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Cheminformatics-aided pharmacovigilance:
application to Stevens-Johnson Syndrome
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ABSTRACT
....................................................................................................................................................

Objective Quantitative Structure-Activity Relationship (QSAR) models can predict adverse drug reactions (ADRs), and thus provide early warnings
of potential hazards. Timely identification of potential safety concerns could protect patients and aid early diagnosis of ADRs among the exposed.
Our objective was to determine whether global spontaneous reporting patterns might allow chemical substructures associated with Stevens-
Johnson Syndrome (SJS) to be identified and utilized for ADR prediction by QSAR models.
Materials and Methods Using a reference set of 364 drugs having positive or negative reporting correlations with SJS in the VigiBase global repo-
sitory of individual case safety reports (Uppsala Monitoring Center, Uppsala, Sweden), chemical descriptors were computed from drug molecular
structures. Random Forest and Support Vector Machines methods were used to develop QSAR models, which were validated by external 5-fold
cross validation. Models were employed for virtual screening of DrugBank to predict SJS actives and inactives, which were corroborated using
knowledge bases like VigiBase, ChemoText, and MicroMedex (Truven Health Analytics Inc, Ann Arbor, Michigan).
Results We developed QSAR models that could accurately predict if drugs were associated with SJS (area under the curve of 75%–81%). Our 10
most active and inactive predictions were substantiated by SJS reports (or lack thereof) in the literature.
Discussion Interpretation of QSAR models in terms of significant chemical descriptors suggested novel SJS structural alerts.
Conclusions We have demonstrated that QSAR models can accurately identify SJS active and inactive drugs. Requiring chemical structures only,
QSAR models provide effective computational means to flag potentially harmful drugs for subsequent targeted surveillance and pharmacoepide-
miologic investigations.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Pharmacovigilance, the detection of adverse drug reactions (ADRs),
relies on the surveillance of spontaneous reports submitted by health
care practitioners and pharmaceutical manufacturers.1–3 However,
warning signals require a sufficient number of ADR reports to accumu-
late, inadvertently exposing more patients to potentially harmful
drugs.4

Growing digitization of health care data offers new opportunities
for improving ADR detection. Indeed, it is feasible to detect ADRs using
electronic health records,5 biomedical literature,6 drug labels,7 bioas-
says,8 and Quantitative Structure-Activity Relationships (QSAR) mod-
els.9 The latter approach that correlates chemical descriptors of
molecules with their chemical activity was introduced by Hansch
et al.10 In early QSAR studies, few descriptors (eg, electronic,11 hydro-
phobic,12 and steric13) were used. Modern QSAR models now employ
numerous diverse chemical descriptors (calculated, for example, by
Dragon software [TALETE srl, Milano, Italy]14) that represent physico-
chemical properties, substructural fragments (eg, presence of chemi-
cal functional groups, In Silico Design and Data Analysis [ISIDA]15

fragments), molecular signatures (eg, Molecular ACCess System
[MACCS]16 fingerprints), and abstract mathematical derivations based
on quantum theory (eg, orbital energies).17 Often, machine learning
methods are used to correlate multiple chemical descriptors to the
compounds’ activities. Quantitative Structure-Activity Relationships
modeling has been widely used for predicting drug potencies and
chemical toxicities, including ADRs.9,18–21

Requiring only chemical structures as input, QSAR modeling allows
in silico prediction of drug effects before drugs are released to the
market and initiates targeted surveillance, protecting patients from un-
necessary exposure and hastening the diagnosis of ADRs. Moreover,
QSAR models can provide insight into the mechanisms underlying the
ADR and guide safer drug design.

In this study, we have focused on Stevens-Johnson Syndrome
(SJS) because of its medical severity22 and well-established structure-
activity relationships linking drug classes such as sulfonamide antibi-
otics, penicillin, and quinolones to SJS.18,22,23 Because these drugs
are widely used, many patients may be unnecessarily at risk of SJS,
especially predisposed populations with certain human leukocyte anti-
gen subtypes.24–26 In SJS, the skin and mucous membranes separate
into large blisters, leaving denuded, hemorrhagic areas over the whole
body with a mortality rate of up to 30% to 40%.22 Although exact
pathogenesis remains to be established, SJS is often drug-induced
and immune-mediated and may manifest as a hypersensitivity reac-
tion to drugs.27 Implicated drugs have distinct molecular structures
such as sulfonamide and penicillin, leading researchers to question if
there is a chemical basis for drug-induced SJS.18,22,23 Understanding
the chemical basis would help identify toxicophore alerts to guide
prescription.

