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Abstract

Motivated by the analysis of imaging data, we propose a novel functional varying-coefficient 

single index model (FVCSIM) to carry out the regression analysis of functional response data on a 

set of covariates of interest. FVCSIM represents a new extension of varying-coefficient single 

index models for scalar responses collected from cross-sectional and longitudinal studies. An 

efficient estimation procedure is developed to iteratively estimate varying coefficient functions, 

link functions, index parameter vectors, and the covariance function of individual functions. We 

systematically examine the asymptotic properties of all estimators including the weak convergence 

of the estimated varying coefficient functions, the asymptotic distribution of the estimated index 

parameter vectors, and the uniform convergence rate of the estimated covariance function and their 

spectrum. Simulation studies are carried out to assess the finite-sample performance of the 

proposed procedure. We apply FVCSIM to investigating the development of white matter 

diffusivities along the corpus callosum skeleton obtained from Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study.
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1 Introduction

The aim of this paper is to develop a new functional regression model for the regression 

analysis of imaging (or functional) data collected over space and/or time, such as diffusion 

tensor imaging (DTI) and positron emission tomography (PET) (Towle et al. (1993); 

Niedereyer & da Silva (2005); Buzsaki (2011); Heywood et al. (2006); Zhu et al. (2007); 

Friston (2009)). A common feature of many imaging techniques is that massive functional 

data are observed/calculated at the same grid points, such as voxels in a three-dimensional 

space. Let yi(s) = (yi1(s), …, yiJ (s))T be a J-dimensional functional response vector 

measured at a set of the same M location points, denoted as  = {s1, …, sM}, for subject i, i 
= 1, …, n. We propose a novel functional varying-coefficient single index model given by

(1)

where Xi is a p×1 covariate vector with varying coefficient functions αj(s) = (αj1(s), ⋯, 
αjp(s))T, gj(·) is an unknown link function, Zi is a q × 1 vector of covariates with its index 

parameter vector βj ∈ ℝq, εij(s) is the measurement error, and ηij(s) characterizes individual 

curve variations. The random function {ηij(s) : s ∈ [0, 1]} is assumed to be a stochastic 

process with mean zero and covariance function R(s, t) = cov{ηi(s), ηi(t)}, where ηi(s) = 

(ηi1(s), ⋯, ηiJ (s))T. The error terms are mean zero process with covariance ℰ(s, t) = 

cov{εi(s), εi(t)}, where εi(s) = (εi1(s), ⋯, εiJ (s))T. Moreover, εi(s) and εi(t) are assumed to 

be independent for s ≠ t and ℰ(s, t) takes the form of ℰ(s, s)I(s = t), where I(·) is an indicator 

function. Model (1) allows a joint model of J different measures obtained from a single 

imaging modality or multiple modalties. For instance, for DTI, standard imaging measures 

include fractional anisotropy (FA) and mean diffusivity (MD).

Model (1) can be regarded as a novel integation of varying-coefficient models and single 

index models. When gj(·) ≡ 0, model (1) reduces to varying coefficient models widely 

adopted in the existing literature. This class of models has been thoroughly studied and 

developed for longitudinal, time series, and functional data. For varying coefficient models, 

it is of particular interest in data analysis to construct simultaneous confidence bands for 

αj(·) and to develop global test statistics for the hypotheses regarding αj(·). See Hoover et al. 

(1998), Fan & Zhang (1999), Wu & Chiang (2000), Ramsay & Silverman (2005), Fan et al. 

(2003), Morris & Carroll (2006), Fan & Zhang (2008), Wang et al. (2008), Cheng et al. 

(2009), Zhang (2011) and Zhu et al. (2012) for various statistical procedures proposed for 

different varying coefficient models. In particular, Morris & Carroll (2006) developed a 

Bayesian wavelet-based approach for a functional mixed effects modeling framework. Zhu 

et al. (2012) developed several statistical inference procedures for multivariate varying 

coefficient models for functional responses and systematically studied their theoretical 

properties.

In the absence of αj(s), that is, αj(s) ≡ 0, model (1) reduces to single index models for 

functional responses with unknown link functions gj(·). For identifiability, it is often 

assumed that  and the first component of βj is positive. Single index models have 
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been widely studied and developed for cross-sectional, longitudinal, and functional data. For 

single index models, one of the most important objectives in data analysis is to estimate and 

test the model index coefficients βj. See Horowitz (2009) for a comprehensive review of 

single index models. There is also a great interest in developing partial-linear single-index 

models via the integration of single-index models with linear regression models (Carroll et 

al., 1997; Wang et al., 2010). Most earlier references focus on univariate response observed 

from cross-sectional studies (Xia et al., 2002; Härdle et al., 1993; Xia, 2006; Wang et al., 

2010; Cui et al., 2011; Ma & Zhu, 2013). Recently, Jiang & Wang (2010) developed 

functional single index models for functional/longitudinal response data and derived their 

associated estimation method and asymptotic theory.

