40); therefore, it is likely that
these other anthracyclines potentiate rAAV transduction through
similar mechanisms.

We also identified several nonanthracycline compounds that
have been shown to have proteasome-inhibiting activity (group
5). These included bortezomib, physalin B, and siomycin. Bort-
ezomib, an FDA-approved proteasome-inhibiting agent, has been
explored for rAAV applications in a variety of cell lines and animal
models and using different serotypes (43, 53–56). Thus, the iden-
tification of bortezomib within the screen inadvertently served as
an internal control in validating our experimental setup. In addi-
tion to its proteasome-inhibiting properties (57), physalin B has
also been shown to have anti-inflammatory and other immuno-
modulatory activity (58). The proteasome-inhibiting activity of
siomycin has been correlated with its role as an inhibitor of the
transcription factor forkhead box M1 (FOXM1) (59–61).

Finally, we identified one compound, tetrocarcin A, that could
not be categorized into any of groups 1 to 4 but did show modest

levels of rAAV2 transduction enhancement. Tetrocarcin A has been
shown to inhibit the antiapoptotic function of Bcl-2 (62) and induce
endoplasmic reticulum (ER) stress (63), the latter condition of which
we previously demonstrated to increase transduction (64).

In addition, our screen yielded several compounds that are
known to interfere with microtubule dynamics, including colchi-
cine, vincristine, and vinblastine, among others; however, these
were excluded from further study as it has already been demon-
strated that these microtubule inhibitors inhibit the cell cycle at
low concentrations (65), which is likely the mechanism behind
their transduction enhancement. In fact, at higher concentrations,
these drugs have been shown to inhibit viral trafficking to the
nucleus as well as transduction (66, 67).

Dose optimization of compounds in HeLa cells. In order to
further characterize the active compounds from our screen, we
wanted to determine an optimal concentration that would result
in the greatest enhancement of transduction without causing
overt toxicity. To avoid potential side effects caused by DMSO, the
final concentration of compounds was limited to 100 �M for
high-dose applications. Based on these concentration boundaries,
it is possible that compounds that both were well tolerated by cells
and substantially enhanced transduction at higher concentrations
(such as etoposide and bleomycin) may be capable of enhancing
transduction at an even greater level than what was determined
under our experimental conditions. For some compounds, the
therapeutic window was quite small in that there was a very sharp
decrease in cell viability as the concentration of the compound was
increased. A notable example was menogaril, which at 5 �M
showed a �10-fold enhancement and approximately 100% viabil-
ity but at 10 �M resulted in an approximately 50% reduction in
viability, which corresponded to a reduction in transduction en-
hancement as well (data not shown). The epipodophyllins tenipo-
side and etoposide, as well as the DNA-damaging agent bleomy-
cin, were the strongest augmenters in this assay, each increasing
transduction over 20-fold. The proteasome inhibitors bortezomib
and physalin B also showed enhancement over 10-fold.

Effects of compounds on vector transduction versus general
gene expression. Given the identified compounds’ impressive
utility across multiple cell lines, it was important to investigate
whether the observed increase in transgene expression was due to
a mechanism related specifically to rAAV vectors. To this end,
HeLa cells were transfected with pTR-CBA-Luc, the transgene
plasmid used to generate the above-described single-stranded vec-
tor constructs, and assayed for enhancement of luciferase activity
following compound administration (Fig. 1). Most compounds
elicited a negligible change in luciferase activity. For example,
physalin B induced an approximately 2-fold increase in plasmid
luciferase expression but a �10-fold increase in transduction,
Some of the compounds even elicited a decrease in gene expres-
sion when tested with the plasmid vector cassette. The only excep-
tion was the histone deacetylase (HDAC) inhibitor vorinostat,
which increased luciferase expression of the transfected plasmid to
an extent similar to that seen with incoming vectors. It is noted
that increased plasmid-borne transgene expression in this case
does not simply imply that a similar mechanism of enhancement
occurs with AAV vectors. However, in attempts to focus on drug
enhancement of AAV vectors specifically, vorinostat was excluded
from further analysis.

Characterization of compound activity in human cell lines.
Given the ability of the identified compounds to enhance the
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transduction of rAAV2 in HeLa cells (Fig. 2A), we further ex-
plored the utility of these compounds in different cell types to
better understand their potential universal utility. The first such
cell line examined was U87, a human glioblastoma cell line that is
amenable to rAAV2 transduction (Fig. 2B). Overall, the fold en-
hancement of each of the compounds was very similar to what was
observed in HeLa cells, with a few exceptions. While teniposide
enhanced transduction approximately 40-fold in HeLa cells, en-
hancement was seen at 20-fold in U87 cells. Interestingly, while
bortezomib enhanced transduction by approximately 15-fold in
HeLa cells, enhancement was only approximately 3-fold in U87
cells. However, the level of enhancement obtained with by another

compound with proteasome-inhibiting activity, physalin B, re-
mained similar in both cell lines (12-fold in HeLa cells and 10.5-
fold in U87 cells). We next evaluated these compounds in HepG2
cells, a hepatocellular carcinoma cell line, as the liver is the site of
transduction for systemically delivered rAAV2 (Fig. 2C). For
treatment with pyrromycin, nanaomycin A, physalin B, bort-
ezomib, and tetrocarcin A, transduction enhancement was ob-
served at approximately the same magnitude as that seen with
HeLa cells. Treatment with the epipodophyllotoxins, anthracy-
clines, siomycin, and RH-1 resulted in enhancements 4- to
12-fold greater than that observed in HeLa cells. Notably,
menogaril, which enhanced rAAV2 transduction in HeLa cells
approximately 12-fold, enhanced transduction in HepG2 cells
138-fold. Finally, our compound collection was applied to
NHF1 cells (a kind gift from William Kaufman), a diploid cell
line derived from neonatal foreskin and immortalized by the
expression of telomerase reverse transcriptase (hTERT) that
displays contact inhibition and stationary growth once conflu-
ent (68) (Fig. 2D). Again, treatment with the epipodophyllo-
toxins and anthracyclines (especially menogaril) significantly
enhanced transduction at magnitudes much greater than what
was observed in HeLa cells. Treatment of NHF-1 cells with
bleomycin also resulted in impressive transduction enhance-
ment (approximately 100-fold). These results suggest that in
general, the group 1 epipodophyllotoxins, causing DNA dam-
age from topoisomerase II inhibition, consistently yielded the
greatest enhancement in transduction. Proteasome inhibition,
particularly by bortezomib, was more variable and cell type
dependent. It is possible that the enhancing ability of these

FIG 1 Effects of compounds on plasmid gene expression. HeLa cells were
transfected with pCBA-Luc and treated with the compounds identified in our
screen. Transduction was assessed 24 h after compound treatment. Of the hits,
vorinostat appears to be the only compound that enhances plasmid gene ex-
pression.

FIG 2 Effects of compounds on human cell lines. Cells were treated with the identified compounds or dose-appropriate DMSO and later rAAV2_CBA-Luc.
Transduction was assessed 24 h after drug treatment. (A) HeLa cells; (B) U87 cells; (C) HepG2 cells; (D) NHF1 cells.
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compounds depends on the abundance of their actionable tar-
gets within cells. Thus, these results highlight the differences in
response to pharmacological modulation in different cell types,
which may influence the type of agent chosen to complement
rAAV-mediated gene therapy in a given target tissue.

Characterization of transduction-specific compound activ-
ity with vectors comprised of differentially formed transgenes.
Recent and emerging gene therapy applications have utilized
transgenes that differ in form from the prototypical single-
stranded AAV genome. For example, self-complementary vectors
contain a transgene whereby a third inverted terminal repeat
(ITR) in the middle of the transgene is mutated to eliminate the
Rep nicking stem (33). This yields a double-stranded gene prod-
uct, thus eliminating the rate-limiting step of second-strand syn-
thesis and providing a faster, more robust onset of expression (33,
69). Other emerging vectors designed to deliver large transgenes
are derived from the forced packaging of oversized genomes into
the viral capsid (13, 15, 16, 18, 19, 70). It is thought that the
packaged DNA becomes truncated at the 5= end once AAV has
reached its packaging limit, but delivery of these transgene “frag-
ments” still results in expression of the intact transgene through a
reannealing process modulated by the homologous recombina-
tion protein Rad51C (16). However, the transduction efficiency of
fAAV is impaired compared to that of rAAV or scAAV.