Previously, QSAR models with 69% to 73% prediction accuracy
have been reported for a dataset of 110 drugs obtained from the US
Food and Drug Administration Adverse Event Reporting System.18 This
study expands prior work by drawing upon a larger database of global
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spontaneous reports (VigiBase; Uppsala Monitoring Center, Uppsala,
Sweden) and a larger set of 364 drugs for QSAR modeling. Our objec-
tives were to develop, validate, and interpret QSAR models that could
more accurately predict drugs’ association with SJS. Although this
study is specific to SJS, the general methodological workflow combin-
ing QSAR modeling, virtual screening of drug databases, and valida-
tion of predictions by focused exploration of existing knowledge
bases-can be applied to many ADRs.

METHODS
Overview
Figure 1 presents a general methodological workflow integrating the
development, interpretation, and validation of QSAR model for SJS.
First, QSAR models are developed using a diverse set of drugs associ-
ated with SJS according to VigiBaseVR ,28 the World Health Organization
(WHO) global database of suspected ADRs, maintained and analyzed
by the Uppsala Monitoring Centre. As of February 2012, VigiBase con-
tained 7 014 658 reports from 107 countries, covering approximately
20 000 drugs (ie, generic substances) and 2000 ADRs coded accord-
ing to the WHO Drug Dictionary EnhancedTM and the WHO-Adverse
Reactions TerminologyTM, respectively. Second, QSAR models are in-
terpreted for important chemical features to detect structural alerts,
which are chemical substructures characteristic of SJS-active
drugs. Third, these models are used to screen DrugBank29 for poten-
tial SJS-active drugs. Fourth, predictions are checked for either the
evidence of SJS or lack thereof using VigiBase,28 ChemoText,30 and
Micromedex (Truven Health Analytics Inc, Ann Arbor, Michigan).31

SJS-active and SJS-inactive drugs
To develop the QSAR models, a reference set of drugs was extracted
based on their reporting correlations with SJS in VigiBase. A drug was
defined as active if it had higher-than-expected reporting with SJS, as
indicated by a positive coefficient in a shrinkage regression model for
the reporting of SJS in VigiBase.32 By considering all 20 000 drugs si-
multaneously, regression is more conservative than standard dispro-
portionality analysis and minimizes false inclusion of innocent
bystanders coreported with true SJS actives. Drugs were defined as
inactive if they had no or minimal reporting correlation with SJS, as
specified by the following criteria: (1) for drugs with less than 1000 re-
ports in total, inactives must never have been reported with SJS; for
drugs with at least 1000 reports in total, inactives must have dispro-
portionately few SJS reports as indicated by a negative Information
Component (IC) 95% credibility interval33,34; and (2) never be the sole
suspect drug in any SJS report. The sole suspect criterion minimizes
the risk of including “inactive” drugs that have weak overall correla-
tion to SJS in the database but may have strong implications for a
causal link in 1 or a few reports.

Chemical structures
Of the 436 drugs extracted from VigiBase (excluding mixtures and bio-
logics), chemical structures were retrieved and curated to ensure that
drug structures were correctly represented and standardized prior to
model development.35 After removing salts, metal-containing com-
pounds, large molecules (molecular weight> 2000 daltons), and
structural duplicates (using ChemAxon v.5.0, Budapest, Hungary; and
Pipeline Pilot Student Edition v.6.1.5, Accelrys, San Diego, California),
194 actives and 170 inactives remained for QSAR modeling (supple-
mentary table S1).

We used 3 different sets of chemical descriptors: Dragon, ISIDA
substructural fragments, and MACCS fingerprints. Dragon descriptors
(v.5.5),14 known for their comprehensive characterization of chemicals
structures, include constitutional, functional groups, atom-centered
fragments, molecular properties, and 2-dimensional frequency finger-
prints. To generate ISIDA15 fragment descriptors, each molecular
structure was split into substructural fragments containing 2 to 6
atoms in linear sequence. Fragment descriptors were binarized, de-
pending on whether the fragments were present or absent in a drug.
The third type of descriptors, MACCS fingerprints, were a predefined
set of 166 binary hash representations compressing numerous
descriptors.16

All subsequent analyses were performed in R (v.2.14). Continuous
descriptors (Dragon) were autoscaled to z scores. Descriptors were
excluded if they were invariant (< 0.001 standardized standard devia-
tion; > 99% constant values) or intercorrelated (if pairwise r2> 0.99,
randomly remove 1 of the 2 descriptors) such that 354 Dragon, 138
MACCS, and 1091 ISIDA descriptors remained for modeling (supple-
mentary table S2).