Our FVCSIM can also be regarded as a novel extension of varying-coefficient single-index 

model (VCSIM) for scalar response data (Wong et al., 2008; Wang & Xue, 2011). There are 

at least three key differences between FVCSIM and VCSIM. (i) Our FVCSIM (1) is 

developed for multi-dimensional functional responses and explicitly incorporates long-range 

spatial correlation among functional data, whereas VCSIMs were developed for scalar 

responses without spatial correlation. (ii) Our FVCSIM requires a more sophisticated 

estimation method in order to account for both spatial correlation and spatial smoothness of 

imaging data. In contrast, in Wong et al. (2008), a bivariate kernel smoother was used to 

estimate the two types of functions, whereas in Wang & Xue (2011), a mean difference 

approach was proposed to reduce VCSIM to a varying-coefficient model. Bivariate 

smoothing usually produces less stable solutions and the mean difference approach relies on 

smoothing y and X first and may introduce additional biases. These two estimation methods 

are not directly applicable to correlated imaging data. (iii) The theoretical properties of 

various estimates in FVCSIM differ significantly from those in VCSIM. For FVCSIM, one 

must deal with the long-range spatial correlation of imaging data. First, such spatial 

correlation introduces a non-negligible effect into the asymptotic covariance of estimates, 

which leads to a different convergence rate for semiparametric modeling compared with the 

corresponding results for VCSIM. Second, the asymptotic behavior of estimated functional 

random effects and their covariance decomposition needs to be carefully evaluated and 

uniform consistency results must be established. Third, one can obtain much stronger 

theoretical properties associated with the estimated coefficients and functions, especially 

after we incorporate the estimated covariance of correlated image data. This property is very 

relevant to the facilitation of efficient inference.

Compared with the existing literature on functional data, our FVCSIM is a novel integration 

of single index models and varying-coefficient models for functional response data. At each 

grid point s, model (1) reduces to a partial-linear single-index model, whereas the functional 

single index model considered in Jiang & Wang (2010) reduces to a standard single-index 

model. Therefore, our model (1) differs from the functional single index model in Jiang & 

Wang (2010). Compared with Zhu et al. (2012) and Morris & Carroll (2006), model (1) is 

much more flexible in accommodating both the dynamic effects of Xi and the stationary 

effects of Zi on functional data. Our estimation and inference procedures differ substantially 

from those in Jiang & Wang (2010), Zhu et al. (2012), and Morris & Carroll (2006). For 

instance, we can establish the weak convergence of the estimated varying co-efficient 
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functions and apply such a result to construct their confidence bands. Compared with the 

existing literature, we also establish the asymptotic distribution of single-index estimate in a 

totally different setting, while such extension requires non-trivial development in numerical 

implementation and theoretical derivation.

The rest of this article is organized as follows. In Section 2, an efficient estimation procedure 

is developed to iteratively estimate all unknown parameters and functions in model (1). In 

Section 3, we develop test statistics to test hypothesis of interest associated with varying-

coefficient functions and/or index parameter vectors. Section 4 systematically investigates 

the asymptotic properties of various estimates and test statistics. In Section 5, simulation 

studies are used to examine the finite-sample performance of the proposed estimates and test 

statistics. In Section 6, we apply FVCSIM to investigate the development of white matter 

diffusivities along the corpus callosum skeleton obtained from ADNI. Section 7 concludes 

the paper with some discussions. Technical details are given in the supplementary document.

2 The Estimation Procedure

We develop an estimation procedure to estimate the varying coefficient functions αj(s), the 

single index functions gj(·), the index parameter vectors βj, and the covariance function R(s, 
s′). For notational simplicity, we assume sm ∈ [0, 1] such that s1 ≤ ⋯ ≤ sM, but our results 

can be easily extended to a compact subset of Euclidean space.

2.1 Varying-Coefficient Functions and Index Parameter Vectors

We adopt the local linear approximation to estimate the varying coefficient functions and the 

single index functions. Specifically, we use the Taylor’s expansion to obtain

(2)

where hj1 and hj2 are bandwidths, α̇
j(s) = dαj(s)/ds and ġj(t) = dgj(t)/dt, sm is in a small 

neighborhood of s, and zTβj is in a small neighborhood of . Moreover, we set aj = 

αj(s), bj = α̇
j(s)hj1, cj = gj(zTβj), and . One may directly minimize an 

objective function given by

(3)

where Kjim(s, z)s’ are weights. A standard choice of the weight Kjim(s, z) is a two-

dimensional kernel given by
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where Kh1,h2(x, y) = K(x/h1, y/h2)/(h1h2) is a scaled kernel with two bandwidths h1 and h2. 