We therefore wanted to test the capabilities of the screen-iden-
tified compounds in enhancing the transduction of scAAV and
fAAV in HeLa cells. For scAAV, a vector carrying a cytomegalovi-
rus promoter-driven Gaussia luciferase transgene (CMV-gLuc)
was utilized. For fAAV, a previously described vector carrying the

same promoter and transgene as the single-stranded vector (CBA-
Luc), but with an additional 2.3-kb “stuffer sequence” inserted
into an intronic region upstream of the luciferase (16), was uti-
lized. A schematic of each of these vector transgenes is provided in
Fig. 3A. We applied the same optimized concentration of each
compound and tested their ability to enhance scAAV and fAAV
transduction at the same vector dose. With the exception of
daunorubicin and tetrocarcin A, the compounds still enhanced
scAAV transduction, but the magnitude of the effect was signifi-
cantly reduced (Fig. 3B). This suggests that these compounds may
also be acting at the step of second-strand (ss) synthesis. Since we
still observed enhancement of scAAV, albeit at a reduced capacity
compared to ssAAV, it is likely that these compounds augment
steps in transduction either before second-strand synthesis (such
as subcellular trafficking, nuclear entry, or uncoating) or in estab-
lishing the persistence of gene expression following second-strand
synthesis. Impressively, application of the compounds in con-
junction with fAAV2 enhanced transduction to a much greater
extent than with rAAV2 (Fig. 3C). Notably, treatment with teni-
poside, bortezomib, or bleomycin enhanced transduction over
250-fold, which was an 8- to 10-fold increase over the enhance-
ment seen in rAAV2. This result is particularly interesting, as each
of these drugs produces a different reported effect within cells. In
untreated cells, fAAV2 transduction was approximately 21- to 28-
fold lower than intact rAAV2, which is in agreement with previ-
ously reported results comparing fAAV2 and intact rAAV2 at
5,000 vg/cell (16). Treatment with any of the compounds restored
transduction of fAAV2 to levels (i) above untreated intact rAAV2
levels and (ii) within 2- to 10-fold of drug-treated intact rAAV2

FIG 3 Effects of identified compounds on vectors with different forms of transgenes. (A) Schematic of each of the transgene cassettes utilized in this study. Top,
single-stranded, intact; middle, self-complementary; bottom, fragment. HeLa cells were treated with each of the identified compounds and single-stranded
rAAV2 (B), scAAV2 (C), or fAAV2 (D) or dose-appropriate DMSO. Luciferase activity was measured 24 h following compound treatment.
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levels, depending on which compound is used. Taken together,
these results suggest that the identified compounds can enhance
the transduction efficiency of vectors with different forms of
transgenes and disproportionately benefit fAAV2 transduction in
HeLa cells.

In vivo analysis of FDA-approved hits. Owing to the appeal of
repurposing FDA-approved drugs to augment rAAV-mediated
gene transfer, we performed an in vivo comparison of rAAV2
transduction-potentiating capabilities of the hits identified in our
screen that are already FDA approved. Therefore, teniposide, eto-
poside, bleomycin, daunorubicin, and bortezomib were assessed.
The doses selected for in vivo study were chosen based on conver-
sions from the FDA-approved dosing in humans to the murine
equivalent based on body surface area and established Km factors
(71). As teniposide and etoposide are recommended for use over a
wide range of doses, they were administered in this study at a
conservative dose of 20 mg/kg of body weight (human equivalent
dose, (60 mg/m2). Each pharmaceutical was coadministered with
1 � 1011 vg rAAV2-CBA-Luc through tail vein injection in age-
matched female BALB/c mice. Two vehicle cohorts were included
in the study. We evaluated toxicity by measuring the levels of
blood urea nitrogen (BUN), aspartate transaminase (AST), ala-
nine transaminase (ALT), and creatine kinase (CK). These levels
appeared within normal ranges and were comparable to those in
the vehicle-treated mice. Average levels were similar for drug-
treated and vehicle-treated cohorts (data not shown).

Due to the impressive enhancement that we observed in vitro at
24 h postransduction, an early time point of gene expression was
measured to determine whether the pharmaceuticals could also
provide rapid, high-level gene expression in vivo. At 48 h postad-
ministration, all of the selected drugs enhanced transduction in
vivo, but to various degrees (Fig. 4A). Consistent with what was
seen in vitro, the epipodophyllotoxins as well as daunorubicin
enhanced transduction to the greatest extent. Notably, cotreat-
ment with teniposide enhanced transduction an average of nearly
100-fold (Fig. 4B). While teniposide and etoposide have the same
mechanism of action in cells (i.e., inhibition of the religation of
DNA ends through interference of the DNA-topoisomerase com-
plex), teniposide was a more potent augmenter of transduction at
this time point at the given dose. Upon assessment of transduction
8 days postadministration, enhanced transduction was noted
among all of the drug-treated cohorts (Fig. 4A). Teniposide coad-
ministration yielded the greatest enhancement in transduction at
this time point, followed by bortezomib. Daunorubicin cotreat-
ment also yielded impressive transduction enhancement at the 8
day time point. Bleomycin and etoposide cotreatment produced
only modest enhancement of transduction efficiency. This result
could be reflective of the in vivo dose limitations in order to reflect
clinical levels of each drug. In general, variability among treatment
groups, including vehicle-treated mice, was noticed and could
have been due to either an immune response against the luciferase
transgene in some mice, as has been historically observed, or per-
haps an effect of the vehicle (DMSO) on in vivo transduction.

Because coadministration of rAAV2 with teniposide showed the
most-robust transduction enhancement, and because of the robust
enhancement observed for fAAV2, we chose to test the ability of teni-
poside to enhance fragment rAAV in vivo as well. Due to the limited
systemic transduction capability of fAAV in vivo (16), we chose to test
the transduction using an AAV8 capsid, as intact rAAV8 vectors have
been shown to exhibit strong liver transduction (1, 44, 72). Due to the

difficulty in producing high-titer fAAV8, mice were administered
only 5 � 1010 vg. At 48 h postransduction, the teniposide-treated
cohort exhibited 34-fold-higher levels of luciferase activity than the
vehicle-treated cohort. Impressively, this enhancement was even
greater at 8 days postransduction, with the teniposide-treated cohort
exhibiting 86-fold-higher luciferase activity than the vehicle-treated
cohort (Fig. 5B).

Taken together, these results confirmed our observations in
vitro and corroborated that the greatest transduction augmenta-
tion arises from cotreatment with topoisomerase or proteasome
inhibitors. Furthermore, teniposide was shown to exhibit a robust
effect on fAAV8 transduction.

DISCUSSION

Recent gene therapy applications using rAAV have been met with
both success and challenges that depend on the indication, route
of administration, serotype, and vector dose utilized. Indeed, clin-
ical efficacy for one indication, lipoprotein lipase deficiency, has
been achieved to the extent that the first-ever gene therapy prod-
uct, an rAAV1 vector carrying a lipoprotein lipase transgene, is
now approved for use in the European Union (9). Results from
clinical trials have exposed the current limitations of rAAV-medi-
ated gene therapy, one of which is the lack of ability to achieve
robust, long-term therapeutic gene expression without eliciting
an immune response induced by high vector doses. Several strat-
egies have been employed to combat this challenge, including cap-
sid and transgene modification as well as pharmaceutical inter-
vention; however, they have been met with varied success and may
be limited to a particular serotype or tissue target. For example,
the elimination of certain tyrosines on the capsids of AAV2 and
AAV6 has allowed for enhanced transduction efficiency and lower
rates of proteasomal degradation (29, 30, 73); however, it has been
shown that this strategy cannot be applied to rAAV9 and attempts
with rAAV8 have produced mixed results (74, 75). Similarly, the
proteasome inhibitor bortezomib has been shown to enhance
transduction of both rAAV2 and rAAV8 vectors, resulting in in-
creased transgene expression in both small- and large-animal
models (43, 54, 55); however, a recent report has shown that this
strategy cannot be applied for rAAV9-mediated therapy for car-
diac failure (76). Thus, the need for a robust, widely applicable
strategy to enhance transduction would be highly beneficial in the
translation of rAAV-mediated gene therapy to a broad range of
applications. In addition, compounds that enhance rAAV trans-
duction may fall into classes that are tissue preferred; therefore,
new compounds will always be of interest to explore.