Step 1: QSAR modeling and evaluation
For each of the 3 descriptor sets, 2 classification methods (Random
Forest [RF]36 and support vector machines [SVMs]37) were used to
build QSAR models. All models were evaluated by external 5-fold
cross validation38 whereby the entire dataset was divided randomly
into 5 equal parts. Each individual part was systematically left out as
an external validation set, whereas the remaining 80% of compounds
in the dataset were used for model development. We used the default
parameters for RF (randomForest R package version 4.6-5) as RF are
known to perform well even without parameter tuning.39 SVM model-
ing parameters (ie, cost and gamma) were tuned for minimum mean

Figure 1: Schematic workflow showing the use of multiple
data sources for developing, interpreting, and validating
QSAR models that classify drugs as SJS-active or inactive.
First, VigiBase provided 364 drugs whose chemical struc-
tures were used as variables for QSAR modeling. Second,
QSAR models provided structural alerts for interpretation.
Third, QSAR models predicted potential SJS actives and in-
actives in DrugBank. Fourth, the predicted actives and inac-
tives were evaluated for evidence of SJS activity or lack
thereof in VigiBase, ChemoText, and Micromedex.
Abbreviations: QSAR, Quantitative Structure-Activity
Relationships; SJS, Stevens-Johnson syndrome.
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error by additional internal 5-fold cross validation within the 80%
training set. This tuned model was externally validated with the corre-
sponding 20% external set, which was never used for parameter tun-
ing and modeling. Reported prediction accuracies are based on the
external sets only.

Models were assessed by specificity, sensitivity, balanced accu-
racy, area under the curve (AUC), and coverage. Balanced accuracy is
the average of specificity and sensitivity. Coverage measures the frac-
tion of test drugs that can be reliably predicted by the QSAR model,
depending on the test drugs’ chemical similarity to drugs in the train-
ing set. The chemical space bound by the training set molecules de-
fines the limits of the extrapolation region (termed application domain)
of the QSAR model.40,41 For more reliable predictions, the application
domain can be tightened by setting a high minimum chemical similar-
ity threshold between the test drugs and training drugs. In this study,
the application domain was set to mean interchemical distance plus
half a standard deviation. Here, coverage refers to the fraction of drugs
in the external set that are within the above defined applicability do-
main. Additionally, precision was used to assess structural alerts.
Standard errors of all metrics were calculated by bootstrapping42 with
1000 trials.

Additional internal validation with y-randomization test ensured
that models were robust and not due to chance correlations.43 After
permuting the y activity labels in the modeling sets, models were re-
built following the same procedures as outlined above for nonrandom-
ized data. This process was repeated 30 times to generate a null
distribution of y-randomized model accuracy for comparison under a
1-tailed, 1 sample t test.

Step 2: QSAR model interpretation
Model interpretation involved identifying key chemical predictors of
SJS in terms of f most important individual ISIDA fragments and fused
substructures reconstituted from the fragments.

Important chemical fragments
To determine the minimal subset of f most important chemical frag-
ments predictive of SJS, ISIDA fragments were ranked by RF condi-
tional importance44 in the ISIDA-RF model. Because the fragment
ranking varied slightly across 5 models generated with 5-fold external
cross validation, only f fragments that were consistently among the
top 10, 25, 50, 75, and 150 fragments in all 5 models were selected
for rebuilding reduced RF models. For each value of f, the reduced RF
model’s out-of-bag (OOBf) error36 was compared with that of the full
RF model (OOBfull) incorporating all 1091 fragments. Optimal f (ie, fmin)
was defined as f with the minimum OOBf error less than or equal to
OOBfull error.

Structural alerts identified from co-occurring fragments (Method 1)
The fused structural alerts were reconstituted from clusters of frag-
ments that co-occurred more frequently in actives than in inactives. All
possible pairs of f fragments were tested for higher-than-expected co-
occurrence in actives compared with inactives by a 2-tailed Fisher ex-
act test. A fragment pair was said to have significant co-occurrence
when its P< 0.1 after adjustment for multiple testing by permutation
(figure 2a). Specifically for each fragment i, its pairwise co-occurrence
with each of 1000 noise fragments (randomly present or absent) gener-
ated Fisher test values ti,noise1, ti,noise2, . . . , ti,noise1000, forming a per-
mutation null distribution Di. To adjust the test value of the pairwise co-
occurrence of fragments i and j, ti,j was compared against the relevant
null distributions Di and Dj such that the larger of its quantiles along the
null distributions, max (qi, qj), was taken as the adjusted P value.

