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Abstract

With the abundance of high dimensional data in various disciplines, sparse regularized techniques 

are very popular these days. In this paper, we make use of the structure information among 

predictors to improve sparse regression models. Typically, such structure information can be 

modeled by the connectivity of an undirected graph using all predictors as nodes of the graph. 

Most existing methods use this undirected graph edge-by-edge to encourage the regression 

coefficients of corresponding connected predictors to be similar. However, such methods do not 

directly utilize the neighborhood information of the graph. Furthermore, if there are more edges in 

the predictor graph, the corresponding regularization term will be more complicate. In this paper, 

we incorporate the graph information node-by-node, instead of edge-by-edge as used in most 

existing methods. Our proposed method is very general and it includes adaptive Lasso, group 

Lasso, and ridge regression as special cases. Both theoretical and numerical studies demonstrate 

the effectiveness of the proposed method for simultaneous estimation, prediction and model 

selection.
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1 Introduction

Linear regression plays a fundamental role in statistics. It is widely used in many different 

scientific areas. Under the standard setting with the sample size n larger than the dimension 

p, the commonly used ordinary least squares (OLS) estimator for the p dimensional 

coefficient vector β0 often works well. On the other hand, it is also well known that OLS 

often leads to complicate models with low prediction accuracy when the predictors are 

highly correlated. Furthermore, for the high dimensional data (p ⪢ n), OLS is not applicable 

due to the rank deficiency of the design matrix. In order to improve OLS, many penalized 

methods using regularization in model fitting have been proposed in the literature. For 

example, classical ridge regression (Hoerl and Kennard (1970)) uses the ridge penalty 
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 to achieve better prediction performance through a bias-variance trade-off. The 

popular Lasso method (Tibshirani (1996)) uses the l1 penalty  to perform 

continuous shrinkage and automatic variable selection simultaneously. It is known from the 

literature that Lasso has many good theoretical properties such as model selection 

consistency (Zhao and Yu (2006)), estimation consistency (Knight and Fu (2000)), and 

persistence property for prediction (Greenshtein (2006)). However, Lasso also has some 

limitations. For example, the shrinkage introduced by Lasso results in significant bias 

towards 0 for large regression coefficients (Fan and Li (2001)). In the presence of some 

highly correlated variables, Lasso tends to select only one of those variables (Zou and Hastie 

(2005)).

Besides the Lasso, a lot of other penalized methods have been proposed for simultaneous 

variable selection and estimation. For example, Fan and Li (2001) introduced the smoothly 

clipped absolute deviation (SCAD) method. Zou and Hastie (2005) proposed the Elastic net 

method and Zou (2006) proposed the adaptive Lasso estimator. Wang et al. (2007) utilized 

the least absolute deviation Lasso for robust regression. Liu and Wu (2007) used a new 

penalty that combines the l0 and l1 penalties. Witten and Tibshirani (2009) proposed the 

Scout method which includes many penalized methods as special cases. Zhang (2010) 

studied the minimax concave penalty (MCP) which is a nearly unbiased method for 

penalized variable selection.

Despite the vast literature on sparse regression, few methods use the structure information of 

the predictors which can be modeled by the connectivity of an undirected graph. It would be 

very interesting and useful to study how to use this structure information to improve the 

performance of variable selection, estimation and prediction. In general, we can get the 

structure information of the predictors from prior information or estimation. For example, 

many biological studies have shown that there may exist some regulatory relationships 

between genes (Li and Li (2008)). An increasing amount of information about gene 

interaction is organized in databases (Subramanian et al. (2005)). This biological 

information can be used to construct the predictor graph where nodes represent genes and 

edges indicate regulatory relationships. If the prior information is not available in some 

applications, we can construct the predictor graph by sparse estimation of the covariance (or 

precision) matrix of the predictors (Yuan and Lin (2007); Friedman et al. (2008); Cai et al. 

(2011)).

Since the predictor graph can not be represented as some non-overlapping groups, the 

traditional group Lasso method (Yuan and Lin (2006)) cannot make full use of this 

complicate structure information. To use the entire predictor graph information, most 

existing methods use the graph edge-by-edge, through adding some penalty terms to 

encourage coefficients  and  to be similar for predictors i and j connected by an edge. 

One type of methods encourages  and  to be zero or nonzero simultaneously. For 

example, OSCAR (Bondell and Reich (2008)) uses the l∞ penalty  for 

every pair of different predictors. Yang et al. (2012) generalized OSCAR to graph OSCAR 

(GOSCAR) which only uses the l∞ penalty for those pairs of predictors connected by an 
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edge in the given predictor graph. Pan et al. (2010) introduced a weighted Lγ-regularization. 

Kim et al. (2013) proposed a new non-convex penalty term based on the truncated lasso 

penalty. Another type of methods uses some penalty terms to encourage  and  have 

similar values or absolute values. For example, GRACE (Li and Li (2008)) uses the penalty 

 to smooth the weighted  over the predictor graph, where di is the 

degree of predictor i. GFlasso (Kim and Xing (2009)) utilizes the penalty 

 where  is the sample correlation coefficient between predictors i and 

j. Zhang et al. (2013) proposed the logistic graph Laplacian net. Other methods of this type 

include Yang et al. (2012) and Zhu et al. (2013) which use some non-convex penalty terms 

to encourage  and  to be similar. Although penalized methods using the predictor 

graph edge-by-edge are promising in improving regression performance, they also have 

some drawbacks. On the one hand, these methods do not directly utilize the neighborhood 

information of the graph. For each neighborhood, it can be preferable to use the 

corresponding edges jointly rather than separately. On the other hand, the penalty terms in 

these methods will be more complicate if there are more edges in the graph.

In this paper, instead of using the predictor graph edge-by-edge, we propose a new method, 

namely Sparse Regression Incorporating Graphical structure among predictors (SRIG), 

using the graph node-by-node. Specifically, according to the predictor graph G, we assume 

that there is a latent decomposition of β0 into p parts V(1), V(2), …, V(p) such that 

 and each V(i) ∈ Rp. The proposed SRIG imposes a penalty to shrink some Vi 

to 0 while the other Vi's satisfy , where  is a set including predictor i and its 

neighbors in graph G. For SRIG, if one predictor is important for prediction, the other 

predictors connected to it are also encouraged to be in the model. Note that our proposed 

SRIG method is a graph based penalized regression method with a very different motivation, 

although the corresponding optimization problem can be formulated as a special case of the 

Latent Group Lasso approach (Obozinski et al. (2011)) with each neighborhood  as a 

group. For computation, besides introducing the predictor duplication method shown in 

Obozinski et al. (2011), we also propose a new iterative proximal algorithm which is very 

efficient for high dimensional data. Our theoretical study shows that SRIG has close 

connections with several existing methods: (1) It is the same as the adaptive Lasso method 

when the predictor graph G has no edge; (2) It is equivalent to the group Lasso method when 

G consists of multiple complete subgraphs; (3) It has the same nonzero solution set as the 

ridge regression when G is a complete graph. Under some conditions, SRIG enjoys model 

selection consistency and acquires tight finite sample bounds for both estimation and 

prediction. In order to evaluate the performance of SRIG, we compare SRIG with many 

existing methods. Simulation examples with different kinds of predictor graphs are studied. 