The kernel that we choose in this paper is the product of two one-dimensional kernels such 

that K(x, y) = K(x)K(y). However, since it is computationally difficult to directly minimize 

(3), we consider an iterative estimation approach as follows.

Step 0. Initialization step: At each sm (m = 1, ⋯, M), we fit a partly linear single 

index model

(4)

using data available at sm. We then take  and 

as the initial single index function and coefficient estimates, where 

. Write . To obtain initial varying-

coefficient estimates α̂
j(s), we then fit a varying-coefficient model (Zhu et al. (2012)) 

given by

(5)

Step 1. Let ji(z) = (1, (Zi−z)Tβ̂j/hj2)T. For a given β̂j and α̂
j(s), we can solve

(6)

to obtain

(7)

where .

Step 2. Let . Given ĝj(zT βj), we update the estimate 

of αj(s) by minimizing
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(8)

which leads to

(9)

where .

Step 3. Let δZ,i,i′ = Zi − Zi′. Given α̂
j(s) = âj,  and 

the estimate for βj at the preceding step, denoted by , we update the estimate of βj 

by minimizing

(10)

where , which leads to

(11)

where .

Step 4. Normalize the updated βĵ such that ||β̂|| = 1 and then repeat Steps 1 to 3 until 

convergence.

The two bandwidths hj1 and hj2 involved in the above procedure are selected by using the 

cross-validation in our implementation. Since only univariate local linear regression is used 

in the estimation procedure, our procedure is numerically much more stable than those used 

in Wong et al. (2008) and Wang & Xue (2011). In our simulations, it usually takes less than 

10 iterations for a stringent convergence criterion, in which the average of the squared 

differences between two consecutive estimates is less than 10−5.

2.2 Individual Functions and Covariance Function

For clustered data with fixed M locations, we may use empirical estimates for the random 

effects and the covariance matrix. In this paper we consider a more general approach that 
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can meet this estimation goal and further adapt to functional data. Our methods may be 

appealing when M is large (as in our brain image example) and it is reasonable to consider 

the covariance to be a smooth function of the locations.

We employ the local linear regression to estimate all individual functions. Consider the 

Taylor’s expansion for ηij(sm) around s given by

(12)

where aj = ηij(s) and , in which η̇
ij(s) = dηij(s)/ds. Let 

, we minimize

(13)

The estimates of aj and bj are given by

(14)

The minimizer âj gives the estimator η̂
ij(sm). We obtain η̂i(s) = (η̂i1(s), ⋯, η̂

iJ (s))T. The 

bandwidth  can be selected by the usual cross-validation or the generalized cross-

validation.

The covariance matrix R(s, t) can thus be estimated by an empirical covariance estimator

(15)

Subsequently, we can calculate the spectral decomposition of R̂
jj(s, t) for each j as follows:
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(16)

where λ̂
j1 ≥ λ̂

j2 ≥ … ≥ 0 are estimated eigenvalues and the ψ̂
jl(t)’s are the corresponding 

estimated principal components. Furthermore, the (j, l)-th functional principal component 

scores can be computed using  for i = 1, …, n.

The noise variance function ℰ(s, s) measures the variation of ε(s) and its estimation can be 

based on the residuals  by following Hall & Marron (1990) and Fan & 

Yao (1998). The kernel estimator for ℰjj(s, s) with a bandwidth h** is given by

(17)

2.3 Refined Function amd Parameter Estimation

The estimated covariance structure may be incorporated to account for the spatial 

dependence in the model and further improve the estimation results. In this section, we adopt 

the estimated covariance matrix to obtain more efficient estimates for regression coefficients. 

Let Φj = Rjj(sk, sl) + ℰjj(sk, sl)k,l=1, …, M be the covariance matrix for the j–th response 

observed at M grid points in the sample. When Φj is given, we may obtain the following 

refined estimates g̃j(·), α̃
j(·) and β̃j for gj(·), αj(·) and βj, respectively. We modify the three 

iterative steps in Section 2.1 as follows.

Step 1. Let 1M be an M × 1 vector of ones, s = (s1, ⋯, sM), yij(s) = (yij(s1), ⋯, 
yij(sM))T, and αj(s) = (αj(s1), ⋯, αj(sM)). Given β̂j and α̂

j(s), we can solve

(18)

which yields that  is equal to

(19)
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Step 2. Let . Given g̃j(zTβj), we update the estimate of 

αj(s) by minimizing

(20)

where K̃
j = diag(Khj1

 (s1−s), ⋯, Khj1
 (s1−s)). This leads to

(21)

Step 3. Given α̃
j(s) = ãj,  and the initial estimate βĵ, 

we update the estimate of βj by minimizing

(22)

which leads to

(23)

The bandwidths hj1 and hj2 are also selected by the cross-validation. To differentiate 

from the initial bandwidths, we denote the selected bandwidths as  and .