In this study, we employed a high-throughput small-molecule
screen to identify compounds capable of enhancing rAAV2 trans-
duction. Several compounds were identified, including some of
novel origin and some that have been previously defined. These
compounds were shown to have various activities on vectors com-
prised of different forms of transgenes, as well as some differential
effects in a variety of cell lines. Finally, selected compounds that
are currently being used in clinical applications were validated in
vivo. Overall, the greatest enhancers of transduction were drugs
that inhibit topoisomerase II, in particular, the group 1 epipodo-
phyllotoxins and the group 4 anthracyclines. Generalizing from
the entire collection of our identified hits, it seems that rAAV can
be enhanced by two mechanisms: (i) inhibition of the proteasome
and (ii) induction of DNA damage, which corroborates previously
published results (38, 39, 69, 77, 78).
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The epipodophyllotoxin and anthracycline topoisomerase II
inhibitors form complexes with DNA and topoisomerase II, an
enzyme required for the prevention of DNA supercoiling in eu-
karyotes. The topoisomerase II cycle includes (i) binding and
cleavage of duplexed DNA, (ii) passage of a second strand of DNA
through the complex, and (iii) religation of the broken DNA ends
(79). Both classes of topoisomerase II inhibitors prevent the reli-
gation step of this cycle, thus causing both single-stranded and
double-stranded DNA damage. While the direct role of topoisom-
erase II in the mechanism of rAAV transduction enhancement
cannot be ruled out, previous research suggests that the DNA

damage response, an indirect result of topoisomerase II inhibi-
tion, is likely the main contributor to the increase in transduction,
either through increased second-strand synthesis or by a currently
unknown mechanism (38, 80, 81). Indeed, this screen identified
several topoisomerase II-independent DNA-damaging agents,
such as bleomycin, parthenin, and RH1, as potentiators of rAAV2
transduction. In fact, bleomycin enhanced transduction to levels
similar to those of teniposide and etoposide treatment in U87 cells
(Fig. 1A). Several groups have shown that proteins involved in the
DNA damage response, including both homologous recombina-
tion and nonhomologous end joining, interact with incoming vi-

FIG 4 Analysis of transduction enhancement by compounds in vivo. (A) Live bioluminescent imaging of mice that were cotreated with rAAV2_CBA-Luc and
each of the clinically relevant compounds, imaged 48 h and 8 days postransduction. (B) Quantification of bioluminescent imaging. (C) Fold difference in
luciferase expression over vehicles.
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ral and vector genomes and have important roles in genome pro-
cessing. These processes are thought to include the conversion of
the single-stranded genome into double-stranded DNA (69, 82),
opening of ITR hairpins (83), concatamerization and circulariza-
tion (78, 84–86), and transgene expression (87). Notably, the
Mre11/Rad50/Nbs1 (MRN) complex, important for double-
strand break repair, recombination, and telomere maintenance,
has been shown to bind to AAV ITRs, negatively affecting rAAV
transduction, wild-type AAV (wtAAV) replication, and double-
stranded rAAV DNA accumulation (80, 81). It is currently
thought that cellular DNA damage, induced by radiation, small
molecules, or other means, may serve as a “decoy,” recruiting the
MRN complex to the sites of damage and away from single-
stranded AAV DNA, thus allowing for double-strand conversion.
Interestingly, Choi et al. observed that ATM, Mre11, and NBS1 are
required for scAAV DNA circularization in vitro and ATM and
DNA-PK(CS) are required for scAAV DNA circularization in vivo
(84). Taken together, these results suggest that DNA damage re-
sponse proteins may have a dual function in rAAV DNA process-
ing and the positive or negative effects may depend on the state of
the DNA within the cell.

Proteasome inhibition is thought to be beneficial to rAAV
transduction through a mechanism that differs from a DNA dam-
age response. It is believed that inhibition of the proteasome facil-
itates bulk flow of particles away from degradation pathways,
thereby redirecting them to routes that favor transduction (i.e.,
nuclear translocation) (54, 88, 89). Bortezomib, the only currently

FDA-approved proteasome inhibitor, has been used in conjunc-
tion with rAAV to enhance transduction in hemophilia A and
hemophilia B models (43). Its effects seem to be thus far limited to
these applications, as a recent study using rAAV9 to deliver
SERCA2a to preserve cardiac function in a rat model demon-
strated no additional benefit when bortezomib was coadminis-
tered (76). Indeed, our results suggest that the effects of protea-
some inhibition by bortezomib are cell type dependent, as
bortezomib-mediated enhancement was not observed in U87 and
NHF cell lines, and not as robust in HepG2 cells as in HeLa cells.
Interestingly, two compounds that have been previously impli-
cated in proteasome inhibition were identified, physalin B and
siomycin, which outperformed bortezomib in U87, HepG2, and
NHF cell lines. These compounds either may inhibit proteasome
function through a mechanism that is different from that of bort-
ezomib or may perform additional functions in cells that are ben-
eficial to rAAV2 transduction.

The level of involvement of DNA damage response proteins
and proteasome inhibition seems to differ between ssAAV2,
scAAV2, and fAAV2. While the ssAAV2 and fAAV2 used in this
study share identical promoters and luciferase genes, the scAAV2
cassette differed in promoter (CMV versus CBA) as well as trans-
gene (Gaussia versus firefly luciferase). Therefore, a direct com-
parison can be made between ssAAV2 vectors and fAAV2 vectors,
but considerations must be made when evaluating the perfor-
mance of the scAAV2 vector. Initial conclusions seem to indicate
that, for all of the compounds identified in our screen, transduc-
tion enhancement seemed to be less pronounced for scAAV2. This
finding is in agreement with the current theory of how DNA dam-
age proteins may be inhibitory for ssAAV DNA, since scAAV DNA
does not require second-strand synthesis and would therefore be
unaffected by any proteins limiting this type of processing. Since it
has been shown that Mre11 and ATM are required for scAAV
genome circularization, it will be interesting to evaluate the long-
term effects of these compounds on scAAV gene expression in the
future. Interestingly, some enhancement of scAAV2 transduction
was observed with the cotreatment with the epipodophyllotoxins
and anthracyclines, suggesting that these compounds might en-
hance transduction by mechanisms in addition to facilitating sec-
ond-strand synthesis.

Perhaps the most striking observation was the dramatic in-
crease in transduction seen for fAAV2 treated with the com-
pounds identified in this screen. Notably, each compound
boosted fAAV2 transduction to levels greater than in ssAAV2
treated with vehicle alone. Previous studies have shown that
fAAV2 transduction relies on the annealing of sections of vector
DNA that comprise the entire oversized transgene cassette (16).
We previously noted that this process is dependent upon Rad51C,
a single-stranded DNA binding protein involved in supporting
homologous recombination during DNA double-strand break re-
pair (16). Therefore, it is possible that in the case of fAAV2, cellu-
lar DNA damage serves two purposes: (i) derepression of the sin-
gle-stranded cassette by inhibitory proteins such as the MRN
complex and (ii) recruitment of homologous recombination pro-
teins such as Rad51C to facilitate the annealing of fragment vector
DNA. Interestingly, treatment with bortezomib also resulted in
high levels of fAAV2 enhancement. Treatment with proteasome
inhibitors has been shown to increase the sheer volume of vector
particles that reach the nucleus. It is possible that the deficit ob-
served in unassisted fAAV2 transduction is simply a number

FIG 5 Analysis of transduction enhancement by fAAV8 with teniposide in
vivo. (A) Live bioluminescent imaging of mice that were cotreated with
fAAV8_Luc and vehicle (top) or teniposide (bottom), imaged 48 h and 8 days
postransduction. (B) Quantification of bioluminescent imaging. (C) Fold dif-
ference in luciferase expression over vehicles.
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game; i.e., as more particles, and therefore presumably more un-
coated genomes, transit to the nucleus, there is an increased
chance for fragment strand reannealing. Alternatively, inhibition
of the proteasome may also inhibit the degradation of proteins
that might be essential for fAAV2 reannealing. Indeed, work by
Bennett and Knight has shown that proteasome-mediated degra-
dation of Rad51 occurs during DNA repair and this process is
regulated in part by Rad51C (90). Additionally, the proteasome
has been shown to be associated with double-strand breaks and
has been suggested to play a role in degrading proteins upon com-
pletion of DNA repair in yeast (91). Regardless of the mechanism,
our results suggest that the deficit in fAAV2 transduction can be
restored to ssAAV2 levels through pharmacological intervention,
thus paving the way for future studies in pharmaco-gene therapy
for large gene applications.