We also analyze a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (www.loni.ucla.edu/ADNI). The structural magnetic resonance imaging (MRI) 

features are used to predict the mini-mental state examination (MMSE) score (Folstein et al. 

(1975)). Both the simulation results and the real data application indicate that SRIG has 

competitive performance in estimation, prediction and model selection.
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The rest of the paper is organized as follows. In Section 2, we motivate and introduce our 

proposed SRIG method. In Section 3, we introduce two methods to solve the optimization 

problem. In Section 4, we show some theoretical properties. In Sections 5 and 6, we 

demonstrate the use of SRIG on simulated data and the ADNI dataset. We conclude this 

paper with some discussion in Section 7. Technical proofs are provided in the supplementary 

materials.

2 Motivation and Methodology

Consider the following linear regression model:

(1)

where ϵ = (ϵ1, ϵ2, …, ϵn)T is a vector of i.i.d. random variables with mean 0 and variance 

σ2. Here,  is a vector of true coefficients, Y = (y1, y2, …, yn)T is an n 
× 1 response and X = (X1, X2, …, Xp) = (x1, x2, …, xn)T is an n × p design matrix.

For motivation, we first consider the random design setting and assume that each xk follows 

some multivariate distribution with mean 0p×1 and covariance matrix Σ. The design matrix X 
is assumed to be independent of the random error ϵ. Furthermore, denote Ω = (ωij)i,j=1,2,…,p 

= Σ−1 and Σxy = (c1, c2, …, cp)T ∈ Rp as the cross-covariance vector between xk and yk.

By model (1) and the definition of cross-covariance, we have

Then, we observe that β0 = Σ−1Σxy = ΩΣxy, where Ω measures partial correlations among 

predictors, and Σxy reflects the marginal correlations between predictors and response 

variable. From β0 = ΩΣxy, we have

Note that β0 is the sum of p parts, {(ciω1i, ciω2i, …, ciωpi)T : 1 ≤ i ≤ p}. For the ith part, 

(ciω1i, ciω2i, …, ciωpi)T, there is a common factor ci. If the ith predictor and the response 

variable are uncorrelated marginally, then ci will be 0 and all the components in the ith part 

of β0 will be 0 simultaneously. Furthermore, if ci is not zero and the predictor graph is 

defined by Ω, then the support of (ciω1i, ciω2i, …, ciωpi)T becomes , which is a set 

including predictor i and its neighbors in the predictor graph. Thus, instead of focusing on 

β0 in the model, we consider a latent decomposition of β0 into p parts. After choosing the 

candidate non-zero components in each part based on , we use the group 
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sparsity constraint to encourage the selected components in each part to be zero or nonzero 

simultaneously.

The above idea can be generalized for an arbitrary predictor graph constructed by the prior 

information or estimation from data. Given the predictor graph G, we define a p × p 
adjacency matrix E, where Eij = 1 if predictors i and j are connected and Eij = 0 otherwise. 

For each i, we set Eii = 1 and acquire the neighborhood set . As the previous 

case, we assume that β0 can be decomposed into

Here, the ith part is  whose candidate nonzero components 

are . We can view  as the effect arising from the marginal 

correlation between the ith predictor and the response variable. If they are uncorrelated, 

will be zero for each  and the components in the set  will be zero 

simultaneously. Therefore, after choosing the candidate non-zero components in each part 

based on , it is reasonable to use the group sparsity constraint to encourage 

the selected components in each part to be zero or nonzero together. Based on this 

motivating idea, given the training data (Y, X) and predictor graph G, we propose a new 

method, Sparse Regression Incorporating Graphical structure among predictors (SRIG), 

shown as follows.

Here, we use τi to denote the positive weight for the ith group. The choice of τi will be 

discussed in Section 4.4.

3 Computation

In this section, we introduce two methods to solve the problem (2). One is the predictor 

duplication (PD) method proposed in Obozinski et al. (2011) and another one is our 

proposed iterative proximal (IP) algorithm. The predictor duplication method transforms (2) 

to a traditional group Lasso problem by duplicating predictors while our proposed new 

algorithm solves problem (2) directly without duplicating predictors.

3.1 Predictor duplication method

Denote  as the  sub-vector of V(i) with indices in  and  as the 

sub-matrix of X with column indices in . Denote  and 

. Then, we can check that , and problem (2) is 

equivalent to the following group Lasso problem:
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(3)

Many efficient R packages such as grpreg (Breheny and Huang (2009)) and gglasso (Yang 

and Zou (2013)) can be used to solve problem (3). After setting  for each i, we have 

. Note that in some cases, some neighborhoods  maybe exactly the 

same. Then, the vectors  are indistinguishable and therefore the decomposition 

of β (i.e., {V(1), V(2), …, V(p)}) is not unique. In this case, although we can not estimate 

each vector in  stably, we can estimate  directly and stably using the 

penalty term . Since , different decompositions of β 
lead to the same estimation of β.

The predictor duplication method shown above is very convenient to use and has good 

performance in general. However, when the dimension is high and at the same time the 

predictor graph is not very sparse, there will be a lot of duplicated predictors in (3) and 

therefore the predictor duplication method can be inefficient (Obozinski et al. (2011)). In the 

following Section 3.2, we will propose a new iterative proximal algorithm which does not 

duplicate predictors. It is stable and very efficient for the high dimensional data, especially 

when the predictor graph can be decomposed into several disconnected components.

3.2 Iterative proximal algorithm

Given the predictor graph G and positive weights τi's, for β ∈ Rp, define

(4)

We can show that ∥β∥G,τ is a norm (Obozinski et al. (2011)) and (2) is equivalent to

(5)

In problem (5), the squared loss function is strictly convex and differentiable. In addition, 

∥β∥G,τ is a norm and therefore convex. Thus, we can use the Fast Iterative Shrinkage 

Thresholding Algorithm (FISTA) (Beck and Teboulle (2009)) to solve it. For our specific 

problem (5), we propose the following iterative proximal algorithm.

By Theorem 4.4 in Beck and Teboulle (2009), the sequences {β(m)} generated via (6) will 

converge to the optimal solution with rate O(1/m2). The most time consuming step in the 
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above IP algorithm is to compute the projection of h(m) onto the convex set . Follow 

the proofs of Lemmas 1 and 2 in Villa et al. (2014), we can show that

(7)

Thus, (6) is used to compute the proximal operator of  defined as

(8)

In (6), based on the number of elements in , denoted as , we use different methods 

flexibly to find the projection of h(m) onto the convex set  efficiently. If  is small 

(e.g., smaller than p/10 in our simulation study), we calculate the projection by solving the 

dual problem via the Bertsekas's projected Newton method (Villa et al. (2014)). If  is 

large (e.g., larger than p/10), we propose to find the projection by the Parallel Dykstra-like 

proximal algorithm as shown in Combettes and Pesquet (2011). The details about these two 

algorithms are shown in the supplementary materials. Furthermore, we note that this IP 

algorithm is scalable to large scale problems when the predictor graph G can be decomposed 

into several components (i.e., the covariance/precision matrix is block diagonal). Denote the 

disconnected components in G as G1, G2, …, GK with node sets C1, C2, …, CK respectively. 

In this case, we can compute the proximal operator (8) efficiently by solving the following K 
subproblems in parallel:

where βck, τck,  are sub-vectors of β, τ, and h(m), respectively.