Co-occurring fragments were represented by a network where frag-
ment nodes were connected if they co-occurred significantly (figure 2b).
Frequently co-occurring fragments formed densely connected subnet-
works known as communities in network analysis. Communities were
detected by the walktrap algorithm, which stochastically agglomerated
the fragment nodes such that they were disproportionately more con-
nected with nodes inside the community than outside.45 Within a dis-
tinctly colored community, the fragments co-occurred more frequently
in drugs of 1 class vs the other. Hence, they could be assembled into a
larger substructure as structural alerts for a certain class of drugs.

Structural alerts identified by maximal common substructures analysis
(Method 2)
The maximal common substructures (MCS)46 method provided a
second set of structural alerts for comparison with those obtained by
co-occurring fragments (Method 1). MCS extracted the largest sub-
structures being more frequently associated with actives than with in-
actives. For MCS of reasonable utility, we set the following criteria:
size� 8 atoms, frequency ratio� 2, and derived from� 6 molecules.

Step 3: QSAR model application: prediction of SJS-active and
inactive drugs in DrugBank
We used our best QSAR model (RF model of Dragon descriptors) to vir-
tually screen the DrugBank library of 4122 drugs29 for potential SJS-
active drugs after excluding drugs used for modeling. The same
chemical curation and descriptor treatment procedures used earlier
for the modeling dataset were applied to DrugBank. Compounds were
ranked by virtual screening prediction scores. Recall that in RF, an
ensemble of models is generated. The prediction score is the average
of the classification labels (0 or 1) generated by individual models;
thus, the closer the average prediction is to 1, the higher is the proba-
bility that a compound is active.

Step 4: Corroboration of model predictions using knowledge bases
The following subsets of drugs were evaluated for evidence of SJS (or
lack thereof) in knowledge bases: 10 compounds most likely to be ac-
tive (based on their prediction scores being closest to 1); 10 compounds
most likely to be inactive (predictions closest to zero); 2 positive controls
with known association with SJS (sulfamethoxazole and amoxicillin);
and 2 negative controls with zero or minimal association with SJS (pro-
gesterone and vardenafil). Predicted actives and inactives were ranked
according to their mean predicted value (average of 5 predictions from
5 models from 5-fold cross validation, supplementary table S3).

The 3 knowledge bases VigiBase,28 ChemoText,30 and
Micromedex31 reflect the association between the predicted drug and
SJS in various data sources—namely, spontaneous ADR reports, the
biomedical literature, and a curated knowledge source, respectively.
VigiBase, a repository of global spontaneous ADR reports, provided an
IC value that measured if each drug was linked to a disproportionate
number of spontaneous SJS reports.28 ChemoText, a chemocentric
database of MeSH (Medical Subject Headings) annotations sourced
from PubMed,30 provided the number of human studies coannotating
the drug of interest and “Stevens-Johnson syndrome” (also included
MeSH synonyms and related terms “erythema multiforme” and “epi-
dermal necrolysis, toxic”). Micromedex,31 an evidence-based resource
referenced by clinicians as an industry standard, was searched for
co-mentions of SJS and related hypersensitivity.
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Figure 2: Results of co-occurrence analysis of ISIDA chemical fragments. (a) Adjusted P values show the association between pairwise
co-occurrence of any 2 fragments and SJS inducing activity (from a 2-sided Fisher exact test). (b) Distinctly colored communities of co-
occurring fragments detected by the walktrap community algorithm. Fragment nodes are connected if significantly co-occurring
(P< 0.1). (c) Heat map shows the joint presence of co-occurring fragments within a community (eg, purple C1, corresponding to sulfony-
larylamine reconstituted from 5 co-occurring fragments, is more frequently present among SJS-active drugs).
Abbreviations: SJS, Stevens-Johnson syndrome; ISIDA, In Silico Design and Data Analysis.
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RESULTS
The reference set extracted from VigiBase consisted of 194 active and
170 inactive drugs (supplementary table S1). The actives (table 1) had
more SJS reports in VigiBase than inactives (mean¼ 104 vs 1.52, re-
spectively), more ADR reports overall (mean¼ 6953 vs 3505, respec-
tively), and were disproportionately drawn from several Anatomical
Therapeutic Chemical (ATC) groups such as the anti-infectives (J) and
musculoskeletal system (M) groups. At the same time, inactives were
disproportionately drawn from ATC groups such as genitourinary sys-
tem and sex hormones (G) and nervous system (N).

Step 1: QSAR model performance
QSAR models were built using 3 sets of chemical descriptors (Dragon,
ISIDA, and MACCS; supplementary table S2) and 2 classification meth-
ods (RF36 and SVM37). The 6 models and their consensus (single-vote
average of 6 predictions) showed high accuracy characterized by AUC
values of 75% to 81% (table 2). Coverage, which is defined as a frac-
tion of drugs within the QSAR model applicability domain, was gener-
ally high for all models (97%–100%) although a few macrolides (eg,
bleomycin) were too structurally dissimilar from other compounds to
be predicted reliably. The y-randomization test showed that all models
were unlikely to be fitted by chance (P¼ 0.03 ).