While the compounds that induced DNA damage seemed to
enhance rAAV transduction to the greatest extent, caution is nec-
essary before potentially moving forward with any of these drugs.
Beyond concerns of direct unwanted side effects of the various
drugs (for example, etoposide has �30 undesired consequences),
indirect altered vector maintenance should also be thoroughly
analyzed. Though the primary mechanism of DNA persistence is
through concatamerization and circularization, random integra-
tion has been demonstrated for rAAV (92–97). Indeed, a previous
study has shown that integration of rAAV DNA in vitro increased
upon treatment with etoposide (38, 98). While the epipodophyl-
lotoxins have been shown to produce breaks in DNA “hot spots”
(99–101), a thorough assessment of in vivo integration events
would need to be carried out in order to gauge the risks of this kind
of pharmaco-gene therapy. Finally, the effects of these agents on
episomal expression should also be evaluated. It is tempting to
envision a scenario in which inducing DNA damage through one
of these agents could reactivate persistent-but-silenced rAAV epi-
somes, thus eliminating the need for additional administration of
vector if transgene expression falls below therapeutic levels.

ACKNOWLEDGMENTS

Animal studies were performed within the LCCC Animal Studies Core
facility at the University of North Carolina at Chapel Hill. The LCCC
Animal Studies Core is supported in part by an NCI Center Core
support grant (CA16086) to the UNC Lineberger Comprehensive
Cancer Center. This work was supported by the Northwest Genome
Engineering Consortium, the Jain Foundation, and the NIH
(RO1AI072176-06A1, RO1AR064369-01A1). Funding was also pro-
vided in part through a departmental unrestricted grant from Research
to Prevent Blindness, New York, NY.

Serum markers for toxicity were evaluated by the UNC Clinical Chem-
istry Core facility.

We thank Shophia Shih for determining all the rAAV titers used here.

FUNDING INFORMATION
This work, including the efforts of Matthew L. Hirsch and R. Jude Sam-
ulski, was funded by HHS | NIH | National Institute of Allergy and Infec-
tious Diseases (NIAID) (RO1AI072176-06A1). This work, including the
efforts of Matthew L. Hirsch, was funded by Research to Prevent Blindness
(RPB). This work, including the efforts of Matthew L. Hirsch and R. Jude
Samulski, was funded by HHS | NIH | National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS) (R01AR064369).

REFERENCES
1. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J,

Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C, O’Beirne J,

Smith K, Pasi J, Glader B, Rustagi P, Ng CY, Kay MA, Zhou J, Spence
Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivas-
tava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss
UM, Nienhuis AW, Davidoff AM. 2011. Adenovirus-associated virus
vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–
2365. http://dx.doi.org/10.1056/NEJMoa1108046.

2. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA,
Bland RJ, Young D, Strybing K, Eidelberg D, During MJ. 2007. Safety and
tolerability of gene therapy with an adeno-associated virus (AAV) borne
GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:
2097–2105. http://dx.doi.org/10.1016/S0140-6736(07)60982-9.

3. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskan-
dar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB,
Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van
Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A. 2011. AAV2-
GAD gene therapy for advanced Parkinson’s disease: a double-blind,
sham-surgery controlled, randomised trial. Lancet Neurol 10:309 –319.
http://dx.doi.org/10.1016/S1474-4422(11)70039-4.

4. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balag-
gan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-
Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin
GS, Moore AT, Ali RR. 2008. Effect of gene therapy on visual function
in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239. http://dx
.doi.org/10.1056/NEJMoa0802268.

5. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman
AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM, Flotte TR, Fish-
man GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW.
2008. Human gene therapy for RPE65 isomerase deficiency activates the
retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci
U S A 105:15112–15117. http://dx.doi.org/10.1073/pnas.0807027105.

6. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F,
Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA,
Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X,
Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace
EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, Mc-
Donnell JW, Leroy BP, Simonelli F, Bennett J. 2009. Age-dependent
effects of RPE65 gene therapy for Leber’s congenital amaurosis: a
phase 1 dose-escalation trial. Lancet 374:1597–1605. http://dx.doi
.org/10.1016/S0140-6736(09)61836-5.

7. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Jr, Mingozzi F,
Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S,
Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso
L, Hertle R, Ma J X, Redmond TM, Zhu X, Hauck B, Zelenaia O,
Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW,
Auricchio A, High KA, Bennett J. 2008. Safety and efficacy of gene
transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240 –2248.
http://dx.doi.org/10.1056/NEJMoa0802315.

8. Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT,
Wang DJ, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D,
During MJ, Samulski RJ, Janson CG. 2012. Long-term follow-up after
gene therapy for canavan disease. Sci Transl Med 4:165ra163. http://dx
.doi.org/10.1126/scitranslmed.3003454.

9. Kastelein JJ, Ross CJ, Hayden MR. 2013. From mutation identification
to therapy: discovery and origins of the first approved gene therapy in the
Western world. Hum Gene Ther 24:472– 478. http://dx.doi.org/10.1089
/hum.2013.063.

10. Asokan A, Schaffer DV, Samulski RJ. 2012. The AAV vector toolkit:
poised at the clinical crossroads. Mol Ther 20:699 –708. http://dx.doi.org
/10.1038/mt.2011.287.

11. Grieger JC, Samulski RJ. 2005. Packaging capacity of adeno-associated
virus serotypes: impact of larger genomes on infectivity and postentry
steps. J Virol 79:9933–9944. http://dx.doi.org/10.1128/JVI.79.15.9933
-9944.2005.

12. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D,
Kim SR, Maguire A, Rex TS, Di Vicino U, Cutillo L, Sparrow JR,
Williams DS, Bennett J, Auricchio A. 2008. Serotype-dependent pack-
aging of large genes in adeno-associated viral vectors results in effective
gene delivery in mice. J Clin Invest 118:1955–1964. http://dx.doi.org/10
.1172/JCI34316.

13. Dong B, Nakai H, Xiao W. 2010. Characterization of genome integrity
for oversized recombinant AAV vector. Mol Ther 18:87–92. http://dx.doi
.org/10.1038/mt.2009.258.

14. Duan D, Yue Y, Engelhardt JF. 2001. Expanding AAV packaging ca-

Nicolson et al.

7028 jvi.asm.org August 2016 Volume 90 Number 16Journal of Virology

http://dx.doi.org/10.1056/NEJMoa1108046
http://dx.doi.org/10.1016/S0140-6736(07)60982-9
http://dx.doi.org/10.1016/S1474-4422(11)70039-4
http://dx.doi.org/10.1056/NEJMoa0802268
http://dx.doi.org/10.1056/NEJMoa0802268
http://dx.doi.org/10.1073/pnas.0807027105
http://dx.doi.org/10.1016/S0140-6736(09)61836-5
http://dx.doi.org/10.1016/S0140-6736(09)61836-5
http://dx.doi.org/10.1056/NEJMoa0802315
http://dx.doi.org/10.1126/scitranslmed.3003454
http://dx.doi.org/10.1126/scitranslmed.3003454
http://dx.doi.org/10.1089/hum.2013.063
http://dx.doi.org/10.1089/hum.2013.063
http://dx.doi.org/10.1038/mt.2011.287
http://dx.doi.org/10.1038/mt.2011.287
http://dx.doi.org/10.1128/JVI.79.15.9933-9944.2005
http://dx.doi.org/10.1128/JVI.79.15.9933-9944.2005
http://dx.doi.org/10.1172/JCI34316
http://dx.doi.org/10.1172/JCI34316
http://dx.doi.org/10.1038/mt.2009.258
http://dx.doi.org/10.1038/mt.2009.258
http://jvi.asm.org


pacity with trans-splicing or overlapping vectors: a quantitative compar-
ison. Mol Ther 4:383–391. http://dx.doi.org/10.1006/mthe.2001.0456.

15. Grose WE, Clark KR, Griffin D, Malik V, Shontz KM, Montgomery
CL, Lewis S, Brown RH, Jr, Janssen PM, Mendell JR, Rodino-Klapac
LR. 2012. Homologous recombination mediates functional recovery of
dysferlin deficiency following AAV5 gene transfer. PLoS One 7:e39233.
http://dx.doi.org/10.1371/journal.pone.0039233.

16. Hirsch ML, Li C, Bellon I, Yin C, Chavala S, Pryadkina M, Richard I,
Samulski RJ. 2013. Oversized AAV transduction is mediated via a DNA-
PKcs-independent, Rad51C-dependent repair pathway. Mol Ther 21:
2205–2216. http://dx.doi.org/10.1038/mt.2013.184.