The above parallel computation can potentially save a lot of computational cost. In Section 

5.3, we will compare the computational costs of the PD method with our IP algorithm using 

several simulated examples. In general, the predictor duplication method is very efficient for 

small data sets. However, when the dimension is high and the predictor graph G is not very 

sparse, our proposed IP algorithm is much faster than the predictor duplication method. 

Furthermore, in some cases, the predictor duplication method may break down since it 

requires immense working memory.
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4 Theoretical Properties

In this section, we study the theoretical properties of our proposed SRIG method. For 

theoretical study, it is convenient to consider (5) as the objective function. In (5), the optimal 

decomposition of β minimizing ∥β∥G,τ always exists, but may not be unique (Obozinski et 

al. (2011)). Denote , , and s0 = |J0| as the true nonzero 

coefficient set, the true zero coefficient set, and the number of true nonzero coefficients, 

respectively. For each β ∈ Rp, denote  as the set of all optimal decompositions of β, 

and KG,τ(β) as the number of nonzero V(i)'s in the optimal decomposition of β which has the 

minimal number of nonzero V(i)'s, i.e., 

. Denote KG,τ = supsupp(β)⊆J0 
KG,τ(β). We can check that KG,τ = s0 if the graph G has no edge, KG,τ = K0 if G consists of 

some disconnected complete subgraphs and J0 is the union of K0 node sets of those 

disconnected subgraphs.

4.1 Subgradient conditions

The following proposition shows the subgradient conditions for problem (5).

Proposition 1 A vector β ∈ Rp is a solution of (5) if and only if β can be decomposed as 

 where V(i)'s satisfy that, for all 1 ≤ i ≤ p, (a) ; (b) either  and 

, or  and .

The subgradient conditions shown above are similar to the subgradient conditions for the 

latent group Lasso (Obozinski et al. (2011)) and group Lasso (Nardi and Rinaldo (2008)). 

According to Proposition 1, if  is a solution of problem (2), then for 

each i, either  or . Thus, the estimate  acquired by 

our proposed SRIG method has the same decomposition pattern as we discussed in Section 

2.

4.2 Connections with some existing methods

The following proposition shows the connections between our proposed SRIG method and 

several other existing penalized methods when the given predictor graph has some special 

structures.

Proposition 2 (a) If the predictor graph has no edge, the proposed SRIG method is the same 

as the adaptive Lasso method for each tuning parameter λ; (b) If the predictor graph consists 

of K disconnected complete subgraphs, our proposed SRIG method is equivalent to the 

group Lasso method for each λ; (c) If the predictor graph is a complete graph, our proposed 

SRIG method has the same nonzero solution set as the ridge regression, i.e., for each 

Yu and Liu Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nonzero solution acquired by ridge regression (or SRIG), SRIG (or ridge regression) could 

acquire the same solution using a different tuning parameter.

Proposition 2 indicates that the proposed SRIG method includes adaptive Lasso, group 

Lasso, and ridge regression as special cases. It is much more general and can handle any 

arbitrary predictor graph structure.

4.3 Finite Sample Bounds

In this section, we derive the oracle inequalities for the prediction and estimation loss of our 

proposed SRIG method. The design matrix X is treated as fixed in this subsection. For a 

given graph G, positive weights τj's and subset J ⊂ {1, 2 …, p}, denote  as the set 

of all optimal decompositions of β such that . For each 

1 ≤ i ≤ p, denote di as the number of predictors in the neighborhood , i.e., . The 

following conditions are considered in this section.

(A1)
The errors .

(A2) The neighborhood  for each i ∈ J0.

(A3) There exists κ > 0 such that

Note that condition (A1) is a common condition for linear regression. Condition (A2) 

assumes that the given predictor graph G is “consistent” with β0, i.e., predictors connected to 

the useful predictor are also useful. Condition (A3) is similar to the restricted eigenvalue 

conditions used for the group Lasso (Nardi and Rinaldo (2008); Lounici et al. (2011)) and 

the overlapped group Lasso (Percival (2012)). It is used to analyze the l2 consistency 

property of both estimation and prediction.

Theorem 1 Suppose that conditions (A1), (A2) and (A3) are satisfied. Let τ* = min1≤i≤p τi 

and denote ηi as the positive square root of the largest eigenvalue of . If we 

choose  where A > 8, then, for any optimal solution  of 

problem (5), we have

with probability at least 1 − p1−q, where .
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Remark 1. Note that the above results are very general and have close connections with the 

results shown in the literature. For example, when the predictor graph G has no edge, we 

have KG,τ = s0 and  if τi = 1 for each i. Theorem 1 indicates that our 

proposed SRIG method acquires the same rates of prediction and estimation as the results 

shown in Bickel et al. (2009) for the Lasso method. When the given graph G consists of 

some disconnected complete subgraphs and J0 is the union of K0 node sets of those 

disconnected subgraphs, we have KG,τ = K0. In this case, we can also recover the results 

shown in Nardi and Rinaldo (2008) and Lounici et al. (2011) for the group Lasso.

4.4 Model Selection Consistency

In this section, we first study the model selection consistency for the case with a fixed 

dimension p. Then, we study the high dimensional case which allows p to grow with n. Both 

fixed design and random design are considered in these two cases. For every β ∈ Rp, denote 

βJ0 and  as the sub-vectors of β with indices in J0 and  respectively.

For the fixed p case, we use the following two common conditions:

(A4) As n → ∞, , where  is a positive matrix.

(A5) The errors ϵ1, ϵ2, …, ϵn are i.i.d. random variables with mean 0 and finite 

variance σ2.

Theorem 2 Assume conditions (A2), (A4) and (A5) hold. Suppose the tuning parameter λ 
and weights τi's are chosen such that  and n(γ+1)/2λ → ∞ for some γ > 0. 

Furthermore, τj = O(1) for each j ∈ J0 and lim infn→∞ n−γ/2τj > 0 for each . Then, 

with dimension p fixed, as n → ∞, we have

where  is the sub-matrix of  consisting of the entries with row and column indices 

in J0.

Remark 2. Theorem 2 indicates that our proposed SRIG method is model selection 

consistent for the fixed p case. It also provides a guideline on how to choose the positive 

weight τj. When n > p, similar to the weights used for the Adaptive Lasso (Zou (2006)), we 

can choose , where  is any -consistent estimate of . Note that Theorem 

2 can be extended to the random design setting naturally.

Corollary 1 Consider the random design setting where x1, x2, …, xn are i.i.d. samples from a 

multivariate distribution with mean 0 and covariance matrix Σ. Assume that the design 

matrix X and the errors ϵ are independent. Suppose conditions (A2) and (A5) hold. The 

tuning parameter λ and weights τi's are chosen such that  and n(γ+1)/2λ → ∞ for 

some γ > 0. Furthermore, τj = O(1) for each j ∈ J0 and lim infn→∞ n−γ/2τj > 0 for each 

. Then, with p fixed, as n → ∞, we have
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where ΣJ0,J0 is the sub-matrix of Σ consisting of the entries with row and column indices in 

J0.

For the high dimensional case which allows the dimension p to grow with n, if the design 

matrix X is considered to be fixed, we need the following conditions:

(A6) The number of nonzero coefficients s0 = O(nδ0) for some constant δ0 ∈ (0, 1).

(A7)
There exists a constant Q1 > 0 such that  for each n.

(A8)
There exists a constant Q2 > 0 such that the smallest eigenvalue of  is 

larger than Q2 for each n.