Step 2: Model interpretation (structural alerts)
We focused interpretation on the RF model built with ISIDA fragment
descriptors, since many of these descriptors corresponded to chemical
functional groups. We progressively rebuilt RF models using f most
important44 fragments to find the fewest number of fragments yielding
the model with OOB error less than or equal to that of the full model
using all 1091 fragments. We found empirically that this objective was
met with f¼ 29 whereby the 29 fragments were the common overlap
among the 5 sets of top 50 fragments from 5 models developed with
5-fold cross-validation (supplementary figure S1). These 29 fragments
were used for subsequent analysis to identify structural alerts associ-
ated with SJS.

Although each of these 29 discriminatory fragments could individu-
ally serve as an indicator for SJS activity (or lack thereof), we hypothe-
sized that some of them that occur frequently within the same drugs
can be fused to generate larger substructures with potentially higher
specificity as structural alerts for SJS. These fused structural alerts
were uncovered by looking for significant pairwise co-occurrences in
actives vs inactives using the Fisher exact test (figure 2a). The co-
occurrences were also elucidated by considering a network of frag-
ment nodes, connected whenever a pair co-occurred significantly
(figure 2b). In the network, clusters of co-occurring fragments formed
densely connected subnetworks (ie, communities), which were identi-
fied by the walktrap community detection method.45 Within each com-
munity, some co-occurring fragments could be manually assembled
into a larger substructure as an indicator for either SJS class. Of the 5
communities identified, 2 contained fragments that could be assem-
bled into larger substructures, forming a novel structural alert for SJS
activity (communities C1 and C2, figures 2b and c). The first commu-
nity (C1, purple) consisted of 5 fragments corresponding to
arylamines, sulfonylarenes, and sulfones that were assembled into a
sulfonylarylamine structural alert, the substructure incorporating all of
these fragments. The second community (C2, blue) formed a b-lactam
substructure. The green and yellow communities were composed of
aliphatic chains and secondary amines that more frequently
occurred in inactives than in actives, forming a safe substructure
(C3, C4, green and yellow, respectively). The remaining community

(C5, pink) contained only 2 fragments, too small for any meaningful
interpretation.

Both structural alerts uncovered by the above co-occurrence anal-
ysis were consistent with those obtained from the second approach to
identify larger significant fragments based on the MCS method. This
concordance provides additional evidence that co-occurrence analysis
is a valid method to derive structural alerts. However, MCS discovered
2 additional structural alerts, fluoroquinolones and tetracyclines
(figures 3.3–3.4b) that were present only in a few drugs. Because of
their rarity, their key-related fragments (eg, fluorinated groups, qui-
nones) were not found among the 29 most important fragments ana-
lyzed for co-occurrences. Thus, co-occurrence analysis may be better
suited for detecting substructures with the occurrence above some
minimum frequency.

Substructures known to be associated with actives22,47 are shown
in figure 3. Such substructures were inferred from drug classes impli-
cated with SJS such as sulfonamide antibiotics, penicillin, quinolones,

Table 1: Properties of SJS-active and inactive drugs used for
QSAR modeling

SJS-active
drugs
(n¼ 194)

SJS-inactive
drugs
(n¼ 170)

No. of SJS reportsa, mean (SD) 104 (262) 1.52 (4.10)

No. of ADR reportsa, mean (SD) 6953 (9849) 3505 (5416)

Anatomical Therapeutic Chemical
(ATC) classificationb, mean (%)

A: Alimentary tract and metabolism 26 (13) 14 (8)

B: Blood and blood forming organs 1 (1) 9 (5)

C: Cardiovascular system 18 (9) 25 (15)

D: Dermatologicals 24 (12) 12 (7)

G: Genitourinary system
and sex hormones

9 (5) 21 (12)

H: Systemic hormonal preparations,
excluding sex hormones and insulins

4 (2) 5 (3)

J: Anti-infectives for systemic use 81 (42) 5 (3)

L: Antineoplastic and
immunomodulating agents

7 (4) 24 (14)

M: Musculoskeletal system 35 (18) 4 (2)

N: Nervous system 25 (13) 48 (28)

P: Antiparasitic products,
insecticides, and repellents

5 (3) 1 (1)

R: Respiratory system 15 (8) 22 (13)

S: Sensory organs 38 (20) 13 (8)