17. Kapranov P, Chen L, Dederich D, Dong B, He J, Steinmann KE,
Moore AR, Thompson JF, Milos PM, Xiao W. 2012. Native molecular
state of adeno-associated viral vectors revealed by single-molecule se-
quencing. Hum Gene Ther 23:46 –55. http://dx.doi.org/10.1089/hum
.2011.160.

18. Lai Y, Yue Y, Duan D. 2010. Evidence for the failure of adeno-associated
virus serotype 5 to package a viral genome � or � 8.2 kb. Mol Ther
18:75–79. http://dx.doi.org/10.1038/mt.2009.256.

19. Wu Z, Yang H, Colosi P. 2010. Effect of genome size on AAV vector
packaging. Mol Ther 18:80 – 86. http://dx.doi.org/10.1038/mt.2009.255.

20. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo
MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A,
Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF,
Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H,
Mingozzi F, Couto L, Ertl HC, High KA, Kay MA. 2006. Successful
transduction of liver in hemophilia by AAV-Factor IX and limitations
imposed by the host immune response. Nat Med 12:342–347. http://dx
.doi.org/10.1038/nm1358.

21. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE,
Ragni MV, Manno CS, Sommer J, Jiang H, Pierce GF, Ertl HC, High
KA. 2007. CD8(�) T-cell responses to adeno-associated virus capsid in
humans. Nat Med 13:419 – 422. http://dx.doi.org/10.1038/nm1549.

22. Mingozzi F, High KA. 2013. Immune responses to AAV vectors: over-
coming barriers to successful gene therapy. Blood 122:23–36. http://dx
.doi.org/10.1182/blood-2013-01-306647.

23. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S,
DiPrimio N, Nam HJ, Agbandje-McKenna M, McPhee S, Wolff J,
Samulski RJ. 2010. Reengineering a receptor footprint of adeno-
associated virus enables selective and systemic gene transfer to muscle.
Nat Biotechnol 28:79 – 82. http://dx.doi.org/10.1038/nbt.1599.

24. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH,
Flannery JG, Schaffer DV. 2013. In vivo-directed evolution of a new
adeno-associated virus for therapeutic outer retinal gene delivery from
the vitreous. Sci Transl Med 5:189ra176. http://dx.doi.org/10.1126
/scitranslmed.3005708.

25. Excoffon KJ, Koerber JT, Dickey DD, Murtha M, Keshavjee S, Kaspar
BK, Zabner J, Schaffer DV. 2009. Directed evolution of adeno-
associated virus to an infectious respiratory virus. Proc Natl Acad Sci
U S A 106:3865–3870. http://dx.doi.org/10.1073/pnas.0813365106.

26. Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ, McCown
TJ, Li W. 2010. Directed evolution of a novel adeno-associated virus
(AAV) vector that crosses the seizure-compromised blood-brain barrier
(BBB). Mol Ther 18:570 –578. http://dx.doi.org/10.1038/mt.2009.292.

27. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. 2006. Directed
evolution of adeno-associated virus yields enhanced gene delivery vec-
tors. Nat Biotechnol 24:198 –204. http://dx.doi.org/10.1038/nbt1182.

28. Pulicherla N, Shen S, Yadav S, Debbink K, Govindasamy L, Agbandje-
McKenna M, Asokan A. 2011. Engineering liver-detargeted AAV9 vec-
tors for cardiac and musculoskeletal gene transfer. Mol Ther 19:1070 –
1078. http://dx.doi.org/10.1038/mt.2011.22.

29. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-
McKenna M, Herzog RW, Weigel-Van Aken KA, Hobbs JA, Zolo-
tukhin S, Muzyczka N, Srivastava A. 2008. Tyrosine-phosphorylation
of AAV2 vectors and its consequences on viral intracellular trafficking
and transgene expression. Virology 381:194 –202. http://dx.doi.org/10
.1016/j.virol.2008.08.027.

30. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M,
Cooper M, Herzog RW, Zolotukhin I, Warrington KH, Jr, Weigel-Van
Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A. 2008.
Next generation of adeno-associated virus 2 vectors: point mutations in
tyrosines lead to high-efficiency transduction at lower doses. Proc Natl

Acad Sci U S A 105:7827–7832. http://dx.doi.org/10.1073/pnas
.0802866105.

31. Chen SJ, Johnston J, Sandhu A, Bish LT, Hovhannisyan R, Jno-
Charles O, Sweeney HL, Wilson JM. 2013. Enhancing the utility of
adeno-associated virus gene transfer through inducible tissue-specific
expression. Hum Gene Ther Methods 24:270 –278. http://dx.doi.org/10
.1089/hgtb.2012.129.

32. Johnson MC, Garland AL, Nicolson SC, Li C, Samulski RJ, Wang B,
Tisch R. 2013. beta-cell-specific IL-2 therapy increases islet Foxp3�Treg
and suppresses type 1 diabetes in NOD mice. Diabetes 62:3775–3784.
http://dx.doi.org/10.2337/db13-0669.

33. McCarty DM, Monahan PE, Samulski RJ. 2001. Self-complementary
recombinant adeno-associated virus (scAAV) vectors promote efficient
transduction independently of DNA synthesis. Gene Ther 8:1248 –1254.
http://dx.doi.org/10.1038/sj.gt.3301514.

34. Phillips MI, Tang Y, Schmidt-Ott K, Qian K, Kagiyama S. 2002.
Vigilant vector: heart-specific promoter in an adeno-associated virus
vector for cardioprotection. Hypertension 39:651– 655. http://dx.doi.org
/10.1161/hy0202.103472.

35. Halbert CL, Standaert TA, Aitken ML, Alexander IE, Russell DW,
Miller AD. 1997. Transduction by adeno-associated virus vectors in the
rabbit airway: efficiency, persistence, and readministration. J Virol 71:
5932–5941.

36. Hong SY, Lee MH, Kim KS, Jung HC, Roh JK, Hyung WJ, Noh SH,
Choi SH. 2004. Adeno-associated virus mediated endostatin gene ther-
apy in combination with topoisomerase inhibitor effectively controls
liver tumor in mouse model. World J Gastroenterol 10:1191–1197.

37. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD. 1997.
Persistent expression of human clotting factor IX from mouse liver after
intravenous injection of adeno-associated virus vectors. Proc Natl Acad
Sci U S A 94:1426 –1431. http://dx.doi.org/10.1073/pnas.94.4.1426.

38. Russell DW, Alexander IE, Miller AD. 1995. DNA synthesis and topo-
isomerase inhibitors increase transduction by adeno-associated virus
vectors. Proc Natl Acad Sci U S A 92:5719 –5723. http://dx.doi.org/10
.1073/pnas.92.12.5719.

39. Yan Z, Zak R, Zhang Y, Ding W, Godwin S, Munson K, Peluso R,
Engelhardt JF. 2004. Distinct classes of proteasome-modulating agents
cooperatively augment recombinant adeno-associated virus type 2 and
type 5-mediated transduction from the apical surfaces of human airway
epithelia. J Virol 78:2863–2874. http://dx.doi.org/10.1128/JVI.78.6.2863
-2874.2004.

40. Zhang LN, Karp P, Gerard CJ, Pastor E, Laux D, Munson K, Yan Z,
Liu X, Godwin S, Thomas CP, Zabner J, Shi H, Caldwell CW, Peluso
R, Carter B, Engelhardt JF. 2004. Dual therapeutic utility of proteasome
modulating agents for pharmaco-gene therapy of the cystic fibrosis air-
way. Mol Ther 10:990 –1002. http://dx.doi.org/10.1016/j.ymthe.2004.08
.009.

41. Zhang S, Wu J, Wu X, Xu P, Tian Y, Yi M, Liu X, Dong X, Wolf F,
Li C, Huang Q. 2012. Enhancement of rAAV2-mediated transgene
expression in retina cells in vitro and in vivo by coadministration of
low-dose chemotherapeutic drugs. Invest Ophthalmol Vis Sci 53:2675–
2684. http://dx.doi.org/10.1167/iovs.11-8856.

42. Zhang T, Hu J, Ding W, Wang X. 2009. Doxorubicin augments rAAV-2
transduction in rat neuronal cells. Neurochem Int 55:521–528. http://dx
.doi.org/10.1016/j.neuint.2009.05.005.