(A9)
There exists a constant ξ ∈ (0, 1) such that , 

where for a k × m matrix M, ∥M∥∞ is defined as .

Note that condition (A6) is a common sparsity assumption for the high dimensional 

regression problem. Condition (A7) can be satisfied by normalizing each predictor. 

Condition (A8) guarantees that the matrix  is invertible and its inverse behaves 

well. The main condition (A9) is similar to the strong irrepresentable condition used for 

Lasso (Zhao and Yu (2006)).

Theorem 3 Assume conditions (A1), (A2), (A6)-(A9) hold. Suppose the weight τj is chosen 

to be  for each j, where the mj's satisfy that maxj∈J0 mj = Op(1) and 

 for some γ > δ0. Furthermore, the selected tuning 

parameter λ and the minimum absolute nonzero coefficient  satisfy that, 

as n → ∞ and p = p(n) → ∞,

Then, as n → ∞ and p = p(n) → ∞, there exists a solution  to (5) such that 

 with probability tending to 1, where sign(·) maps a positive entry to 1, 

a negative entry to −1 and zero to zero.

Remark 3. For clarification, we note that many quantities such as p, s0, λ, τj and dj depend 

on n. We use simple notation here for convenience. Theorem 3 indicates that our proposed 

SRIG method is model selection consistent for the high dimensional case. For example, 
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suppose the dimension p = O(enδ1) for some constant δ1 ∈ (0, 1). Furthermore, for 

sufficiently large n, the minimum absolute nonzero coefficient  satisfies that 

 for some constants C1 > 0 and δ2 > δ1. If we select the weights τj's as 

shown in the theorem and the tuning parameter λ = C2n(δ1−2δ0−1)/2 for some constant C2 > 

0, then by Theorem 3 we can show that there exists a solution  such that 

 with probability tending to 1. In the high dimensional case with p ⪢ n, 

our simulation study suggests that choosing  works well. The 

positive parameter γ can be chosen by cross validation.

In Theorem 3, as the Lasso method, we use the irrepresentable condition (A9). In fact, we 

can also use the following condition (A9′) in order to reflect the use of the weights τj's. 

Following the same proof of Theorem 3, we can achieve the model selection consistency as 

shown in Corollary 2.

(A9′) There exists a constant ξ ∈ (0, 1) such that for each , we have

Corollary 2 Assume conditions (A1), (A2), (A6)–(A8), (A9′) hold. Suppose the weight τj's 

satisfy that . Furthermore, the selected tuning parameter λ and the 

minimum absolute nonzero coefficient  satisfy the same conditions in 

Theorem 3, then, as n → ∞ and p = p(n) → ∞, there exists a solution  to (5) such that 

 with probability tending to 1.

Theorem 3 considers the fixed design setting. It can be extended to the random design 

setting as well. For that setting, the conditions (A6)-(A9) are replaced by the following 

conditions.

(A10)
Let  with Σjj = 1 for each j. Furthermore, assume 

that X and ϵ are independent. The dimension , where .

(A11) Restricted eigenvalue assumption:

(A12)
The number of true nonzero coefficients .

Note that conditions (A10)-(A12) are common conditions used in the literature for the 

random design setting (Bickel et al. (2009); Zhou et al. (2009)). Under these conditions, we 

can show that our proposed SRIG method is also model selection consistent for the high 

dimensional case with random design.
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Theorem 4 Assume conditions (A1), (A2), (A10)-(A12) hold. Suppose the weight τj is 

chosen to be  for each j, where . 

Furthermore, the selected tuning parameter λ and the minimum absolute nonzero coefficient 

 satisfy that, as n → ∞ and p = p(n) → ∞,

Then, as n → ∞ and p = p(n) → ∞, there exists a solution  to (5) such that 

 with probability tending to 1, where sign(·) maps a positive entry to 1, 

a negative entry to −1 and zero to zero.

Remark 4. Under conditions (A10)-(A12), we can show that condition (A7) is satisfied with 

, condition (A8) is satisfied with Q2 = Λmin(s0), and 

, with probability greater than 1 − 1/p2. 

Based on these results, we can use a similar proof of Theorem 3 to prove Theorem 4.

5 Simulation Study

In this section, we first compare our proposed SRIG method with many existing methods. 

Then, we conduct a sensitivity study of the SRIG method. Finally, we compare the 

computational costs of the predictor duplication method and our proposed iterative proximal 

algorithm using some simulated examples.

5.1 Performance Comparison

To examine the performance of SRIG, we compare it with many other methods on three 

examples. Firstly, we compare SRIG with popular penalized methods such as Lasso, Ridge 

regression, Adaptive Lasso (ALasso) and Elastic net (Enet) which do not use the predictor 

graph structure information directly. Secondly, we compare SRIG with some existing 

methods using the predictor structure information. The competitors are GRACE (Li and Li 

(2008)) and GOSCAR (Yang et al. (2012)). Thirdly, we compare SRIG with other latent 

component approaches such as principal component regression (PCR) and sparse partial 

least squares (SPLS) using the R packages pls (Mevik and Wehrens (2007)) and spls (Chung 

et al. (2012)), respectively. In this simulation study, the predictor graph is defined by the 

precision matrix of the predictors. The performance of GRACE, GOSCAR and SRIG using 

both the estimated predictor graph and the oracle true predictor graph are evaluated on all 

examples. We denote GRACE-O, GOSCAR-O and SRIG-O as the GRACE, GOSCAR and 

SRIG methods using the true predictor graph, respectively. For comparison, we also show 

the performance of the least square method based on the true model, which is denoted as LS-

O.
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We generate data from model (1) with the errors . For each 

example, our simulated data include a training set, an independent validation set and an 

independent test set. All the models are fitted on the training data only. The validation data 

are used to choose the tuning parameter and the test data set is used to evaluate different 

methods. We use the notation ./././ to show the sample sizes in the training, validation and 

test sets, respectively. For each example, we consider three cases: (I) 40/40/400, (II) 

80/80/400 and (III) 120/120/400. For each case, we repeat the simulation 50 times. The 

predictor graph is estimated by the graphical Lasso method (Friedman et al. (2008)) only 

using the training data in all cases.

Example 1 (Ω is block diagonal) p = 100, s0 = 15, σ = 5, and the true coefficient 

vector β0 = (3, 3, ⋯, 3, 0, 0, ⋯, 0)T. The predictors are generated as:

where , j = 1, 2, …, 15.

Example 2 ( Ω is banded) p = 100, σ = 10, and β0 is the same as the β0 used in 

Example 1. The predictors (X1, X2, …, Xp)T ~ N(0, Σ) with Σij = 0.5|i−j|. 

For this example, we have ωii = 1.333, ωij = −0.667 if |i − j| = 1 and ωij = 0 

if |i − j| > 1.

Example 3 ( Ω is sparse) p = 100, σ = 5, and the predictors (X1, X2, …, Xp)T ~ N(0, Ω
−1), where = Ω = B + δI. Each off-diagonal entry in B is generated 

independently and equals to 0.5 with probability 0.05, or 0 with probability 

0.95. The diagonal entry of B is 0. Here, δ is chosen such that the 

conditional number of Ω is equal to p. Finally, Ω is standardized to have 

unit diagonals. We set β0 = ΩΣxy, where Σxy = (c1, c2, …, cp)T with ci = 10 

for the predictors having the top four largest degrees and ci = 0 otherwise.