V: Various 26 (13) 14 (8)

Abbreviations: SJS, Stevens-Johnson syndrome; QSAR, Quantitative
Structure-Activity Relationship; ADR, adverse drug reaction.
aSignificant difference (P< .01) by the Welch t test for unequal
variances.
bSignficance was not determined for ATC because drugs could belong
to multiple ATC.
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and tetracyclines.22,47 Our systematic chemical analysis found larger,
more specific substructures (figure 3, right column) that were more
likely to yield true positives (ie, higher precision). For example, the sul-
fonylarylamine structural alert (figure 3.1b) correctly identified drugs
positively associated with SJS all 20 times it was present in a drug, un-
like the sulfonamide structural alert (figure 3.1a) which falsely predicted
the SJS activity for some sulfonamide drugs. In minimizing false posi-
tives, more precise structural alerts could spare drugs from wrongful
association with SJS and leave more drug options available for use.

Step 3: Model application: prediction of SJS for drugs in DrugBank
We used the best QSAR model (Dragon-RF) for the virtual screening of
DrugBank, assessing 4122 drug structures for potential SJS activity
(supplementary table S3). Among the 10 most likely SJS-active drugs
(excluding experimental drugs), 8 contained either the sulfonylaryl-
amine or b-lactam with adjacent sulfur structural alert (figure 4).
Among the 10 most likely inactives, etonogestrel, mestranol, and
rapacuronium were chemically similar to many steroidal inactives in
our reference set such as progesterone.

Step 4: Corroboration of model predictions of SJS-active and
inactive drugs
We checked VigiBase and the literature (ChemoText30 and
MicroMedex31) for reports of SJS associated with the predicted SJS
actives and inactives (table 3). Between predicted actives and pre-
dicted inactives, the former was associated with a higher number of
SJS reports and higher IC values indicative of higher-than-expected
SJS reporting in VigiBase and more instances of SJS in ChemoText
and Micromedex. Despite the evidence in VigiBase, these predicted
drugs were not included in our reference set for modeling as they
were not obvious candidates for actives and inactives due to coreport-
ing with other comedications and low usage (evident by a few ADR re-
ports). When only a few ADR reports are available, we should not rely
on the IC as the only indication of SJS, because their 95% credibility
intervals are very wide. Nevertheless, the general trends in the IC val-
ues and other data sources showed that the predicted actives were
associated with more SJS instances than predicted inactives, sup-
porting our models’ predictions.

DISCUSSION
To meet our objectives of developing, interpreting, and applying QSAR
models of SJS as well as validating predictions made with these

models, we have extracted spontaneous reports of SJS as primary
data and generated QSAR classifiers that predicted SJS active and in-
active drugs from chemical structures (AUC of 75%�81%; table 2),
improving upon previous linear models (69%�73% accuracy) which
used spontaneous reports from the United States only.18 Models built
with ISIDA fragment descriptors identified the most predictive frag-
ments from which we further created new larger structural alerts as-
sociated with the active class (figure 2). Although these larger alerts
were less prevalent, their precision in identifying actives was higher
than previous smaller structural alerts (figure 3).

The additional chemical features encapsulated in our larger struc-
tural alerts offered important mechanistic clues. For example, although
it is known that sulfonamides alone do not induce SJS,48 sulfonamides
antibiotics have long been implicated with SJS.22 Instead, studies
have attributed immunogenic reactions related to SJS to an arylamine
group within the sulfonylarylamine49 structural alert (figure 3.1b). The
purported mechanism involves the metabolic transformation of the
arylamine group into a reactive nitroso metabolite that covalently binds
to cellular macromolecules to initiate an immune response consistent
with the hapten hypothesis.48–50 Arylamines are generally rare
among drugs due to their reactivity. Exceptions are drugs such as
sulfonamide antibiotics, which contain a sulfone group (SO2) in the
electron-withdrawing para-position to stabilize the arylamine against
overt toxicity but not exculpate it from metabolizing into the nitroso
culprit.51

The other structural alert, b-lactam with adjacent sulfur
(figure 3.2b), suggests that the additional sulfur atom may be neces-
sary for SJS activity. By incorporating the adjacent sulfur atom into
an extended alert, precision increases to 100% such that all b-lactam
antibiotics containing this moiety are actives. Conversely, ana-
logs without the adjacent sulfur atom such as latamoxef were
inactives.