43. Monahan PE, Lothrop CD, Sun J, Hirsch ML, Kafri T, Kantor B,
Sarkar R, Tillson DM, Elia JR, Samulski RJ. 2010. Proteasome inhib-
itors enhance gene delivery by AAV virus vectors expressing large ge-
nomes in hemophilia mouse and dog models: a strategy for broad clinical
application. Mol Ther 18:1907–1916. http://dx.doi.org/10.1038/mt.2010
.170.

44. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN,
Tuddenham EG, Kemball-Cook G, McIntosh J, Boon-Spijker M,
Mertens K, Davidoff AM. 2006. Self-complementary adeno-associated
virus vectors containing a novel liver-specific human factor IX expres-
sion cassette enable highly efficient transduction of murine and nonhu-
man primate liver. Blood 107:2653–2661. http://dx.doi.org/10.1182
/blood-2005-10-4035.

45. Povirk LF, Han YH, Steighner RJ. 1989. Structure of bleomycin-
induced DNA double-strand breaks: predominance of blunt ends and
single-base 5= extensions. Biochemistry 28:5808 –5814. http://dx.doi.org
/10.1021/bi00440a016.

46. Ramos A, Rivero R, Visozo A, Piloto J, Garcia A. 2002. Parthenin, a

Small-Molecule Screen for rAAV Adjuvants

August 2016 Volume 90 Number 16 jvi.asm.org 7029Journal of Virology

http://dx.doi.org/10.1006/mthe.2001.0456
http://dx.doi.org/10.1371/journal.pone.0039233
http://dx.doi.org/10.1038/mt.2013.184
http://dx.doi.org/10.1089/hum.2011.160
http://dx.doi.org/10.1089/hum.2011.160
http://dx.doi.org/10.1038/mt.2009.256
http://dx.doi.org/10.1038/mt.2009.255
http://dx.doi.org/10.1038/nm1358
http://dx.doi.org/10.1038/nm1358
http://dx.doi.org/10.1038/nm1549
http://dx.doi.org/10.1182/blood-2013-01-306647
http://dx.doi.org/10.1182/blood-2013-01-306647
http://dx.doi.org/10.1038/nbt.1599
http://dx.doi.org/10.1126/scitranslmed.3005708
http://dx.doi.org/10.1126/scitranslmed.3005708
http://dx.doi.org/10.1073/pnas.0813365106
http://dx.doi.org/10.1038/mt.2009.292
http://dx.doi.org/10.1038/nbt1182
http://dx.doi.org/10.1038/mt.2011.22
http://dx.doi.org/10.1016/j.virol.2008.08.027
http://dx.doi.org/10.1016/j.virol.2008.08.027
http://dx.doi.org/10.1073/pnas.0802866105
http://dx.doi.org/10.1073/pnas.0802866105
http://dx.doi.org/10.1089/hgtb.2012.129
http://dx.doi.org/10.1089/hgtb.2012.129
http://dx.doi.org/10.2337/db13-0669
http://dx.doi.org/10.1038/sj.gt.3301514
http://dx.doi.org/10.1161/hy0202.103472
http://dx.doi.org/10.1161/hy0202.103472
http://dx.doi.org/10.1073/pnas.94.4.1426
http://dx.doi.org/10.1073/pnas.92.12.5719
http://dx.doi.org/10.1073/pnas.92.12.5719
http://dx.doi.org/10.1128/JVI.78.6.2863-2874.2004
http://dx.doi.org/10.1128/JVI.78.6.2863-2874.2004
http://dx.doi.org/10.1016/j.ymthe.2004.08.009
http://dx.doi.org/10.1016/j.ymthe.2004.08.009
http://dx.doi.org/10.1167/iovs.11-8856
http://dx.doi.org/10.1016/j.neuint.2009.05.005
http://dx.doi.org/10.1016/j.neuint.2009.05.005
http://dx.doi.org/10.1038/mt.2010.170
http://dx.doi.org/10.1038/mt.2010.170
http://dx.doi.org/10.1182/blood-2005-10-4035
http://dx.doi.org/10.1182/blood-2005-10-4035
http://dx.doi.org/10.1021/bi00440a016
http://dx.doi.org/10.1021/bi00440a016
http://jvi.asm.org


sesquiterpene lactone of Parthenium hysterophorus L. is a high toxicity
clastogen. Mutat Res 514:19 –27. http://dx.doi.org/10.1016/S1383
-5718(01)00321-7.

47. Berardini MD, Souhami RL, Lee CS, Gibson NW, Butler J, Hartley JA.
1993. Two structurally related diaziridinylbenzoquinones preferentially
cross-link DNA at different sites upon reduction with DT-diaphorase.
Biochemistry 32:3306 –3312. http://dx.doi.org/10.1021/bi00064a013.

48. Hayashi M, Unemoto T, Minami-Kakinuma S, Tanaka H, Omura S.
1982. The mode of action of nanaomycins D and A on a gram-negative
marine bacterium Vibrio alginolyticus. J Antibiot (Tokyo) 35:1078 –
1085. http://dx.doi.org/10.7164/antibiotics.35.1078.

49. Marumo H, Kitaura K, Morimoto M, Tanaka H, Omura S. 1980. The
mode of action of nanaomycin A in Gram-positive bacteria. J Antibiot
(Tokyo) 33:885– 890. http://dx.doi.org/10.7164/antibiotics.33.885.

50. Kuck D, Caulfield T, Lyko F, Medina-Franco JL. 2010. Nanaomycin A
selectively inhibits DNMT3B and reactivates silenced tumor suppressor
genes in human cancer cells. Mol Cancer Ther 9:3015–3023. http://dx
.doi.org/10.1158/1535-7163.MCT-10-0609.

51. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK.
2001. Histone deacetylases and cancer: causes and therapies. Nat Rev
Cancer 1:194 –202. http://dx.doi.org/10.1038/35106079.

52. Marks PA, Dokmanovic M. 2005. Histone deacetylase inhibitors: dis-
covery and development as anticancer agents. Expert Opin Investig
Drugs 14:1497–1511. http://dx.doi.org/10.1517/13543784.14.12.1497.

53. Finn JD, Hui D, Downey HD, Dunn D, Pien GC, Mingozzi F, Zhou S,
High KA. 2010. Proteasome inhibitors decrease AAV2 capsid derived
peptide epitope presentation on MHC class I following transduction.
Mol Ther 18:135–142. http://dx.doi.org/10.1038/mt.2009.257.

54. Mitchell AM, Samulski RJ. 2013. Mechanistic insights into the enhance-
ment of adeno-associated virus transduction by proteasome inhibitors. J
Virol 87:13035–13041. http://dx.doi.org/10.1128/JVI.01826-13.

55. Nathwani AC, Cochrane M, McIntosh J, Ng CY, Zhou J, Gray JT,
Davidoff AM. 2009. Enhancing transduction of the liver by adeno-
associated viral vectors. Gene Ther 16:60 – 69. http://dx.doi.org/10.1038
/gt.2008.137.

56. Paulk NK, Loza LM, Finegold MJ, Grompe M. 2012. AAV-mediated
gene targeting is significantly enhanced by transient inhibition of non-
homologous end joining or the proteasome in vivo. Hum Gene Ther
23:658 – 665. http://dx.doi.org/10.1089/hum.2012.038.

57. Vandenberghe I, Creancier L, Vispe S, Annereau JP, Barret JM, Pouny
I, Samson A, Aussagues Y, Massiot G, Ausseil F, Bailly C, Kruczynski
A. 2008. Physalin B, a novel inhibitor of the ubiquitin-proteasome path-
way, triggers NOXA-associated apoptosis. Biochem Pharmacol 76:453–
462. http://dx.doi.org/10.1016/j.bcp.2008.05.031.

58. Soares MB, Bellintani MC, Ribeiro IM, Tomassini TC, Ribeiro dos
Santos R. 2003. Inhibition of macrophage activation and lipopolysac-
charide-induced death by seco-steroids purified from Physalis angulata
L. Eur J Pharmacol 459:107–112. http://dx.doi.org/10.1016/S0014
-2999(02)02829-7.

59. Bhat UG, Halasi M, Gartel AL. 2009. FoxM1 is a general target for
proteasome inhibitors. PLoS One 4:e6593. http://dx.doi.org/10.1371
/journal.pone.0006593.

60. Bhat UG, Halasi M, Gartel AL. 2009. Thiazole antibiotics target FoxM1
and induce apoptosis in human cancer cells. PLoS One 4:e5592. http://dx
.doi.org/10.1371/journal.pone.0005592.

61. Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, Gartel
AL. 2006. Identification of a chemical inhibitor of the oncogenic tran-
scription factor forkhead box M1. Cancer Res 66:9731–9735. http://dx
.doi.org/10.1158/0008-5472.CAN-06-1576.

62. Nakashima T, Miura M, Hara M. 2000. Tetrocarcin A inhibits mito-
chondrial functions of Bcl-2 and suppresses its anti-apoptotic activity.
Cancer Res 60:1229 –1235.

63. Anether G, Tinhofer I, Senfter M, Greil R. 2003. Tetrocarcin-A–
induced ER stress mediates apoptosis in B-CLL cells via a Bcl-2–
independent pathway. Blood 101:4561– 4568. http://dx.doi.org/10.1182
/blood-2002-08-2501.

64. Johnson JS, Gentzsch M, Zhang L, Ribeiro CM, Kantor B, Kafri T,
Pickles RJ, Samulski RJ. 2011. AAV exploits subcellular stress associated
with inflammation, endoplasmic reticulum expansion, and misfolded
proteins in models of cystic fibrosis. PLoS Pathog 7:e1002053. http://dx
.doi.org/10.1371/journal.ppat.1002053.

65. Jordan MA, Thrower D, Wilson L. 1991. Mechanism of inhibition of
cell proliferation by Vinca alkaloids. Cancer Res 51:2212–2222.

66. Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt
JF. 2000. Endocytosis and nuclear trafficking of adeno-associated virus
type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activa-
tion. J Virol 74:9184 –9196. http://dx.doi.org/10.1128/JVI.74.19.9184
-9196.2000.

67. Xiao PJ, Samulski RJ. 2012. Cytoplasmic trafficking, endosomal escape,
and perinuclear accumulation of adeno-associated virus type 2 particles
are facilitated by microtubule network. J Virol 86:10462–10473. http:
//dx.doi.org/10.1128/JVI.00935-12.

68. Boyer JC, Kaufmann WK, Brylawski BP, Cordeiro-Stone M. 1990.
Defective postreplication repair in xeroderma pigmentosum variant fi-
broblasts. Cancer Res 50:2593–2598.

69. Ferrari FK, Samulski T, Shenk T, Samulski RJ. 1996. Second-strand
synthesis is a rate-limiting step for efficient transduction by recombinant
adeno-associated virus vectors. J Virol 70:3227–3234.

70. Hirsch ML, Agbandje-McKenna M, Samulski RJ. 2010. Little vector,
big gene transduction: fragmented genome reassembly of adeno-
associated virus. Mol Ther 18:6 – 8. http://dx.doi.org/10.1038/mt.2009
.280.

71. Reagan-Shaw S, Nihal M, Ahmad N. 2008. Dose translation from
animal to human studies revisited. FASEB J 22:659 – 661.

72. Davidoff AM, Gray JT, Ng CY, Zhang Y, Zhou J, Spence Y, Bakar Y,
Nathwani AC. 2005. Comparison of the ability of adeno-associated viral
vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate
efficient transduction of the liver in murine and nonhuman primate
models. Mol Ther 11:875– 888. http://dx.doi.org/10.1016/j.ymthe.2004
.12.022.

73. Qiao C, Zhang W, Yuan Z, Shin JH, Li J, Jayandharan GR, Zhong L,
Srivastava A, Xiao X, Duan D. 2010. Adeno-associated virus serotype 6
capsid tyrosine-to-phenylalanine mutations improve gene transfer to
skeletal muscle. Hum Gene Ther 21:1343–1348. http://dx.doi.org/10
.1089/hum.2010.003.

74. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ, Zhong
L, Zolotukhin S, Srivastava A, Lewin AS, Hauswirth WW. 2009.
High-efficiency transduction of the mouse retina by tyrosine-mutant
AAV serotype vectors. Mol Ther 17:463– 471. http://dx.doi.org/10.1038
/mt.2008.269.

75. Qiao C, Yuan Z, Li J, Tang R, Xiao X. 2012. Single tyrosine mutation
in AAV8 and AAV9 capsids is insufficient to enhance gene delivery to
skeletal muscle and heart. Hum Gene Ther Methods 23:29 –37. http://dx
.doi.org/10.1089/hgtb.2011.229.

76. Chaanine AH, Nonnenmacher M, Kohlbrenner E, Jin D, Kovacic JC,
Akar FG, Hajjar RJ, Weber T. 2014. Effect of bortezomib on the efficacy
of AAV9.SERCA2a treatment to preserve cardiac function in a rat pres-
sure-overload model of heart failure. Gene Ther 21:379 –386. http://dx
.doi.org/10.1038/gt.2014.7.

77. Alexander IE, Russell DW, Miller AD. 1994. DNA-damaging agents
greatly increase the transduction of nondividing cells by adeno-
associated virus vectors. J Virol 68:8282– 8287.

78. Sanlioglu S, Benson P, Engelhardt JF. 2000. Loss of ATM function
enhances recombinant adeno-associated virus transduction and integra-
tion through pathways similar to UV irradiation. Virology 268:68 –78.
http://dx.doi.org/10.1006/viro.1999.0137.

79. Vos SM, Tretter EM, Schmidt BH, Berger JM. 2011. All tangled up: how
cells direct, manage and exploit topoisomerase function. Nat Rev Mol
Cell Biol 12:827– 841. http://dx.doi.org/10.1038/nrm3228.

80. Cervelli T, Palacios JA, Zentilin L, Mano M, Schwartz RA, Weitzman
MD, Giacca M. 2008. Processing of recombinant AAV genomes occurs
in specific nuclear structures that overlap with foci of DNA-damage-
response proteins. J Cell Sci 121:349 –357. http://dx.doi.org/10.1242/jcs
.003632.

81. Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman
MD. 2007. The Mre11/Rad50/Nbs1 complex limits adeno-associated
virus transduction and replication. J Virol 81:12936 –12945. http://dx
.doi.org/10.1128/JVI.01523-07.

82. Zentilin L, Marcello A, Giacca M. 2001. Involvement of cellular double-
stranded DNA break binding proteins in processing of the recombinant
adeno-associated virus genome. J Virol 75:12279 –12287. http://dx.doi
.org/10.1128/JVI.75.24.12279-12287.2001.

83. Inagaki K, Ma C, Storm TA, Kay MA, Nakai H. 2007. The role of
DNA-PKcs and artemis in opening viral DNA hairpin termini in various
tissues in mice. J Virol 81:11304 –11321. http://dx.doi.org/10.1128/JVI
.01225-07.

Nicolson et al.

7030 jvi.asm.org August 2016 Volume 90 Number 16Journal of Virology

http://dx.doi.org/10.1016/S1383-5718(01)00321-7
http://dx.doi.org/10.1016/S1383-5718(01)00321-7
http://dx.doi.org/10.1021/bi00064a013
http://dx.doi.org/10.7164/antibiotics.35.1078
http://dx.doi.org/10.7164/antibiotics.33.885
http://dx.doi.org/10.1158/1535-7163.MCT-10-0609
http://dx.doi.org/10.1158/1535-7163.MCT-10-0609
http://dx.doi.org/10.1038/35106079
http://dx.doi.org/10.1517/13543784.14.12.1497
http://dx.doi.org/10.1038/mt.2009.257
http://dx.doi.org/10.1128/JVI.01826-13
http://dx.doi.org/10.1038/gt.2008.137
http://dx.doi.org/10.1038/gt.2008.137
http://dx.doi.org/10.1089/hum.2012.038
http://dx.doi.org/10.1016/j.bcp.2008.05.031
http://dx.doi.org/10.1016/S0014-2999(02)02829-7
http://dx.doi.org/10.1016/S0014-2999(02)02829-7
http://dx.doi.org/10.1371/journal.pone.0006593
http://dx.doi.org/10.1371/journal.pone.0006593
http://dx.doi.org/10.1371/journal.pone.0005592
http://dx.doi.org/10.1371/journal.pone.0005592
http://dx.doi.org/10.1158/0008-5472.CAN-06-1576
http://dx.doi.org/10.1158/0008-5472.CAN-06-1576
http://dx.doi.org/10.1182/blood-2002-08-2501
http://dx.doi.org/10.1182/blood-2002-08-2501
http://dx.doi.org/10.1371/journal.ppat.1002053
http://dx.doi.org/10.1371/journal.ppat.1002053
http://dx.doi.org/10.1128/JVI.74.19.9184-9196.2000
http://dx.doi.org/10.1128/JVI.74.19.9184-9196.2000
http://dx.doi.org/10.1128/JVI.00935-12
http://dx.doi.org/10.1128/JVI.00935-12
http://dx.doi.org/10.1038/mt.2009.280
http://dx.doi.org/10.1038/mt.2009.280
http://dx.doi.org/10.1016/j.ymthe.2004.12.022
http://dx.doi.org/10.1016/j.ymthe.2004.12.022
http://dx.doi.org/10.1089/hum.2010.003
http://dx.doi.org/10.1089/hum.2010.003
http://dx.doi.org/10.1038/mt.2008.269
http://dx.doi.org/10.1038/mt.2008.269
http://dx.doi.org/10.1089/hgtb.2011.229
http://dx.doi.org/10.1089/hgtb.2011.229
http://dx.doi.org/10.1038/gt.2014.7
http://dx.doi.org/10.1038/gt.2014.7
http://dx.doi.org/10.1006/viro.1999.0137
http://dx.doi.org/10.1038/nrm3228
http://dx.doi.org/10.1242/jcs.003632
http://dx.doi.org/10.1242/jcs.003632
http://dx.doi.org/10.1128/JVI.01523-07
http://dx.doi.org/10.1128/JVI.01523-07
http://dx.doi.org/10.1128/JVI.75.24.12279-12287.2001
http://dx.doi.org/10.1128/JVI.75.24.12279-12287.2001
http://dx.doi.org/10.1128/JVI.01225-07
http://dx.doi.org/10.1128/JVI.01225-07
http://jvi.asm.org