To evaluate different methods, we use the following measures:

• l2 distance ;

•
Relative prediction error (RPE) , where 

Xtest is the test samples and Ntest is the number of test samples;

• False positive rate (FPR) and False negative rate (FNR);

Yu and Liu Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



•

Nonzero match ratio , which 

is used to check whether the estimated coefficients of two connected useful 

predictors are both nonzero; Zero match ratio 

, which is used to check 

whether the estimated coefficients of two connected useless predictors are both 

zero. We use NMR and ZMR when there is at least one edge connecting two 

useful predictors and one edge connecting two useless predictors. Thus, these 

two ratios are well defined and always between 0 and 1.

Figure 1 shows the true predictor graphs (defined by Ω) of these three examples. The 

numbers of edges for these three graphs are 30, 99 and 243 respectively. Such graphs were 

also studied in the literature previously (Yang et al. (2012); Cai et al. (2011)). It is very 

interesting to study whether the structure information represented by these predictor graphs 

could be used to improve the performance of estimation, prediction and model selection. 

Tables 1–2 show the performance comparison for Example 1. The comparison results 

indicate that the Elastic net method acquires better estimation and prediction than Lasso, 

ridge regression and adaptive Lasso methods by using a linear combination of l1 and ridge 

penalty. The GOSCAR and GRACE methods further improve the performance of estimation 

and prediction benefiting from using the addtional estimated predictor graph directly. 

However, Elastic net, GOSCAR and GRACE methods still have relatively high FPR. 

Compared with the other methods (not including methods using the true predictor graph), 

our proposed SRIG method delivers the best performance of estimation and prediction. 

Furthermore, SRIG almost always identifies the true model perfectly for this example. Since 

the estimated predictor graph for this example is almost the same as the true predictor graph, 

the performance of GOSCAR-O, GRACE-O and SRIG-O are similar to those of GOSCAR, 

GRACE and SRIG, respectively. Due to the strong correlation between different important 

predictors, the performance of LS-O method on this example is not very good. Compared 

with LS-O, our SRIG method still acquires competitive performance.

Tables 3–4 display the results for Example 2. As Example 1, the Elastic net method has 

better performance of estimation and prediction than Lasso and ridge regression. For the 

cases with relative large sample sizes, the adaptive Lasso method acquires better prediction 

than the Elastic net method. GOSCAR, GRACE and our proposed SRIG obtain better 

estimation and prediction than the methods not incorporating the additional predictor graph 

information. Methods using the true predictor graph acquire better estimation and prediction 

than those methods using estimated predictor graph, especially for the small sample cases (I 

and II). Compared with GOSCAR (GOSCAR-O) and GRACE (GRACE-O), our proposed 

SRIG (SRIG-O) has competitive performance of estimation and prediction. Furthermore, the 

results in Table 4 show that our proposed SRIG-O method acquires much lower FPR than 

the GOSCAR-O and GRACE-O methods. This indicates that GRACE and GOSCAR 

methods using the predictor graph edge-by-edge may lead to poor model selection results, 

although they can acquire competitive performance for estimation and prediction. Compared 
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with latent component approaches, SRIG has better performance than PCR while worse 

performance than SPLS. However, SRIG-O has better performance than PCR and SPLS in 

most cases.

The performance comparison for Example 3 is shown in Tables 5–6. Methods not using the 

predictor graph have poor performance for both estimation, prediction and model selection, 

especially for the cases (I) and (II) with smaller n than p. For this example, the performance 

of estimation and prediction of the Elastic net method is similar to Lasso, ridge regression 

and adaptive Lasso. When the additional predictor graph information is used, the GRACE 

method, which can be considered as a graph version of the Elastic net, still does not acquire 

improved performance. However, GOSCAR benefits from the additional predictor graph 

information and acquires better performance. Compared with the other methods (not 

including SRIG-O), our proposed SRIG method has the best results for both estimation, 

prediction and model selection. As the previous two examples, each method using the true 

predictor graph performs better than the corresponding method using the estimated graph. 

For this example, LS-O acquires the best performance and our proposed SRIG-O method 

has similar results to the LS-O method when the sample size is large.

The comparison results of NMR and ZMR for the cases with sample sizes 40/40/400 are 

shown in Table 7. The results for the cases with samples sizes 80/80/400 and 120/120/400 

are shown in the supplementary materials. Compared with the other methods (except LS-O 

which uses the underlying true model), our proposed SRIG-O acquires the best performance 

in most cases. The NMR's of SRIG-O indicate that our proposed SRIG method incorporates 

most edges between useful predictors efficiently and therefore chooses those connected 

useful predictors simultaneously. The ZMR's of SRIG-O indicate that our proposed SRIG-O 

method also makes use of most edges between useless predictors and therefore excludes 

those connected useless predictors jointly. Overall, for our proposed SRIG method, the 

estimated pattern (zero or nonzero) among coefficients agrees with the graphical structure 

very well.

In conclusion, the simulation results indicate that our proposed SRIG method can make use 

of the structure information among predictors efficiently and performs well for both 

estimation, prediction and model selection.

5.2 Sensitivity Study

An important condition for our proposed SRIG method is the condition (A2) which requires 

that the predictor graph G is “consistent” with the true coefficients vector β0, i.e., predictors 

connected to the useful predictor are also useful. Since it is difficult to check this condition 

in practice, it is very important to study the performance of SRIG when the condition (A2) is 

violated.

To this end, we evaluate the performance of SRIG on a series of data sets with changing 

predictor graphs. Fix p = 100, σ = 3, s0 = 20, and β0 = (20, 2, 2, ⋯, 2, 0, 0, ⋯, 0)T. For each 

p* = 0, 1, …, 30, we generate the predictor matrix X from N(0, Ω−1), where Ω = B + 2|

λmax(B)|Ip. Here, Bii = 2 for each 1 ≤ i ≤ p, B1i = Bi1 = 0.3 for each 1 ≤ i ≤ (s0 + p*), B(s0+1)i 
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= Bi(s0+1) = 0.3 for each (s0 + 1) ≤ i ≤ p, and Bij = 0 otherwise. λmax(B) is the largest 

eigenvalue of the matrix B. Finally, Ω is standardized to have unit diagonals.

For this study, the true precision matrix Ω is used to construct the predictor graph G. The 

neighborhoods of the useful predictor X1 and the useless predictor Xs0+1 are 

 and , respectively. The number of 

predictors shared by these two neighborhood is 

. The condition (A2) is satisfied when p* = 0 

and will be violated more and more seriously as p* increases. Based on this example, we 

study the robustness of SRIG as p* changes gradually from 0 to 30. For each p*, we also 

evaluate the performance of Lasso method. The sample sizes are fixed as 80/80/400.

Figure 2 shows the performances of SRIG and Lasso method as the number of shared 

predictors p* increases. It indicates that Lasso method is more robust than our proposed 

SRIG method to the intersection between the neighborhood of useful predictors and the 

neighborhood of useless predictors. One possible reason is that Lasso does not use the 

predictor graph information directly. For our proposed SRIG method, as p* increases, the 

condition (A2) is more and more violated and the performance of SRIG gets worse. As 

shown in Figure 2, if the condition (A2) is not violated seriously, our proposed SRIG 

method still has better performance than the Lasso method. However, if (A2) is violated 

seriously (i.e., p* > 25), Lasso method performs better than our proposed SRIG method. 