We provide the asymptotic properties of the refined estimates in Theorem 4 of this paper. 

Lemma 5 in the Appendix justifies their optimality for the estimation of Euclidean model 
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parameters. In practice, the unknown Φj may be estimated from (R̂
jj(sk, sl) + ℰ̂

jj(sk, 
sl)k,l=1, …, M using (15) and (17).

3 Hypothesis Test and Inference

It is of interest to carry out hypothesis test and other inference procedures after estimation. 

We provide a general guideline on how to test hypothesis of interest and construct 

confidence intervals for parametric and nonparametric components. Let α(s) = (α1(s)T, …, 

αJ (s)T)T and . Let α̃
j0(·), g̃j0(·) and βj̃0 be the estimators of unknown 

functions and parameters under the null hypothesis and αj̃1(·), g̃j1(·) and β̃j1 be the 

corresponding estimators under the alternative hypothesis.

First, we consider the test of the hypotheses for the varying coefficients functions as follows:

(24)

where A is an l × Jp full rank matrix and a0(s) is an l × 1 vector of known functions.

Write d(s) = A × vec(α̃
(1)(s)) − a0(s), where vec(α̃

(1)(s)) = (α̃
11(s)T, …, α̃

J1(s)T)T. We may 

construct a global test as follows:

(25)

where . Although we will prove the asymptotic null distribution of Tα in 

Theorem 4, such theoretical result does not produce a good approximation when the sample 

size n is relatively small. We thus propose the following bootstrap test procedure.

Step 1. Fit model (1) under H0 to obtain α̃
j0(·), g̃j0(·), β̃j0, η̃

ij0(sm), and εĩj0(sm).

Step 2. Draw  and  for i = 1, …, n and m = 1, …, M independently from the 

standard normal distribution and construct

(26)

Step 3. Refit model (1) using ŷij(sm)(b) as the response values and calculate Tα,b 

using formula (25) from this bootstrap sample.

Step 4. Repeat Steps 2 and 3 B times to obtain {Tα,b : b = 1, ⋯, B} and then 

approximate the test p-value as . Reject H0 if the p-value is 

lower than a pre-specified significance level α, say 0.05.

The bootstrap test can be also applied to test the linear hypotheses for β as follows:
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(27)

where C is a given l × Jq full rank matrix and c0 is a given l × 1 vector. An F-type test can be 

constructed by

(28)

where  and

are the residual sum of squares under H0 and H1, respectively. The asymptotic distribution of 

(28) can be established by following Fan & Huang (2005) under some mild conditions. We 

omit it for simplicity.

Besides hypothesis tests, one may also be interested in computing the confidence intervals of 

the estimated parameters and the confidence bands of the estimated functions. Although we 

will prove their theoretical distributions as n → ∞, such asymptotic results may not be 

accurate enough in practice. We suggest the use of bootstrap methods. For instance, we may 

modify the semiparametric bootstrap procedure described in this section to generate 

bootstrapped samples and then calculate their corresponding estimates {( , ĝj(·)(b)) : 

b = 1, ⋯, B}. Subsequently, we can compute the confidence intervals and bands.

In real applications, the specific assignment of variables of interest into model (1) is usually 

guided by subjective matter experts in order to achieve meaningful practical interpretations. 

One may objectively allocate variables of interest into X and Z. Specifically, Cheng et al. 

(2009) considered a Bayesian information criterion on structural selection, whereas Zhang 

(2011) used the cross-validation criterion. Moreover, group penalization for functional 

estimation can also be used for structural selection (Cheng et al. (2014)). These ideas may be 

readily adopted for model (1).

4 Asymptotic Properties

We first define some notations. Let ur(K) = ∫trK(t)dt and vr(K) = ∫trK2(t)dt for any integer r. 
For any smooth functions f(s) and g(s, t), define ḟ(s) = df(s)/ds, f̈(s) = d2f(s)/ds2, f⃛(s) = 

d3f(s)/ds3, and g(a,b)(s, t) = ∂a+bg(s, t)/∂as∂bt, where a and b are any nonnegative integers. 

The true values of α(s), β, and gj(·) are denoted by α0(·), β0 and gj0(·), respectively. Let 

μβj0(z) = E(Z|ZTβj0 = zTβj0), νβj0(z) = μβj0(z) − z, ωβj0(z) = E(ZZT|ZTβj0 = zTβj0), ω1jj′(z1, 
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z2) = νβj0(z1)νβj′0(z2)T, and ω2j(z) = ωβj0(z) − μβj0(z)μβj0(z)T for j = 1, …, J. Let A+ be the 

Moore-Penrose inverse of a symmetric matrix A and fj(·) be the density function of ZTβj. It 

is assumed that the initial value for estimating βj is in an  neighbor of βj0, denoted 

as Bj,n such that Bj,n = {βj : |βj − βj0| ≤ δβj = C0n−1/2} (Härdle et al. (1993); Xia (2006)), 

where δβj is the radius of Bj,n. We also assume that the initial estimate for αj(s) is in an 

 neighbor of αj0(s), which can be achieved by using the estimates in Fan & 

Huang (2005) and Zhu et al. (2012).