84. Choi VW, McCarty DM, Samulski RJ. 2006. Host cell DNA repair
pathways in adeno-associated viral genome processing. J Virol 80:
10346 –10356. http://dx.doi.org/10.1128/JVI.00841-06.

85. Duan D, Yue Y, Engelhardt JF. 2003. Consequences of DNA-dependent
protein kinase catalytic subunit deficiency on recombinant adeno-
associated virus genome circularization and heterodimerization in mus-
cle tissue. J Virol 77:4751– 4759. http://dx.doi.org/10.1128/JVI.77.8.4751
-4759.2003.

86. Song S, Laipis PJ, Berns KI, Flotte TR. 2001. Effect of DNA-dependent
protein kinase on the molecular fate of the rAAV2 genome in skeletal
muscle. Proc Natl Acad Sci U S A 98:4084 – 4088. http://dx.doi.org/10
.1073/pnas.061014598.

87. Cataldi MP, McCarty DM. 2010. Differential effects of DNA double-
strand break repair pathways on single-strand and self-complementary
adeno-associated virus vector genomes. J Virol 84:8673– 8682. http://dx
.doi.org/10.1128/JVI.00641-10.

88. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF. 2000. Endosomal
processing limits gene transfer to polarized airway epithelia by adeno-
associated virus. J Clin Invest 105:1573–1587. http://dx.doi.org/10.1172
/JCI8317.

89. Johnson JS, Samulski RJ. 2009. Enhancement of adeno-associated virus
infection by mobilizing capsids into and out of the nucleolus. J Virol
83:2632–2644. http://dx.doi.org/10.1128/JVI.02309-08.

90. Bennett BT, Knight KL. 2005. Cellular localization of human Rad51C
and regulation of ubiquitin-mediated proteolysis of Rad51. J Cell
Biochem 96:1095–1109. http://dx.doi.org/10.1002/jcb.20640.

91. Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, Li J, Datta
N, Cagney G, Buratowski S, Emili A, Greenblatt JF. 2004. Proteasome
involvement in the repair of DNA double-strand breaks. Mol Cell 16:
1027–1034. http://dx.doi.org/10.1016/j.molcel.2004.11.033.

92. McCarty DM, Young SM, Jr, Samulski RJ. 2004. Integration of
adeno-associated virus (AAV) and recombinant AAV vectors. Annu

Rev Genet 38:819 – 845. http://dx.doi.org/10.1146/annurev.genet.37
.110801.143717.

93. McLaughlin SK, Collis P, Hermonat PL, Muzyczka N. 1988. Adeno-
associated virus general transduction vectors: analysis of proviral struc-
tures. J Virol 62:1963–1973.

94. Mendelson E, Smith MG, Miller IL, Carter BJ. 1988. Effect of a viral rep
gene on transformation of cells by an adeno-associated virus vector. Vi-
rology 166:612– 615. http://dx.doi.org/10.1016/0042-6822(88)90536-3.

95. Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA. 2001.
Extrachromosomal recombinant adeno-associated virus vector genomes
are primarily responsible for stable liver transduction in vivo. J Virol
75:6969 – 6976. http://dx.doi.org/10.1128/JVI.75.15.6969-6976.2001.

96. Samulski RJ, Chang LS, Shenk T. 1989. Helper-free stocks of recombi-
nant adeno-associated viruses: normal integration does not require viral
gene expression. J Virol 63:3822–3828.

97. Sun L, Li J, Xiao X. 2000. Overcoming adeno-associated virus vector
size limitation through viral DNA heterodimerization. Nat Med 6:599 –
602. http://dx.doi.org/10.1038/75087.

98. Miller DG, Petek LM, Russell DW. 2004. Adeno-associated virus vec-
tors integrate at chromosome breakage sites. Nat Genet 36:767–773.
http://dx.doi.org/10.1038/ng1380.

99. Ross WE, Glaubiger DL, Kohn KW. 1978. Protein-associated DNA
breaks in cells treated with adriamycin or ellipticine. Biochim Biophys
Acta 519:23–30. http://dx.doi.org/10.1016/0005-2787(78)90059-X.

100. Wozniak AJ, Ross WE. 1983. DNA damage as a basis for 4=-
demethylepipodophyl lotoxin-9-(4,6-O-ethyl idene-beta-D-
glucopyranoside) (etoposide) cytotoxicity. Cancer Res 43:120 –124.

101. Zwelling LA, Michaels S, Erickson LC, Ungerleider RS, Nichols M,
Kohn KW. 1981. Protein-associated deoxyribonucleic acid strand breaks
in L1210 cells treated with the deoxyribonucleic acid intercalating agents
4=-(9-acridinylamino) methanesulfon-m-anisidide and adriamycin.
Biochemistry 20:6553– 6563. http://dx.doi.org/10.1021/bi00526a006.

Small-Molecule Screen for rAAV Adjuvants

August 2016 Volume 90 Number 16 jvi.asm.org 7031Journal of Virology

http://dx.doi.org/10.1128/JVI.00841-06
http://dx.doi.org/10.1128/JVI.77.8.4751-4759.2003
http://dx.doi.org/10.1128/JVI.77.8.4751-4759.2003
http://dx.doi.org/10.1073/pnas.061014598
http://dx.doi.org/10.1073/pnas.061014598
http://dx.doi.org/10.1128/JVI.00641-10
http://dx.doi.org/10.1128/JVI.00641-10
http://dx.doi.org/10.1172/JCI8317
http://dx.doi.org/10.1172/JCI8317
http://dx.doi.org/10.1128/JVI.02309-08
http://dx.doi.org/10.1002/jcb.20640
http://dx.doi.org/10.1016/j.molcel.2004.11.033
http://dx.doi.org/10.1146/annurev.genet.37.110801.143717
http://dx.doi.org/10.1146/annurev.genet.37.110801.143717
http://dx.doi.org/10.1016/0042-6822(88)90536-3
http://dx.doi.org/10.1128/JVI.75.15.6969-6976.2001
http://dx.doi.org/10.1038/75087
http://dx.doi.org/10.1038/ng1380
http://dx.doi.org/10.1016/0005-2787(78)90059-X
http://dx.doi.org/10.1021/bi00526a006
http://jvi.asm.org

	MATERIALS AND METHODS
	Cell culture.
	Virus production.
	Compound screen, 384-well format.
	Secondary screen, 96-well format.
	Transduction assays.
	Transfection assays.
	Animal studies.

	RESULTS
	Primary and secondary screens.
	Dose optimization of compounds in HeLa cells.
	Effects of compounds on vector transduction versus general gene expression.
	Characterization of compound activity in human cell lines.
	Characterization of transduction-specific compound activity with vectors comprised of differentially formed transgenes.
	In vivo analysis of FDA-approved hits.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