Besides this study, we also compare SRIG with the other methods on an additional example 

where the positions of useful predictors in Example 2 are adjusted so that the condition (A2) 

is much violated. The simulation results (shown in the supplementary materials) indicate 

that our proposed SRIG method still performs as well as the other methods.

5.3 PD method v.s. IP algorithm

In this subsection, we compare the computational costs of the PD method and our proposed 

IP algorithm by some examples. Besides the Examples 1-3 shown in Section 5.1, we also 

consider the following three high dimensional examples:

Example 4 n = 400, p = 1500, s0 = 25, σ = 5, and the true coefficient vector β0 = (1, 1, 

⋯, 1, 0, ⋯, 0)T. The predictors are generated as follows.

where , j = 1, 2, …, 50 and Ω* = B + δI. Each off-diagonal 

entry in B is generated independently and equals to 0.5 with probability 
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0.25, or 0 with probability 0.75. The diagonal entry of B is 0. Here, δ is 

chosen such that the conditional number of Ω* is equal to p − 50. Finally, 

Ω* is standardized to have unit diagonals.

Example 5 n = 500, p = 2000 and the other setup is the same as Example 4.

Example 6 n = 600, p = 2500 and the other setup is the same as Example 4.

For these six examples, we use both the PD method (using gglasso R package) and our 

proposed IP algorithm to compute the solution path of the SRIG method using the true 

predictor graph. To be specific, we set all the weights τi's to be 1 and compute the set of 

solutions corresponding to 100 different values of the tuning parameter λ1 > λ2 > ⋯ > λ100, 

where λ1 = ∥XTY/n∥2 which shrinks all the parameters to be 0 and λ100 = 0.05λ1. The 

computational times (in seconds) of PD method and IP algorithm are shown in Table 8.

As shown in Table 8, both methods require more time to compute the solution path as the 

dimension p and the number of edges in the predictor graph increase. When p is small and at 

the same time the predictor graph G is sparse (e.g., Examples 1-3), the PD method is faster 

than the IP algorithm. However, for high dimensional data sets with complicate predictor 

graphs (e.g., Examples 4–6), our proposed IP algorithm is more efficient than the PD 

method. For Example 6, the PD method using gglasso package breaks down due to out of 

memory while our proposed IP algorithm still works well. In this case, the proposed IP 

algorithm is very desirable.

6 Real Data Example

Alzheimer's disease (AD) is one of the most common forms of dementia characterized by 

progressive cognitive and memory deficits. The increasing incidence of AD makes the 

disease a very important health issue and a huge financial burden for both patients and 

governments (Hebert et al. (2001)). In the practical diagnosis of AD, the Mini Mental State 

Examination (MMSE) (Folstein et al. (1975)) score is a very important reference. MMSE is 

a brief 30-point questionnaire test that is used to screen for cognitive impairment. It can be 

used to examine patient's arithmetic, memory and orientation. Generally, any score greater 

than or equal to 27 points (out of 30) indicates a normal cognition. Below this, MMSE score 

can indicate severe (≤9 points), moderate (10–18 points) or mild (19–24 points) cognitive 

impairment (Mungas (1991)). As more and more treatments are being developed and 

evaluated, it is very important to develop diagnostic and prognostic biomarkers that can 

predict which individuals are relatively more likely to progress clinically. At present, 

structural magnetic resonance imaging (MRI) is one of the most popular and powerful 

techniques for the diagnosis of AD. It is very interesting to use MRI data to predict MMSE 

score which can be used to diagnose the current disease status of AD.

The dataset we used in this paper is the MRI data and MMSE scores of 51 AD patients and 

52 normal controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 

(www.loni.ucla.edu/ADNI). The image pre-processing steps for the MRI data include 

anterior commissure posterior commissure correction, intensity inhomogeneity correction, 

skull stripping, cerebellum removal, spatial segmentation, and registration. After 

registration, we obtained the subject-labeled image based a template with 93 manually 
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labeled regions of interest (ROI) (Kabani et al. (1998)). For each of the 93 ROI in the labeled 

MRI, we computed the volume of GM tissue as a feature. Therefore, the final dataset has 

103 subjects. For each subject, there are one MMSE score and 93 MRI features. We treat 

MMSE score as the response variable and MRI features as predictors in our model.

To evaluate the performance of our proposed SRIG method, we compare it with Lasso, ridge 

regression, Adaptive Lasso, Elastic net, GOSCAR, GRACE, PCR and SPLS. The dataset is 

first scaled to have mean 0 and variance 1 for the MMSE score and each MRI feature. The 

10-fold cross validation (CV) is used to evaluate different methods. The predictor (MRI 

feature) graph G is estimated by the graphical Lasso (Friedman et al. (2008)) only using the 

training data. Figure 3 shows the estimated MRI feature graph using all the data. There are 

93 nodes and 419 edges in this graph. Note that all the models are fitted using training data 

and evaluated by the mean squared error (MSE) calculated from the testing data. To choose 

the tuning parameters of different methods, an inner 5-fold CV is used. Considering possible 

bias due to the random splitting, we repeat 10-CV process ten times. Figure 4 shows the box 

plot of the averaged mean squared errors of different methods. Compared with the other 

methods, our proposed SRIG method delivers the best prediction of MMSE scores. The 

averaged MSE acquired by our proposed SRIG method is 0.5822, which is about 4.6% 

percent lower than the smallest MSE acquired by the competitors.

For the ten times of our 10-CV process, we acquires 100 models for each method. For our 

proposed SRIG method, the averaged number of selected MRI features (with estimated 

coefficients bigger than 0.01) is almost 36. There are seven MRI features always selected by 

our proposed SRIG method. The feature indices are 4, 19, 22, 30, 69, 80 and 83. Figure 5 

shows the multi-slice view of the brain regions corresponding to these seven MRI features. 

The colored areas are the selected regions. Interestingly, the 30th and 69th features 

correspond to the hippocampal regions. The 22th and 83th features correspond to the uncus 

region and the amygdala region, respectively. These regions are known to be related to AD 

by many previous studies based on group comparison methods (Jack et al. (1999); Misra et 

al. (2009); Zhang and Shen (2012)). Moreover, we notice that the 4th, 19th and 80th features 

relate to the insula right, temporal pole right and middle temporal gyrus right regions, 

respectively. It would be very interesting to check whether these regions are substantially 

related to AD by some group comparison studies.

7 Conclusion

In this paper, we propose a new penalized regression method using structure information 

among predictors. Instead of using the predictor graph edge-by-edge as in the existing 

literature, our proposed SRIG method uses it node-by-node. Theoretical study shows that 

SRIG includes adaptive Lasso, group Lasso and ridge regression as special cases. It can 

make use of the general structure information among predictors efficiently. Furthermore, 

SRIG acquires tight finite sample bounds for both prediction and estimation. It also enjoys 

the model selection consistency. Both simulation study and real data analysis show that 

SRIG is a competitive tool for estimation, prediction and model selection.
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SRIG Method

Step 1 Find the neighborhoods  (note that  for each i).

Step 2 Solve the following optimization problem:

(2)

subject to  and  for each i, where 

supp(V(i)) is the support of vector V(i) and ∥ · ∥2 is the l2 norm.
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Iterative Proximal (IP) Algorithm

Input The initial estimate β(0) and L= the largest eigenvalue of XTX/n.