Our third structural alert refers to a fluoroquinolone (figure 3.3b) in-
stead of quinolone as a known alert. However, because all the quino-
lones were also fluoroquinolones in the data set used for our study,
we could not conclude that fluoroquinolone was a better alert. We
note that such a distinction between the 2 may be irrelevant as most
unfluorinated quinolones have been discontinued in favor of the more
efficacious fluoroquinolones.52

Our fourth structural alert refers to tetracycline antibiotics instead
of the more general four-ring system present in both tetracycline an-
tibiotics and anthracyclines. In our study, all 6 tetracycline antibiotics
were active, while all 3 anthracyclines were inactive. Their structural

Table 2: Performance of QSAR modelsa

Descriptors Method Specificity Sensitivity Balanced Accuracy Area Under Curve Coverage

354 Dragon RF 0.71 (0.03) 0.77 (0.04) 0.74 (0.02) 0.81 (0.02) 0.97

354 Dragon SVM 0.72 (0.03) 0.71 (0.04) 0.71 (0.02) 0.78 (0.02) 0.97

1091 ISIDA RF 0.69 (0.03) 0.74 (0.04) 0.71 (0.02) 0.77 (0.02) 0.98

1091 ISIDA SVM 0.68 (0.03) 0.71 (0.03) 0.69 (0.03) 0.75 (0.03) 0.98

138 MACCS RF 0.74 (0.03) 0.72 (0.03) 0.73 (0.02) 0.80 (0.02) 1.00

138 MACCS SVM 0.71 (0.03) 0.71 (0.03) 0.71 (0.02) 0.77 (0.03) 1.00

Consensus – 0.73 (0.03) 0.74 (0.03) 0.73 (0.02) 0.79 (0.02) 1.00

Abbreviations: RF, Random Forest; SVM, support vector machines; ISIDA, In Silico Design and Data Analysis; MACCS, Molecular ACCess System;
NA, not applicable.
aResults are presented as mean (with standard errors in parentheses) unless otherwise indicated.
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differences lie in the presence of a dimethylamine group and ab-
sence of a sugar ring in tetracycline antibiotics. By using a more re-
fined structural alert that can differentiate the SJS-inducing
tetracycline antibiotics from the noninducing anthracyclines, we
improved the precision to 100%. Other substructures such as the ar-
omatic ring have been suggested as a structure alert for anticonvul-
sants in a previous study.53 However, we did not find this trend in
our study while using our expanded set of drugs that included non-
anticonvulsants.

In addition to identifying new alerts, we have also demonstrated
the practical utility of QSAR models for identifying potential SJS-active
drugs by virtual screening of the DrugBank library of 4122 drugs.
Drugs predicted with high confidence were chemically similar to drugs
in our reference set used for training QSAR models (figure 4). In addi-
tion, predicted actives were associated with more SJS reports than
predicted inactives (table 3). The chemical structures found to be as-
sociated with SJS may be considered for inclusion in predictive mod-
els for postmarketing safety surveillance that simultaneously account
for multiple aspects of strength of evidence.54 Improved model predic-
tion will prioritize drugs for targeted monitoring such that patients can
be better monitored and more data can be collected to further improve
the model.

A study limitation stems from the underreporting and reporting
bias inherent in spontaneous reporting systems. Nevertheless,
VigiBase remains the largest source of spontaneous ADR reports, thus
providing the largest reference set for the analysis. Another limitation
is that predictions by our QSAR models were not further validated
against a clinically defined gold standard. Instead, only the 10 most
likely active and inactive drugs were corroborated by evidence in exist-
ing databases. We note that the spontaneous reports may have con-
tained additional information (eg, dose, route of administration)
beneficial for prediction that we did not utilize. Using chemical
structures alone might have curtailed predictivity (up to 81% AUC) as
unaccounted nonchemical factors (eg, pharmacogenomics and metab-
olism25,55) may also contribute towards SJS activity. The relationship
between chemical structures and toxicity is often more circuitous than
QSAR models assume, involving many nonchemical factors that de-
pend on the biological host (eg, pharmacogenomics affecting the phar-
macokinetics of the drug) and the ADR of interest. Generally, QSAR
models are more successful at predicting direct chemical-induced out-
comes (eg, mutagenicity due to chemical adduction to DNA) than out-
comes farther downstream of chemical-initiating events (eg,
carcinogenicity that could arise from multiple modes of action affect-
ing cell growth and repair etc).56–59 Therefore, in many other ADRs

Figure 3: Structural alerts for SJS activity. Left column shows previously inferred substructures. Right column shows structural alerts
uncovered in this study. Structural differences are highlighted in gray.
Abbreviation: SJS, Stevens-Johnson syndrome.