We state the following theorems, whose detailed conditions and proofs can be found in the 

Appendix. The first theorem establishes the weak convergence of (β̂, ĝj(zTβ̂j), α̂(s)), which 

characterizes the asymptotic behavior of our estimators and is essential for constructing 

valid inferences based on these estimators.

Theorem 1—Suppose that Assumptions (1)–(9) hold. As n → ∞, we have the following 

results:

i.
, where  and the (j, j′)th block in Ψβ is

in which .

ii.
, where 

.

iii.  converges weakly to 

a mean-zero Gaussian process with covariance matrix , where α̂(s) 

= [α̂
1(s), …, α̂

J(s)], α̈(s) = [α̈
1(s), …, α̈

J(s)], , H1 = diag(h11, …, 

hJ1), , and H2 = diag(h12, …, 

hJ2).

The key challenge in proving Theorem 1 is to deal with within-subject dependence, the 

unknown link function, and the index parameter vector. In fact the covariance between η(s) 

and η(s′) in the newly proposed multivariate varying coefficient model does not converge to 

zero under the within-curve dependence structure and thus requires special care in the 

derivation of the asymptotic distribution. Also, because of the iterative nature of the 

proposed estimation procedure, the proof of the single index component requires an explicit 

induction argument. In practice, the estimation of the unknown moment quantities involved 

in this theorem is highly non-trivial. We therefore recommend the bootstrap resampling 

method given in the previous section.

The consistency and asymptotic normality of the minimum average variance estimator 

(MAVE) for single index model were established in Xia et al. (2002) and Xia (2006). The 
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asymptotic results for the estimation of the single index component in our model are more 

general since our estimation reduces to MAVE under simpler settings. Similar to Xia (2006), 

we can show that Ψβ achieves the semiparametric information lower bound under the 

exponential family when there is no within-subject dependence for the data. Although 

research interest is usually restricted on the coefficients, we also provide the asymptotic 

result for single index estimate ĝj(·) for the sake of completeness. Such a result may be used 

to quantify the estimation variability from a theoretical point of view. Finally, the estimation 

for the varying-coefficients functions in model (1) has a similar distributional result to Zhu 

et al. (2012) for multivariate functional data. We note because of the within-curve 

dependence the convergence speed for the estimated varying-coefficients is at the order 

O(n−1/2) instead of O((nMhj1)−1/2), which is usually the expected rate for cross-sectional 

data.

We next study the asymptotic bias and covariance of η̂ij(s) as follows. We distinguish 

between two cases. The first case is to condition on the design points in , X, Z and η. The 

second case is to condition on the design points in , X and Z. For the first case the 

conditional events involve the subject specific random effects. The bias and variance of the 

estimated random effects thus reflect individual heterogeneity. On the other hand, the second 

case does not condition on the sets of random effects and thus the bias and variance of the 

estimated random effects are considered for subjects randomly selected from a 

homogeneous population. The two cases may both be of interest for practitioners. We define 

K#(t) = ∫ K(u)K(u + t)du.

Theorem 2—Under Assumptions (1) and (3)–(9), the following results hold for all s ∈ (0, 

1).

i. Conditioning on ( , X, Z, η), we have

ii. The asymptotic bias and covariance of η̂
ij(s) conditional on , X and Z are given 

by

iii. The mean integrated squared error (MISE) of η̂
ij is given by
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(29)

iv. The optimal bandwidth to minimize MISE (29) is given by

(30)

v. The first order local polynomial kernel reconstructions η̂
ij(s) using  in (30) 

satisfy

(31)

for i = 1, ⋯, n.

This theorem may be used to study the statistical property of the entity-specific effects in the 

functional regression analysis. Because the estimation of ηij(s) succeeds the estimation of 

the regression coefficients, the MISE of η̂
ij(s) appears to be a function of the three 

bandwidths hj1, hj2 and . If the optimal bandwidth in Theorem 2 (iv) is used, the resulting 

MISE can achieve the order of . Practitioners may interpret the 

estimated random effects as how differently individual subjects behave from the population 

average.

We then present the asymptotic results for the refined estimates which fully acknowledge the 

dependence in the error process.

Theorem 3—Suppose that Assumptions (1)–(10) and (12) hold and  and  are of the 

same order as hj1 and hj2, respectively. As n → ∞, we have the following results:

i.
, where , and the (j, j′)th block in  is

where j(s, t) and jj′(s, t) are defined in Assumption (12).

ii.