Step 0 Take Z(1) = β(0) ∈ Rp and t1 = 1.

Step m(m ≥ 1) Compute

(6)
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Figure 1. 
True predictor graphs of three simulation examples.
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Figure 2. 
Sensitivity study of the SRIG method.
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Figure 3. 
Estimated graph of 93 MRI features.
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Figure 4. 
Comparison of MSE for various methods on the ADNI data set.
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Figure 5. 
The multi-slice view of seven brain regions always selected by SRIG method.
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Table 1

Performance comparison of estimation and prediction for Example 1.

Methods

l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 8.378 (0.323) 5.014 (0.124) 4.132 (0.142) 0.595 (0.047) 0.212 (0.010) 0.149 (0.010)

Lasso 8.527 (0.199) 5.635 (0.119) 4.328 (0.153) 1.291 (0.087) 0.530 (0.036) 0.274 (0.014)

Ridge 8.166 (0.050) 7.585 (0.039) 4.325 (0.062) 12.336 (0.215) 10.936 (0.144) 0.946 (0.027)

ALasso 8.822 (0.275) 5.570 (0.167) 4.686 (0.147) 1.032 (0.093) 0.351 (0.041) 0.211 (0.012)

Enet 5.120 (0.201) 3.770 (0.110) 3.265 (0.092) 0.969 (0.071) 0.431 (0.031) 0.239 (0.012)

PCR 7.097 (0.104) 5.730 (0.096) 4.846 (0.080) 5.256 (0.253) 2.714 (0.134) 1.670 (0.092)

SPLS 4.147 (0.307) 3.150 (0.234) 2.752 (0.187) 1.046 (0.141) 0.777 (0.105) 0.494 (0.049)

GOSCAR 4.980 (0.273) 3.218 (0.139) 3.038 (0.108) 0.817 (0.070) 0.362 (0.024) 0.252 (0.010)

GOSCAR-O 5.051 (0.270) 3.220 (0.138) 3.027 (0.107) 0.811 (0.069) 0.363 (0.024) 0.255 (0.010)

GRACE 4.551 (0.142) 3.749 (0.091) 3.378 (0.122) 0.632 (0.050) 0.338 (0.021) 0.222 (0.011)

GRACE-O 4.554 (0.140) 3.743 (0.091) 3.371 (0.123) 0.633 (0.051) 0.338 (0.021) 0.222 (0.011)

SRIG 2.403 (0.065) 1.890 (0.064) 1.610 (0.046) 0.324 (0.037) 0.217 (0.015) 0.175 (0.013)

SRIG-O 2.392 (0.065) 1.820 (0.045) 1.564 (0.043) 0.320 (0.037) 0.208 (0.015) 0.171 (0.012)
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Table 2

Performance comparison of model selection for Example 1.

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.087 (0.009) 0.145 (0.014) 0.123 (0.010) 0.171 (0.012) 0.027 (0.005) 0.003 (0.002)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.039 (0.007) 0.027 (0.006) 0.041 (0.005) 0.173 (0.016) 0.021 (0.006) 0.007 (0.003)

Enet 0.131 (0.013) 0.171 (0.012) 0.148 (0.013) 0.032 (0.010) 0.000 (0.000) 0.000 (0.000)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.140 (0.034) 0.274 (0.043) 0.245 (0.034) 0.043 (0.011) 0.004 (0.002) 0.003 (0.002)

GOSCAR 0.190 (0.025) 0.226 (0.007) 0.307 (0.009) 0.039 (0.011) 0.003 (0.002) 0.000 (0.000)

GOSCAR-O 0.230 (0.032) 0.228 (0.007) 0.310 (0.009) 0.036 (0.011) 0.003 (0.002) 0.000 (0.000)

GRACE 0.136 (0.011) 0.135 (0.009) 0.127 (0.011) 0.005 (0.004) 0.000 (0.000) 0.000 (0.000)

GRACE-O 0.138 (0.011) 0.134 (0.009) 0.127 (0.011) 0.005 (0.004) 0.000 (0.000) 0.000 (0.000)

SRIG 0.001 (0.001) 0.003 (0.001) 0.003 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SRIG-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
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Table 3

Performance comparison of estimation and prediction for Example 2.

Methods

l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 9.312 (0.322) 6.193 (0.213) 4.926 (0.146) 0.575 (0.036) 0.235 (0.015) 0.149 (0.008)

Lasso 9.896 (0.205) 7.440 (0.159) 5.865 (0.130) 1.146 (0.061) 0.536 (0.022) 0.300 (0.012)

Ridge 9.298 (0.065) 8.571 (0.049) 6.496 (0.079) 2.240 (0.045) 1.914 (0.028) 0.500 (0.015)

ALasso 10.072 (0.192) 7.311 (0.181) 6.238 (0.157) 1.065 (0.056) 0.426 (0.021) 0.275 (0.011)

Enet 8.776 (0.197) 6.668 (0.142) 5.176 (0.103) 1.056 (0.057) 0.514 (0.023) 0.280 (0.011)

PCR 9.782 (0.110) 8.842 (0.125) 8.613 (0.132) 2.318 (0.071) 1.763 (0.074) 1.711 (0.077)

SPLS 8.423 (0.261) 5.480 (0.212) 4.062 (0.172) 0.900 (0.056) 0.321 (0.024) 0.194 (0.017)

GOSCAR 8.844 (0.243) 6.280 (0.173) 4.547 (0.123) 0.974 (0.051) 0.438 (0.023) 0.221 (0.009)

GOSCAR-O 5.662 (0.247) 4.666 (0.121) 4.416 (0.102) 0.566 (0.049) 0.287 (0.016) 0.208 (0.010)

GRACE 8.815 (0.235) 6.562 (0.152) 5.270 (0.112) 1.029 (0.055) 0.475 (0.021) 0.267 (0.011)

GRACE-O 8.238 (0.239) 6.353 (0.151) 5.084 (0.108) 0.972 (0.062) 0.453 (0.022) 0.254 (0.010)

SRIG 8.179 (0.200) 5.890 (0.130) 4.942 (0.104) 0.949 (0.068) 0.396 (0.022) 0.236 (0.009)

SRIG-O 7.354 (0.193) 5.257 (0.133) 4.245 (0.097) 0.718 (0.050) 0.284 (0.016) 0.167 (0.008)

J Am Stat Assoc. Author manuscript; available in PMC 2018 February 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu and Liu Page 33

Table 4

Performance comparison of model selection for Example 2.