RESEARCH
AND

APPLICATIONS

Low Y.S, et al. J Am Med Inform Assoc 2016;23:968–978. doi:10.1093/jamia/ocv127, Research and Applications

974

-
has 
]
ing
-
,
-
]
ten 
.
.
-
.
.
]
-
.
.
which
 affect
s
.
.
<AQ
3
>
.
.
which
]


Figure 4: Most likely SJS actives and inactives predicted by QSAR model (Dragon-RF). Structural alerts, if any, were highlighted within
the predicted drugs.
Abbreviations: SJS, Stevens-Johnson syndrome; QSAR, Quantitative Structure-Activity Relationships; RF, Random Forest.

RESEARCH
AND

APPLICATIONS
Low Y.S, et al. J Am Med Inform Assoc 2016;23:968–978. doi:10.1093/jamia/ocv127, Research and Applications

975



where nonchemical factors play larger roles, QSAR modeling may pre-
sent even less optimistic results than our case of SJS, which is known
to have a strong underlying chemical basis. Possible solutions may en-
tail the development of hybrid QSAR models that incorporate
nonchemical factors as additional variables60,61 or modeling more
specific ADRs (eg, building separate QSAR models specifically for mu-
tagenicity and carcinogenicity).58,59

CONCLUSIONS
Using drug chemical structures and the largest database of ADR
reports in the world, we have developed accurate and interpretable
QSAR models for predicting drugs’ association with SJS. Because
QSAR models require only drug chemical structures, they enable
efficient virtual screening of large drug libraries to prioritize
potentially harmful drugs for focused surveillance and in-depth

Table 3: Mostly likely SJS-active and inactive drugs in DrugBank (as predicted by Dragon-RF model)

VigiBase Chemo Text Micromedex

DrugBank Identification Predicted
Value

standard
deviation

Name SJS
Reports

All ADR
Reports

ICa SJS
Articlesb

SJS

Predicted Inducers (from DrugBank)

DB01581 0.978 0.010 Sulfamerazine 0 1 �0.01 2 No

DB01332 0.967 0.006 Ceftizoxime 2 748 �0.26 0 Yes

DB00493 0.966 0.016 Cefotaxime 40 7550 0.66 15 Yes

DB00576 0.964 0.007 Sulfamethizole 5 490 1.37 5 Yes

DB01325 0.963 0.007 Quinethazone 0 25 �0.22 0 No

DB00880 0.959 0.040 Chlorothiazide 2 800 �0.34 1 Yes

DB00891 0.955 0.011 Sulfapyridine 0 29 �0.25 2 No

DB01333 0.951 0.012 Cefradine 3 994 �0.12 1 Noc

DB00301 0.937 0.020 Flucloxacillin 29 5272 0.71 3 No

DB01607 0.937 0.006 Ticarcillin 2 338 �0.11 0 Yes

Predicted Noninducers (from DrugBank)

DB00294 0.066 0.031 Etonogestrel 1 4443 �3.35 0 Noc

DB01357 0.084 0.036 Mestranol 0 26 �0.23 2 No

DB00202 0.099 0.144 Succinylcholine 4 3581 �1.46 0 No

DB01160 0.100 0.080 Dinoprost 0 161 �1.05 0 No

DB01088 0.103 0.020 Iloprost 1 1518 �1.88 0 No

DB01049 0.109 0.037 Ergoloid mesylate 2 171 1.23 0 No

DB00966 0.110 0.023 Telmisartan 8 4845 �0.96 0 Noc

DB01089 0.120 0.044 Deserpidine 0 9 �0.08 0 No

DB04834 0.123 0.079 Rapacuronium 0 112 �0.80 0 No

DB00654 0.124 0.042 Latanoprost 3 5423 �2.40 1 Noc

Known Inducers (from reference set)

NA NA NA Sulfamethoxazole 37 971 1.43 104 Yes

NA NA NA Amoxicillin 648 48501 1.36 44 Yes

Known Noninducers (from reference set)

NA NA NA Progesterone 0 3825 �4.72 0 Noc

NA NA NA Vardenafil 0 4506 �4.95 0 No

Abbreviations: SJS, Stevens-Johnson syndrome; RF, Random Forest; SD, standard deviation; IC, information component; ADR, adverse drug reac-
tion; NA, not applicable.
aInformation component (IC) is a disproportionality frequency measuring the number of SJS reports lower than or higher than expected in VigiBase.
bNumber of articles in Medline matching the search terms [drugname] AND “Stevens-Johnson syndrome” [MeSH] OR “erythema multiforme”
[MeSH] OR “epidermal necrolysis, toxic” [MeSH] Filters: Humans (as of Februrary 2013).
cHypersensitivity reaction although SJS was not explicitly mentioned.
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pharmacoepidemiologic evaluation, thereby limiting patient exposure
to such medications.
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