.
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iii.  converges weakly 

to a mean-zero Gaussian process with covariance matrix , where 

α̃(s) = [α̃
1(s), …, α̃

J(s)], , and 

An important implication of Theorem 3 (i) is the efficiency gain in the use of the refined 

estimator β̃ compared with β̂. That is, the individual elements of β̃ have smaller asymptotic 

variance than the corresponding elements of β̂. See the proof of Lemma 5 in the Appendix. 

The refined procedure is thus more efficient in practice, especially when the goal of interest 

is to achieve an accurate estimation of the covariate effect.

Finally, we have the following asymptotic results for the test statistic Tα. By Theorem 1 (iii), 

 converges weakly to a Gaussian process. The results in 

Theorem 4 follow directly from Theorem 1 and Fubini theorem.

Theorem 4—Under Assumptions (1)–(10), we have that Tα converges weakly to 

 as n → ∞, where (s) is an l–dimensional Gaussian process. In particular, 

under H0, (s) is a zero-mean Gaussian process.

5 Simulation Study

In the following simulation study, the data were generated from model (1) with J = 2, in 

which sm ~ U[0, 1], (εi1(sm), εi2(sm))T ~ N((0, 0)T, , and Xi = (1, 

Xi1, Xi2) for all i = 1, …, n and m = 1, …, M. Moreover, Xi1 and Xi2 were independently 

generated from N(0, 1) and ηij(s) = ξij1ψj1(s) + ξij2ψj2(s), where ξijl ~ N(0, λjl) for j = 1, 2 

and l = 1, 2. We generated Zi from a 4-dimensional standard normal distribution with the 

index parameter vectors  and . Furthermore, 

sm, Xi1, Xi2, ξi11, ξi12, ξi21, ξi22, εi1(sm), and εi2(sm) are independent random variables. We 

set  and the single index functions, 

eigenfunctions, and varying coefficient functions as follows:

We conducted extensive simulation studies under different settings and reported the 

estimation results for n = 200 and 400 and M = 50 after 500 simulations. We applied the 

estimation procedure in Section 2 to each simulated data set and calculated all unknown 

quantities. Table 1 summarizes the numerical performance of our estimators with sample 

size n = 200, where we report mean absolute error (MAE) and root mean square error 

(RMSE) for estimated parameters and mean integrated absolute error (MIAE) and mean 

integrated squared error (MISE) for estimated functions. The results indicate satisfactory 

performance of our estimators since all MAE, RMSE, MIAE and MISE values are quite 

small. We notice that the refined estimators achieve smaller estimation error compared with 

the initial estimators. Typical estimated functions with median performance are displayed in 
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Figures 1 and 2. The estimated curves (broken lines) closely resemble the corresponding true 

functions (solid lines) in these figures. We also carried out some additional experiments 

under different sample sizes and obtained similar findings. Table 2 presents the estimation 

results for n = 400. As expected, increasing sample size decreases estimation error.

We then assess the finite-sample performance of Tα proposed in Section 3. We are interested 

in testing whether any varying-coefficient function can be constant. We consider the same 

data generating mechanism as in the previous simulations except that the varying 

coefficients are generated as follows:

(32)

where α0(s) = (α10(s)T, α20(s)T)T, in which α10(s) = (s2, (1−s)2, −4s(1−s))T and α20(s) = 

(5(s−0.5)2, s0.5, 1.75{exp(−(3s−1)2)+exp(−(4s−3)2)}−0.75)T, ᾱ0 = E{α0(S)}, and k is a 

tuning parameter characterizing the distance between the null hypothesis and the alternative 

one. When k = 0, the model reduces to the null hypothesis, when all functions are constants. 

We set B = 500 in the proposed bootstrap test and report the power function of Tα based on 

500 simulations in the left panel of Figure 3. Moreover, Tα attains the significance level 

under the null hypothesis and the power increases as k increases.

Finally, we consider the other example on the test of varying-coefficient functions. 

Specifically, we generated the coefficient functions via the following alternative model

(33)

where α0(s) is the same as that in (32). Under the null hypothesis, all varying-coefficient 

functions are equal to zero as k = 0. We examine the test performance over a range of k 

values and also plot the power curve of the bootstrap test in the right panel of Figure 3. As 

expected, the proposed test preserves the specified significance level under the null 

hypothesis and its power increases with k.

6 Real Data Analysis

We used model (1) to analyze a real DTI data set with n = 214 subjects collected from NIH 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) study1. The NIH ADNI is an ongoing 

public-private partnership to test whether genetic, structural and functional neuroimaging, 

1Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit 
organizations, as a $60 million, 5-year publicprivate partnership. The primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop 
new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator of this 
initiative is Michael W. Weiner, MD, VA Medical Center and University of California, San Francisco. ADNI is the result of efforts of 
many coinvestigators from a broad range of academic institutions and private corporations, and subjects have been recruited from over 
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and clinical data can be integrated to assess the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). The structural brain MRI data and 

corresponding clinical and genetic data from baseline and follow-up were downloaded from 

the ADNI publicly available database (https://ida.loni.usc.edu/). The demographic 

information about the data set in this paper is presented in Table 3.