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.154 (0.010) 0.171 (0.014) 0.158 (0.011) 0.304 (0.016) 0.099 (0.010) 0.025 (0.005)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.121 (0.012) 0.071 (0.010) 0.081 (0.007) 0.303 (0.018) 0.121 (0.014) 0.052 (0.009)

Enet 0.311 (0.032) 0.273 (0.024) 0.223 (0.016) 0.168 (0.019) 0.051 (0.009) 0.005 (0.003)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.196 (0.030) 0.050 (0.011) 0.059 (0.021) 0.181 (0.021) 0.096 (0.013) 0.043 (0.007)

GOSCAR 0.271 (0.028) 0.369 (0.030) 0.354 (0.026) 0.164 (0.016) 0.027 (0.007) 0.005 (0.003)

GOSCAR-O 0.500 (0.038) 0.569 (0.020) 0.715 (0.017) 0.023 (0.008) 0.003 (0.002) 0.000 (0.000)

GRACE 0.440 (0.055) 0.203 (0.014) 0.174 (0.011) 0.109 (0.017) 0.055 (0.008) 0.011 (0.003)

GRACE-O 0.328 (0.045) 0.195 (0.013) 0.170 (0.011) 0.113 (0.016) 0.047 (0.008) 0.009 (0.003)

SRIG 0.283 (0.016) 0.275 (0.017) 0.243 (0.014) 0.112 (0.014) 0.028 (0.005) 0.009 (0.004)

SRIG-O 0.170 (0.016) 0.101 (0.013) 0.067 (0.008) 0.099 (0.012) 0.033 (0.006) 0.013 (0.004)
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Table 5

Performance comparison of estimation and prediction for Example 3.

Methods

l2 distance RPE

(I) (II) (III) (I) (II) (III)

LS-O 2.668 (0.103) 1.769 (0.055) 1.324 (0.048) 0.401 (0.027) 0.172 (0.010) 0.103 (0.007)

Lasso 11.370 (0.131) 7.096 (0.186) 4.772 (0.106) 3.792 (0.080) 1.850 (0.090) 0.846 (0.035)

Ridge 12.140 (0.008) 12.100 (0.013) 11.026 (0.166) 4.006 (0.035) 3.979 (0.046) 3.779 (0.059)

ALasso 11.339 (0.147) 7.070 (0.184) 4.773 (0.105) 3.786 (0.078) 1.840 (0.088) 0.843 (0.035)

Enet 11.366 (0.129) 7.096 (0.186) 4.772 (0.106) 3.795 (0.076) 1.850 (0.090) 0.846 (0.035)

PCR 12.122 (0.010) 12.140 (0.007) 12.139 (0.008) 4.216 (0.044) 4.072 (0.043) 4.076 (0.049)

SPLS 12.080 (0.124) 11.219 (0.137) 10.858 (0.111) 5.990 (0.165) 5.247 (0.112) 4.664 (0.115)

GOSCAR 8.879 (0.220) 5.677 (0.151) 4.001 (0.090) 2.671 (0.117) 1.175 (0.056) 0.600 (0.025)

GOSCAR-O 8.709 (0.220) 5.454 (0.142) 3.900 (0.085) 2.510 (0.102) 1.094 (0.052) 0.571 (0.023)

GRACE 11.166 (0.140) 7.074 (0.184) 4.788 (0.105) 3.753 (0.088) 1.842 (0.089) 0.850 (0.035)

GRACE-O 10.140 (0.159) 7.085 (0.186) 4.787 (0.104) 3.279 (0.071) 1.822 (0.086) 0.848 (0.035)

SRIG 6.398 (0.223) 3.756 (0.131) 2.691 (0.076) 1.607 (0.093) 0.621 (0.040) 0.322 (0.018)

SRIG-O 4.150 (0.301) 2.344 (0.098) 1.736 (0.066) 0.804 (0.103) 0.254 (0.020) 0.141 (0.009)
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Table 6

Performance comparison of model selection for Example 3.

Methods
FPR FNR

(I) (II) (III) (I) (II) (III)

LS-O 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Lasso 0.152 (0.019) 0.467 (0.015) 0.481 (0.013) 0.793 (0.027) 0.129 (0.018) 0.011 (0.005)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ALasso 0.155 (0.020) 0.469 (0.014) 0.473 (0.014) 0.776 (0.031) 0.124 (0.017) 0.011 (0.005)

Enet 0.233 (0.031) 0.467 (0.015) 0.481 (0.013) 0.716 (0.034) 0.129 (0.018) 0.011 (0.005)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

SPLS 0.440 (0.050) 0.351 (0.044) 0.305 (0.042) 0.502 (0.053) 0.493 (0.046) 0.476 (0.049)

GOSCAR 0.292 (0.028) 0.378 (0.022) 0.380 (0.011) 0.438 (0.031) 0.060 (0.010) 0.004 (0.003)

GOSCAR-O 0.261 (0.024) 0.349 (0.016) 0.369 (0.012) 0.424 (0.030) 0.049 (0.009) 0.004 (0.003)

GRACE 0.220 (0.030) 0.472 (0.015) 0.481 (0.014) 0.711 (0.036) 0.120 (0.018) 0.011 (0.005)

GRACE-O 0.677 (0.058) 0.531 (0.028) 0.480 (0.014) 0.296 (0.055) 0.085 (0.015) 0.009 (0.004)

SRIG 0.216 (0.012) 0.266 (0.017) 0.245 (0.016) 0.109 (0.014) 0.015 (0.005) 0.000 (0.000)

SRIG-O 0.163 (0.018) 0.127 (0.018) 0.071 (0.015) 0.031 (0.018) 0.000 (0.000) 0.000 (0.000)
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Table 7

Performance comparison of NMR and ZMR (Sample sizes: 40/40/400).

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

LS-O 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) – 1.000 (0.000) 1.000 (0.000)

Lasso 0.679 (0.020) 0.480 (0.025) 0.149 (0.025) – 0.717 (0.017) 0.743 (0.031)

Ridge 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) – 0.000 (0.000) 0.000 (0.000)

Alasso 0.681 (0.027) 0.494 (0.026) 0.167 (0.029) – 0.779 (0.021) 0.738 (0.032)

Enet 0.939 (0.019) 0.710 (0.032) 0.215 (0.034) – 0.520 (0.038) 0.642 (0.037)

PCR 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) – 0.000 (0.000) 0.000 (0.000)

SPLS 0.922 (0.020) 0.703 (0.033) 0.445 (0.057) – 0.702 (0.038) 0.441 (0.056)

GOSCAR 0.927 (0.019) 0.717 (0.026) 0.491 (0.032) – 0.593 (0.032) 0.528 (0.029)

GOSCAR-O 0.933 (0.019) 0.966 (0.012) 0.505 (0.032) – 0.405 (0.040) 0.574 (0.028)

GRACE 0.989 (0.008) 0.813 (0.029) 0.227 (0.036) – 0.462 (0.048) 0.658 (0.037)

GRACE- O 0.989 (0.008) 0.809 (0.027) 0.676 (0.059) – 0.552 (0.040) 0.271 (0.052)

SRIG 1.000 (0.000) 0.841 (0.019) 0.864 (0.018) – 0.579 (0.020) 0.627 (0.018)

SRIG-O 1.000 (0.000) 0.844 (0.017) 0.969 (0.018) – 0.780 (0.020) 0.713 (0.030)

[– indicates that value is not available since there are no edges between useless predictors.]
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Table 8

Time comparison between PD method and IP algorithm.

Examples n p Nedges pnew/p TimePD (seconds) TimeIP (seconds)

1 40 100 30 1.600 0.083 0.436

2 40 100 99 2.980 0.181 14.850

3 40 100 243 5.860 0.485 44.158

4 400 1500 263229 351.972 277.326 74.701

5 500 2000 475289 476.289 796.735 81.051

6 600 2500 750074 601.059 NA 96.436

[Nedges: the number of edges in the graph G; pnew: the number of predictors in the duplicated predictor matrix; TimePD: computing time of the 

PD method; TimeIP: computing time of the IP algorithm; NA: out of memory.]
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