The DTI data were processed by two key steps including a weighted least squares estimation 

method (Basser et al., 1994; Zhu et al., 2007) to construct the diffusion tensors and a FSL 

TBSS pipeline (Smith et al., 2006) to register DTIs from multiple subjects to create a mean 

image and a mean skeleton. Specifically, maps of fractional anisotropy (FA) were computed 

for all subjects from the DTI after eddy current correction and automatic brain extraction 

using FMRIB software library. FA maps were then fed into the TBSS tool, which is also part 

of the FSL. In the TBSS analysis, the FA data of all the subjects were aligned into a 

common space by non-linear registration and the mean FA image were created and thinned 

to obtain a mean FA skeleton, which represents the centers of all WM tracts common to the 

group. Subsequently, each subjects aligned FA data were projected onto this skeleton.

We focus on the midsagittal corpus callosum skeleton and associated FA curves from all 

subjects at M = 83 location points as shown in Fig. 4. The corpus callosum (CC) is the 

largest fiber tract in the human brain and is a topographically organized structure. It is 

responsible for much of the communication between the two hemispheres and connects 

homologous areas in the two cerebral hemispheres. It is important in the transfer of visual, 

motoric, somatosensory, and auditory information.

We are interested in testing the association between FA and diagnostic groups (MCI and 

AD) using model (1). Specifically, the Xi vector includes an intercept term and the gender 

variable (coded by a dummy variable indicating for male) and the Zi vector includes the age 

of the subject (years), an indicator for handiness (coded by a dummy variable indicating for 

left-hand), the education level (years), an indicator for Alzheimer’s disease (AD) status 

(19.6%) and an indicator for mild cognitive impairment (MCI) status (55.1%). We 

standardized all continuous variables to be mean zero and variance one.

The estimated varying-coefficients models are shown in Figure 5, along with 95% bootstrap 

confidence bands. The intercept function characterizes the nonlinear trend of FA values. The 

estimated coefficient function for sex suggests that the difference of FA values between men 

and women is not a constant. Since the coefficient curve is positive at most of the grid 

points, it may indicate that men tend to have higher FA values than women. This finding is 

consistent with the previous analysis with functional varying-coefficient models (Zhu et al. 

(2012)). On the other hand, when we include sex in Z for the single index, its estimated 

coefficient is of size 0.2236 and in the same direction.

50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO 
and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of 
cognitively normal older individuals, people with early or late MCI, and people with early AD. The follow up duration of each group 
is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the 
option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.
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The estimated single index function is presented in Figure 5. Table 4 presents the estimated 

coefficients for the single-index variables and their 95% confidence intervals. Since the 

estimated single index function is decreasing, the estimated positive coefficients in Table 4 

indicate negative association between FA and the five covariates of interest in Zi. Being 

older, left-hand or more educated may lead to smaller FA values. AD and MCI patients tend 

to have lower FA values than normal subjects, while AD patients decreases more than MCI 

patients. For comparison, we also present the estimated coefficients and 95% bootstrap 

confidence interval for the refined estimates. The regression coefficients are of similar 

directions and magnitudes and their confidence intervals are all much narrower than those 

without the covariance adjustment.

Six non-zero eigenvalues of the covariance were estimated in a descending order to be 

0.2294, 0.0290, 0.0255, 0.0107, 0.0086, and 0.0041, respectively. The first three eigenvalues 

account for 92.3% of the total variability and the remaining eigenvalues rapidly drop to zero. 

The estimated eigenfunctions corresponding to these eigen-values are shown in Figure 6. 

The first eigen-function, with a dominant eigenvalue accounting for 74.6% of the total 

variation, is simple in structure and resembles a single cycle of a sine wave. While the 

remaining eigen-functions are also quite simple and roughly sinusoidal, they contain more 

and more cycles.

7 Discussion

We have proposed a novel functional varying-coefficient single index model (FVCSIM) to 

carry out the regression analysis of functional responses on a set of covariates of interest 

(e.g., time). The varying-coefficient and single index components in FVCSIM allow us to 

accommodate the dynamic effect of X and the stationary effect of Z on functional data. We 

have developed an efficient estimation procedure to iteratively estimate varying coefficient 

functions, link functions, index parameter vectors, and the covariance function of individual 

functions. We have systematically examined the asymptotic properties of all estimators in 

FVCSIM. Through simulation studies and a real data example, we have shown that FVCSIM 

is a valuable statistical model for quantifying the complex relationships between imaging 

data and clinical variables of interest.

Several important issues need to be addressed in future research. First, we will extend model 

(1) to FVCSIM with high-dimensional covariates X and/or Z. Such extension is extremely 

critical for quantifying the effects of a huge number of genetic markers on imaging 

phetotype data. Second, we will extend model (1) to functional single index models with 

varying index parameters βj(s). Moreover, we will consider high-dimensional covariate 

vector Z under such models and include regularization terms to incorporate the spatial 

smoothness and sparsity. This allows us to achieve dimension reduction and variable 

selection for complicated functional responses. Third, it is meaningful to extend model (1) 

from cross-sectional functional data to longitudinal functional data. Many complexities and 

new statistical tools will definitely emerge from these new developments.
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Figure 1. 
Estimated varying coefficients with median MISE over 500 simulations. The top panel is for 

α1(s) = (s2, (1 − s)2, −4s(1 − s))T, whereas the bottom panel is based on α2(s) = (5(s − 0.5)2, 

s0.5, 1.75(exp(−(3s − 1)2) + exp(−(4s − 3)2)) − 0.75)T. The solid lines are true functions and 

the broken lines are estimates.
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Figure 2. 
The estimated eigen-functions (top two panels) and single-index functions (bottom panel) 

with median MISE over 500 simulations. The solid lines are the true functions and the 

broken lines are the estimated ones.
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Figure 3. 
The power curves for testing hypotheses (32) (left panel) and (33) (right panel), respectively. 

In both panels, k = 0 corresponds to the null hypothesis. The significance level is set at α = 

0.05. Bootsrap sample size B = 500 and results are based on 500 simulations.
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Figure 4. 
Representative FA imaging data for ADNI study: FA template curves measured at 83 grid 

points along the midsagittal skeleton of the corpus callosum (black) of subjects in 3 groups 

(from left to right): AD (left), MCI (middle) and NC (right).
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Figure 5. 
ADNI data analysis: the estimated varying-coefficient functions for interecept and sex (left 

and middle) and the estimated single-index function (right) for the ADNI data. Solid lines 

are the estimates and dashed lines are the 95% bootstrap confidence intervals.
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Figure 6. 
ADNI data analysis: the estimated eigen-values in descending order (left) and estimated 

eigen-functions (right) corresponding to the six largest eigen-values.
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, X and Z. For the first case the conditional events involve the subject specific random effects. The bias and variance of the estimated random effects thus reflect individual heterogeneity. On the other hand, the second case does not condition on the sets of random effects and thus the bias and variance of the estimated random effects are considered for subjects randomly selected from a homogeneous population. The two cases may both be of interest for practitioners. We define K#(t) = ∫ K(u)K(u + t)du.Theorem 2—Under Assumptions (1) and (3)–(9), the following results hold for all s ∈ (0, 1).i.Conditioning on (
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, X, Z, η), we haveii.The asymptotic bias and covariance of η̂ij(s) conditional on 
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, X and Z are given byiii.The mean integrated squared error (MISE) of η̂ij is given by(29)iv.The optimal bandwidth to minimize MISE (29) is given by(30)v.The first order local polynomial kernel reconstructions η̂ij(s) using  in (30) satisfy(31)for i = 1, ⋯, n.This theorem may be used to study the statistical property of the entity-specific effects in the functional regression analysis. Because the estimation of ηij(s) succeeds the estimation of the regression coefficients, the MISE of η̂ij(s) appears to be a function of the three bandwidths hj1, hj2 and . If the optimal bandwidth in Theorem 2 (iv) is used, the resulting MISE can achieve the order of . Practitioners may interpret the estimated random effects as how differently individual subjects behave from the population average.We then present the asymptotic results for the refined estimates which fully acknowledge the dependence in the error process.Theorem 3—Suppose that Assumptions (1)–(10) and (12) hold and  and  are of the same order as hj1 and hj2, respectively. As n → ∞, we have the following results:i., where , and the (j, j′)th block in  iswhere 
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j(s, t) and 
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jj′(s, t) are defined in Assumption (12).ii..iii. converges weakly to a mean-zero Gaussian process with covariance matrix , where α̃(s) = [α̃1(s), …, α̃J(s)], , and An important implication of Theorem 3 (i) is the efficiency gain in the use of the refined estimator β̃ compared with β̂. That is, the individual elements of β̃ have smaller asymptotic variance than the corresponding elements of β̂. See the proof of Lemma 5 in the Appendix. The refined procedure is thus more efficient in practice, especially when the goal of interest is to achieve an accurate estimation of the covariate effect.Finally, we have the following asymptotic results for the test statistic Tα. By Theorem 1 (iii),  converges weakly to a Gaussian process. The results in Theorem 4 follow directly from Theorem 1 and Fubini theorem.Theorem 4—Under Assumptions (1)–(10), we have that Tα converges weakly to  as n → ∞, where 
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(s) is an l–dimensional Gaussian process. In particular, under H0, 
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(s) is a zero-mean Gaussian process.
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